Time : 3 Hours

Instructions :

1. Each question carries one mark.

2. Choose correct answer to the following questions and darken, with HB pencil, the corresponding digit $1,2,3$ or 4 in the circle pertaining to the question number concerned in the OMR Answer Sheet, separately supplied to you.

MATHEMATICS

1. $\lim _{x \rightarrow 8} \frac{\sqrt{1+\sqrt{1+x}}-2}{x-8}=$
(1) $\frac{3}{2}$
(2) $\frac{1}{4}$
(3) $\frac{1}{24}$
2. If $|x|$ denotes the greatest integer not exceeding x and if the function f defined by

$$
f(x)= \begin{cases}\frac{a+2 \cos x}{x^{2}} & (x<0) \\ b \tan \frac{\pi}{[x+4]} & (x \geq 0)\end{cases}
$$

is continuous at $x=0$, then the ordered pair $(a, b)=$

$$
f(x)= \begin{cases}\frac{a+2 \cos x}{x^{2}} & (x<0) \\ b \tan \frac{\pi}{[x+4]} & (x \geq 0)\end{cases}
$$

(1) $(-2,1)$
(2) $(-2,-1)$
(3) $(-1, \sqrt{3})$
(4) $(-2,-\sqrt{3})$

Rough Work
3. If $y=(1+x)\left(1+x^{2}\right)\left(1+x^{4}\right) \ldots . .\left(1+x^{2^{n}}\right)$, then $\left(\frac{d y}{d x}\right)_{x=0}=$ $y=(1+x)\left(1+x^{2}\right)\left(1+x^{4}\right) \ldots . .\left(1+x^{2^{2}}\right)$ ఐowత ఐ వ్పురు

$$
\left(\frac{d y}{d x}\right)_{s=0}=
$$

(1) 0
(2) $\frac{1}{2}$
(3) 1
(4) 2
4. If $\cos ^{-1}\left(\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right)=k$ (a constant), then $\frac{d y}{d x}=$

(1) $\frac{y}{x}$
(2) $\frac{x}{y}$
(3) $\frac{x^{2}}{y^{2}}$
(4) $\frac{y^{2}}{x^{2}}$
5. If $f(x)=|x|+|\sin x|$ for $x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, then its left hand derivative at $x=0$ is
$x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \delta f(x)=|x|+|\sin x| \operatorname{\omega \omega ి} x=0$ వద్ర దాని ఎఠమ అవాలmo
(1) 0
(2) -1
(3) -2
(4) -3
6. If $y=\frac{\log _{e} x}{x}$ and $z=\log _{e} x$, then $\frac{d^{2} y}{d z^{2}}+\frac{d y}{d z}=$ $y=\frac{\log _{\mathrm{p}} x}{x}, z=\log _{e} x$ అయుతే అప్యుఁை $\frac{d^{2} y}{d z^{2}}+\frac{d y}{d z}=$
(1) e^{-x}
(2) $2 e^{-z}$
(3) $z e^{-z}$
(4) $-e^{-t}$
7. If $1^{\circ}=\alpha$ radians then the approximate value of $\cos \left(60^{\circ} 1^{\prime}\right)$ is

(1) $\frac{1}{2}+\frac{\alpha \sqrt{3}}{120}$
(2) $\frac{1}{2}-\frac{\alpha}{120}$
(3) $\frac{1}{2}-\frac{\alpha \sqrt{3}}{120}$
(4) $\frac{1}{2}+\frac{\alpha}{120}$
8. If the distance s travelled by a particle in time t is given by $s=t^{2}-2 t+5$, then its acceleration is
 す్వర゙ఃO
(1) 0
(2) 1
(3) 2
(4) 3
9. The length of the subtangent at any point (x_{1}, y_{1}) on the curve $y=5^{x}$ is

(1) $5^{x_{1}}$
(2) $y_{1} \cdot 5^{x_{1}}$
(3) $\quad \log _{e} 5$
(4) $\frac{1}{\log _{c} 5}$

Rough Work
10. $u \equiv u(x, y)=\sin (y+a x)-(y+a x)^{2} \Rightarrow$
(1) $u_{x x}=a^{2}, u_{y y}$
(2) $u_{y y}=\alpha^{2} u_{x x}$
(3) $u_{x x}=-a^{2} \cdot u_{y y}$
(4) $u_{y y}=-a^{2} u_{x x}$
11. $\int\left(\sqrt{\frac{a+x}{a-x}}+\sqrt{\frac{a-x}{a+x}}\right) d x=$
(1) $2 \sin ^{-1}\left(\frac{x}{\alpha}\right)+c$
(2) $2 a \sin ^{-1}\left(\frac{x}{a}\right)+c$
(3) $2 \cos ^{-1}\left(\frac{x}{a}\right)+c$
(4) $2 a \cos ^{-1}\left(\frac{x}{a}\right)+c$
12. If $\int \frac{\sin ^{8} x-\cos ^{8} x}{1-2 \sin ^{2} x \cos ^{2} x} d x=\mathrm{A} \sin 2 x+\mathrm{B}$, then $\mathrm{A}=$
$\int \frac{\sin ^{8} x-\cos ^{8} x}{1-2 \sin ^{2} x \cos ^{2} x} d x=\mathrm{A} \sin 2 x+\mathrm{B}$ ๓क తే $\mathrm{A}=$
(1) $-\frac{1}{2}$
(2) -1
(3) $\frac{1}{2}$
(4) 1
13. $\int \frac{1+\cos 4 x}{\cot x-\tan x} d x=$
(1) $-\frac{1}{4} \cos 4 x+c$
(2) $\frac{1}{8} \cos 4 x+c$
(3) $\frac{1}{4} \sin 4 x+c$
(4) $-\frac{1}{8} \cos 4 x+c$

Rough Work
14. The area (in square units) of the region bounded by the curves $x=y^{2}$ and $x=3-2 y^{2}$ is

(1) $\frac{3}{2}$
(2) 2
(3) 3
(4) 4
15. If $I_{n}=\int_{0}^{\pi / 4} \tan ^{n} \theta d \theta$ for $n=1,2,3, \ldots \ldots$ then $I_{n-1}+I_{n+1}=\ldots$
$\mathrm{I}_{n}=\int_{0}^{\pi / 4} \tan ^{n} \theta d \theta \quad(n=1,2,3, \ldots \ldots) \Leftrightarrow \not 2 \mathrm{e} \mathrm{I}_{n-1}+\mathrm{I}_{n+1}=\ldots$
(1) 0
(2) 1
(3) $\frac{1}{n}$
(4) $\frac{1}{n+1}$
16. Let $f(0)=1, f(0.5)=\frac{5}{4}, f(1)=2, f(1.5)=\frac{13}{4}$ and $f(2)=5$. Using Simpson's rule,
$\int_{0}^{2} f(x) d x=$

(1) $\frac{14}{3}$
(2) $\frac{7}{6}$
(3) $\frac{14}{9}$
(4) $\frac{7}{9}$

Rough Work

E 2011 D
17. The solution of the differential equation $\frac{d y}{d x}=\frac{y}{x}+\frac{\varphi(y / x)}{\varphi^{\prime}(y / x)}$ is

$$
\begin{aligned}
& \text { అవరలస/నమీరరణంం } \frac{d y}{d x}=\frac{y}{x}+\frac{\varphi(y / x)}{\varphi^{\prime}(y / x)} \text { § సాధీ } \\
& \begin{array}{ll}
\text { (1) } x \varphi\left(\frac{y}{x}\right)=k & \text { (2) } \varphi\left(\frac{y}{x}\right)=k x \\
\text { (3) } y \varphi\left(\frac{y}{x}\right)=k & \text { (4) } \varphi\left(\frac{y}{x}\right)=k y
\end{array}
\end{aligned}
$$

18. If $y=y(x)$ is the solution of the differential equation $\left(\frac{2+\sin x}{y+1}\right) \frac{d y}{d x}+\cos x=0$ with $y(0)=1$, then $y\left(\frac{\pi}{2}\right)=$
$y=y(x)$ అనేద అవరలన సమీరరణం $\left(\frac{2+\sin x}{y+1}\right) \frac{d y}{d x}+\cos x=0, y(0)=1$ న心 సాధన అయ)త $y\left(\frac{\pi}{2}\right)=$
(1) $\frac{1}{3}$
(2) $\frac{2}{3}$
(3) 1
(4) $\frac{4}{3}$

Rough Work

19. If $f:[2, \infty) \rightarrow \mathrm{B}$ defined by $f(x)=x^{2}-4 x+5$ is a bijection, then $\mathrm{B}=$

$$
\begin{aligned}
& \text { అప్పుics } \mathrm{B}= \\
& \text { (1) }[0, \infty) \\
& \text { (2) }[1, \infty) \\
& \text { (3) }[4, \infty) \\
& \text { (4) }(5, \infty)
\end{aligned}
$$

20. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $f(x)=\left[\frac{x}{5}\right]$ for $x \in \mathbb{R}$, where $|y|$ denotes the greatest integer not exceeding y, then $|f(x):|x|<71|=$
 \$ూర్దాంకాన్ని $|y| \mathrm{S}^{6}$ నూంబి స్తు, అప్సుపు $|f(x):|x|<71|=$
(1) $\{-14,-13, \ldots \ldots \ldots, 0, \ldots \ldots \ldots . ., 13,14\}$
(2) $\{-14,-13, \ldots \ldots \ldots, 0, \ldots \ldots \ldots ., 14,15\}$
(3) $[-15,-14, \ldots \ldots \ldots, 0, \ldots \ldots \ldots ., 14,15\}$
(4) $\{-15,-14, \ldots \ldots \ldots, 0, \ldots \ldots \ldots ., 13,14\}$

Rough Work

21. If a, b and n are natural numbers then $a^{2 n-1}+b^{2 n-1}$ is divisible by :

(1) $a+b$
(2) $a-b$
(3) $a^{3}+b^{3}$
(4) $a^{2}+b^{2}$
22. A bag contains n white and n black balls. Pairs of balls are drawn at random without replacement successively, until the bag is empty. If the number of ways in which each pair consists of one white and one black ball is 14,400 , then $n=$

 © 000 తే $n=$
(1) 6
(2) 5
(3) 4
(4) 3
23. The number of five digit numbers divisible by 5 that can be formed using the numbers $0,1,2,3,4,5$ without repetition is
 NOw马 NOw
(1) 240
(2) 216
(3) 120
(4) 96

Rough Work

24. ${ }^{15} \mathrm{P}_{8}=\mathrm{A}+8 \cdot{ }^{14} \mathrm{P}_{7} \Rightarrow \mathrm{~A}=$
(1) ${ }^{14} \mathrm{P}_{6}$
(2) ${ }^{14} \mathrm{P}_{8}$
(3) ${ }^{15} \mathrm{P}_{7}$
(4) ${ }^{16} \mathrm{P}_{9}$
25. If ${ }^{(n-1)} \mathrm{C}_{3}+{ }^{(n-1)} \mathrm{C}_{4}>{ }^{n} \mathrm{C}_{3}$, then the minimum value of n is

(1) 5
(2) 6
(3) 7
(4) 8
26. If the coefficients of r th and $(r+1)$ th terms in the expansion of $(3+7 x)^{29}$ are equal, then $r=$
$(3+7 x)^{29}$ యొక్ విస్తరణలో r వ, $(r+1)$ इ పదాల గుణకాలు సమానమయితె, $r=$
(1) 14
(2) 15
(3) 18
(4) 21
27. $\frac{x^{2}+x+1}{(x-1)(x-2)(x-3)}=\frac{\mathrm{A}}{x-1}+\frac{\mathrm{B}}{x-2}+\frac{\mathrm{C}}{x-3}$
$\Rightarrow \mathrm{A}+\mathrm{C}=$
(1) 4
(2) 5
(3) 6
(4) 8
28. $\sum_{n=1}^{\infty} \frac{2 n}{(2 n+1)!}=$
(1) $\frac{1}{e}$
(2) $\frac{e}{2}$
(3) e
(4) $2 e$

Rough Work

29. If $a>0$ and $b^{2}-4 a c=0$, then the curve $y=a x^{2}+b x+c$
(1) cuts the x-axis
(2) touches the x-axis and lies below it
(3) lies entirely above the x-axis
(4) touches the x-axis and lies above it
$a>0, b^{2}-4 a c=0$ कणNB इए50 $y=a x^{2}+b x+c$
(1) x-巴ఖ్రాన్న్ $ఱ ం ి న ్ త ు ం A ~$

(3) వూర్తీలా x-बక్రం ఎగువన むంటుం

30. If $\tan A$ and $\tan B$ are the roots of the quadratic equation $x^{2}-p x+q=0$, then $\sin ^{2}(A+B)=$

(1) $\frac{p^{2}}{p^{2}+q^{2}}$
(2) $\frac{p^{2}}{(p+q)^{2}}$
(3) $1-\frac{p}{(1-q)^{2}}$
(4) $\frac{p^{2}}{p^{2}+(1-q)^{2}}$
31. The value of ' a ' for which the equations $x^{3}+a x+1=0$ and $x^{4}+a x^{2}+1=0$ have a common root is
 ' a ' విలువ
(1) -2
(2) -1
(3) 1
(4) 2

Rough Work

32. If x is real, then the value of $\frac{x^{2}-3 x+4}{x^{2}+3 x+4}$ lies in the interval x వాక్రవమైత $\frac{x^{2}-3 x+4}{x^{2}+3 x+4}$ యొక్క పిలువ య్ర యంతరం
(1) $\left[\frac{1}{3}, 3\right]$
(2) $\left[\frac{1}{5}, 5\right]$
(3) $\left[\frac{1}{6}, 6\right]$
(4) $\left[\frac{1}{7}, 7\right]$
33. $\mathrm{A}(\alpha, \beta)=\left(\begin{array}{ccc}\cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & e^{\beta}\end{array}\right) \Rightarrow[\mathrm{A}(\alpha, \beta)]^{-1}=$
(1) $\mathrm{A}(-\alpha, \beta)$
(2) $\mathrm{A}\left(-\alpha_{1},-\beta\right)$
(3) $\mathrm{A}(\alpha,-\beta)$
(4) $\mathrm{A}(\alpha, \beta)$
34. If A is a matrix such that

$$
\left(\begin{array}{ll}
2 & 1 \\
3 & 2
\end{array}\right) A\left(\begin{array}{ll}
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)
$$

then $\mathrm{A}=$
A అను మా!ిక

$$
\left(\begin{array}{ll}
2 & 1 \\
3 & 2
\end{array}\right) \mathrm{A}(111)=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)
$$

©
(1) $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$
(2) $\left(\begin{array}{ll}2 & 1\end{array}\right)$
(3) $\left(\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right)$
(4)

$$
\binom{2}{-3}
$$

Rough Work

$9 y^{2}+9+18 y-16 y^{2}+16 y+16 y-16 \quad$ Work $\quad y\left[x^{2}+3 x+4\right]=x^{2}-3 x+4$
$\begin{array}{ll}-7 y^{2}+50 y-7 \geqslant 0 & y x^{2}+3 x y+4 y-x^{2}+3 x-4=0 \\ -1 & y_{0}^{2}, 50 y+7<0\end{array} \quad \begin{array}{ll}20 & x^{2}[y-1]+x[3 y+3]+4 y-4=0 \\ 50 & -4 a c>0\end{array}$
 $\begin{array}{rl}7 y-49 y \\ 7 y[y-7]-1[y-7]=0 & y=3 \\ y & =7 \quad 9 y^{2}+9+18 y-4[y[4 y-4]-1[4 y-4]\end{array}$ $9 y^{2}+9+18 y-4\left[4 y^{2}-4 y-4 y+4\right]$
35. $A=\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 0\end{array}\right) \Rightarrow A^{2}-2 A=$
(1) A^{-1}
(2) $-\mathrm{A}^{-1}$
(3) I
(4) -I
36. $\left|\begin{array}{lll}24 & 25 & 26 \\ 25 & 26 & 27 \\ 26 & 27 & 27\end{array}\right|=$
(1) 0
(2) -1
(3) 1
(4) 2
37. Let $z=a-\frac{i}{2} ; a \in \mathbb{R}$. Then $|i+z|^{2}-|i-z|^{2}=$
$z=a-\frac{i}{2} ; a \in \mathbb{R}$ అను5ోంి. అప్పుడు $|i+z|^{2}-|i-z|^{2}=$
(1) 2
(2) -2
(3) 4
(4) -4

Rough Work
38. The locus of the complex number z such that

$$
\arg \left(\frac{z-2}{z+2}\right)=\frac{\pi}{3}
$$

is :
(1)
a circle
(2) a straight line
(3)
a parabola
(4) an ellipse

(1) ఓఠ వృతం
(2) थ๘ సరఙోో
(3)
ఒک వరావలయం
(4) ए〕 \&ઠ వృతం
39. $\frac{(1+i)^{2011}}{(1-i)^{2009}}=$
(1) -1
(2) 1
(3) 2
(4) -2
40. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $f(x)=7+\cos (5 x+3)$ for $x \in \mathbb{R}$, then the period of f is
$f: \mathbb{R} \rightarrow \mathbb{R}$ న (్రిి $x \in \mathbb{R} \& f(x)=7+\cos (5 x+3)$ rా నర్వ义ి
(1) 2π
(2) π
(3) $\frac{\pi}{5}$
(4) $\frac{2 \pi}{5}$
41. $\cos \mathrm{A}=\frac{3}{4} \Rightarrow 32 \sin \left(\frac{\mathrm{~A}}{2}\right) \sin \left(\frac{5 \mathrm{~A}}{2}\right)=$
(1) 7
(2) 8
(3) 13
(4) 11

Rough Work

42. If $f(x)=\sin ^{6} x+\cos ^{6} x$ for $x \in \mathbb{R}$, then $f(x)$ lies in the interval $x \in \mathbb{R} \& f(x)=\sin ^{6} x+\cos ^{6} x$ అయుత $f(x)$ Dలువలుం అంతరం
(1) $\left[\frac{7}{8}, \frac{5}{4}\right]$
(2) $\left[\frac{1}{2}, \frac{5}{8}\right]$
(3) $\left[\frac{1}{4}, 1\right]$
(4) $\left[\frac{1}{4}, \frac{1}{2}\right]$
43. The most general value of θ which satisfies both the equations $\tan \theta=-1$ and $\cos \theta=\frac{1}{\sqrt{2}}$ is
సమీrరణొeu $\tan \theta=-1, \cos \theta=\frac{1}{\sqrt{2}}$ ข రం
(1) $n \pi+7 \frac{\pi}{4}$
(2) $2 n \pi+\frac{7 \pi}{4}$
(3) $n \pi+(-1)^{n} \frac{7 \pi}{4}$
(4) $\frac{7 n \pi}{4}$

Here n is any integer.
बర్క-వ n \&
44. $\left(\tan ^{-1} x\right)^{2}+\left(\cot ^{-1} x\right)^{2}=\frac{5 \pi^{2}}{8} \Rightarrow x=$
(1) -1
(2) 1
(3) 0
(4) $\pi \sqrt{\frac{5}{8}}$
45. For $0<x \leq \pi, \sinh ^{-1}(\cot x)=$
$0<x \leq \pi B \sinh ^{-1}(\cot x)=$
(1) $\quad \log \left(\cot \frac{x}{2}\right)$
(2) $\log \left(\tan \frac{x}{2}\right)$
(3) $\quad \log (1+\cot x)$
(4) $\log (1+\tan x)$

Rough Work

46. In a triangle ABC if $a \cos ^{2} \frac{\mathrm{C}}{2}+c \cos ^{2} \frac{\mathrm{~A}}{2}=\frac{3 b}{2}$, then the sides of the triangle are in
(1) an arithmetic progression
(2) a geometric progression
(3) a harmonic progression
(4) an arithmetico-geometric progression

(1) అosరేళి ${ }^{6}$

(4) అంక-గుల్రీథిం
47. In a triangle ABC if $\frac{\cos \mathrm{A}}{a}=\frac{\cos \mathrm{B}}{b}=\frac{\cos \mathrm{C}}{c}$, then $\triangle \mathrm{ABC}$ is
(1) Right-angled
(2) Isosceles right-angled
(3) Equilateral
(4) Scalene

(1) లంబรో ఃీయం
(2) నమద్విబాప్ లంబకో \&ీయం
(3) నమటాహా (ి)ఱుజం
(4) విషమణాషొ (0భు心ం

Rough Work

48．The angle of elevation of a stationary cloud from a point 2500 m above a lake is 15° and from the same point the angle of depression of its reflection in the lake is 45° ．The height（in meters）of the cloud above the lake，given that $\cot 15^{\circ}=2+\sqrt{3}$ ，is

（1） 2500
（2） $2500 \sqrt{2}$
（3） $2500 \sqrt{3}$
（4） 5000

49．The magnitude of the projection of the vector $\bar{a}=4 \bar{i}-3 \bar{j}+2 \bar{k}$ on the line which makes equal angles with the coordinate axes is

（1）$\sqrt{2}$
（2）$\sqrt{3}$
（3）$\frac{1}{\sqrt{3}}$
（4）$\frac{1}{\sqrt{2}}$

50．If the vectors $\bar{i}-2 x \bar{j}-3 y \bar{k}$ and $\bar{i}+3 x \bar{j}+2 y \bar{k}$ are orthogonal to each other， then the locus of the point (x, y) is
（1）
a circle
（2）an ellipse
（3）
a parabola
（4）a straight line

（1）
थఁ వృe్ర
（2）～与 Bo 52 O
（3）
ゃఁ むరావలంకం

Rough Work

51. For any vector \bar{r},

$$
\bar{i} \times(\bar{r} \times \bar{i})+\bar{j} \times(\bar{r} \times \bar{j})+\bar{k} \times(\bar{r} \times \bar{k})=
$$

$$
\bar{i} \times(\bar{r} \times \bar{i})+\bar{j} \times(\bar{r} \times \bar{j})+\bar{k} \times(\bar{r} \times \bar{k})=
$$

(1) $\overline{0}$
(2) $2 \bar{r}$
(3) $3 \bar{r}$
(4) $4 \bar{F}$
52. If the vectors $\overline{\mathrm{AB}}=-3 \bar{i}+4 \bar{k}$ and $\overline{\mathrm{AC}}=5 \bar{i}-2 \bar{j}+4 \bar{k}$ are the sides of a triangle $A B C$, then the length of the median through A is

(1) $\sqrt{14}$
(2) $\sqrt{18}$
(3) $\sqrt{25}$
(4) $\sqrt{29}$
53. If $|\bar{a}|=1,|\bar{b}|=2$ and the angle between \bar{a} and \bar{b} is 120°, then $\{(\bar{a}+3 \bar{b}) \times(3 \bar{a}-\bar{b})\}^{2}=$

(1) 425
(2) 375
(3) 325
(4) 300

Rough Work

54. Let $\bar{v}=2 \bar{i}+\bar{j}-\bar{k}$ and $\bar{w}=\bar{i}+3 \bar{k}$. If \bar{u} is any unit vector then the maximum value of the scalar triple product $[\bar{u} \bar{U} \bar{w}]$ is
 యొశ్ గరిష్జ Dలనవ
(1) 1
(2) $\sqrt{10}+\sqrt{6}$
(3) $\sqrt{59}$
(4) $\sqrt{60}$
55. A class has fifteen boys and five girls. Suppose three students are selected at random from the class. The probability that there are two boys and one girl is

廿ంä సంఖావశృత.
(1) $\frac{35}{76}$
(2) $\frac{35}{38}$
(3) $\frac{7}{76}$
(4) $\frac{35}{72}$
56. Seven white balls and three black balls are randomly arranged in a row. The probability that no two black balls are placed adjacently is

(1) $\frac{1}{2}$
(2) $\frac{7}{15}$
(3) $\frac{2}{15}$
(4) $\frac{1}{3}$

Rough Work

57. Let A and B be events in a sample space S such that $\mathrm{P}(\mathrm{A})=0.5, \mathrm{P}(\mathrm{B})=0.4$ and $P(A \cup B)=0.6$. Observe the following lists :

List I (שూరి

List II (以゙D00 II)

(i) $\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
(a) 0.4
(ii) $\quad \mathrm{P}(\mathrm{A} \cap \overline{\mathrm{B}})$
(b) 0.2
(iii) $\mathrm{P}(\overline{\mathrm{A}} \cap \mathrm{B})$
(c) 0.8
(iv) $\mathrm{P}(\overline{\mathrm{A}} \cap \overline{\mathrm{B}})$
(d) 0.1

The correct match of List I from List II is

	(i)	(ii)	(iii)	(iv)
(1)	(a)	(b)	(c)	(d)
(2)	(c)	(b)	(d)	$($ a $)$
(3)	(c)	(b)	(a)	(d)
(4)	(c)	$($ (a)	(b)	$($ d $)$

58. The probability distribution of a random variable X is given below :

$\mathrm{X}=x$	0	1	2	3
$\mathrm{P}(\mathrm{X}=x)$	$\frac{1}{10}$	$\frac{2}{10}$	$\frac{3}{10}$	$\frac{4}{10}$

Then the variance of X is
అ వ్పుడు X విస్తృత
(1) 1
(2) 2
(3) 3
(4) 4

Rough Work
59. The probability that an individual suffers a bad reaction from an injection is 0.001 . The probability that out of 2000 individuals exactly three will suffer bad reaction is
 \& घows Nomvag
(1) $\frac{1}{e^{2}}$
(2) $\frac{2}{3 e^{2}}$
(3) $\frac{8}{3 e^{2}}$
(4) $\frac{4}{3 e^{2}}$
60. The locus of a point such that the sum of its distances from the points $(0,2)$ and $(0,-2)$ is 6 , is
 Dిందుపదం
(1) $9 x^{2}-5 y^{2}=45$
(2) $5 x^{2}+9 y^{2}=45$
(3) $9 x^{2}+5 y^{2}=45$
(4) $5 x^{2}-9 y^{2}=45$
61. The number of points $\mathrm{P}(x, y)$ with natural numbers as coordinates that lie inside the quadrilateral formed by the lines $2 x+y=2, x=0, y=0$ and $x+y=5$ is

(1) 12
(2) 10
(3) 6
(4) 4

Rough Work
62. The image of the point $(3,8)$ in the line $x+3 y=7$ is

సంగోఖ $x+3 y=7$ हో బిందును $(3,8)$ โ్రెమింబం
(1) $(1,4)$
(2) $(4,1)$
(3) $(-1,-4)$
(4) $(-4,-1)$
63. The line joining the points $\mathrm{A}(2,0)$ and $\mathrm{B}(3,1)$ is rotated through an angle of 45°, about A in the anticlockwise direction. The coordinates of B in the new position

(1) $(2, \sqrt{2})$
(2) $(\sqrt{2}, 2)$
(3) $(2,2)$
(4) $(\sqrt{2}, \sqrt{2})$
64. If one of the lines in the pair of straight lines given by $4 x^{2}+6 x y+k y^{2}=0$ bisects the angle between the coordinate axes, then $k \in$
 5^{6} crన్ని నమద్విఖంबన చేస్త అప్జురు $k \in$
(1) $|-2,-10|$
(2) $[-2,10]$
(3) $|-10,2|$
(4) $\{2,10\}$

Rough Work

65. If $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ represents a pair of parallel lines then

$$
\begin{gathered}
\sqrt{\frac{g^{2}-a c}{f^{2}-b c}}= \\
a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0 \text { \&, इమాంతర ชేఖणయుగ్కాన్ని నూబిస్తం అహ్పుఁ}
\end{gathered}
$$

$$
\sqrt{\frac{g^{2}-a c}{f^{2}-b c}}=
$$

(1) $\frac{a}{b}$
(2) $\sqrt{\frac{a}{b}}$
(3) $\sqrt{\frac{b}{a}}$
(4) $\frac{b}{a}$
66. If s and p are respectively the sum and the product of the slopes of the lines $3 x^{2}-2 x y-15 y^{2}=0$, then $s: p=$ $3 x^{2}-2 x y-15 y^{2}=0$ నూచించే నరజరేల హాలుల మొత్తం, పాలుల లబ్యం వరసగా s, p बुख $s: p=$
(1) $4: 3$
(2) $2: 3$
(3) $3: 5$
(4) $3: 4$
67. If the line $y=2 x+c$ is a tangent to the circle $x^{2}+y^{2}=5$, then a value of c is
 విలువ
(1) 2
(2) β
(3) 4
(4) 5

Rough Work

68. A line segment $\mathrm{AM}=a$ moves in the XOY plane such that AM is parallel to the X -axis. If A moves along the circle $x^{2}+y^{2}=a^{2}$, then the locus of M is
 उదులుళోంది, ఇందులో A అనేద వృత్తం $x^{2}+y^{2}=a^{2}$ उంట కదిత్ M దిందుపదం
(1) $x^{2}+y^{2}=4 a^{2}$
(2) $x^{2}+y^{2}=2 a x$
(3) $x^{2}+y^{2}=2 a y$
(4) $x^{2}+y^{2}=2 a x+2 a y$
69. If the lines $3 x+4 y-14=0$ and $6 x+8 y+7=0$ are both tangents to a circle, then its radius is
 రేఖల్త డాసి వాక్రసార్ళం
(1) 7
(2) $\frac{7}{2}$
(3) $\frac{7}{4}$
(4) $\frac{7}{6}$
70. If the circle $x^{2}+y^{2}+8 x-4 y+c=0$ touches the circle $x^{2}+y^{2}+2 x+4 y$ $-11=0$ externally and cuts the circle $x^{2}+y^{2}-6 x+8 y+k=0$ orthogonally then $k=$
వృత్తం $x^{2}+y^{2}+8 x-4 y+c=0$ మరొన వృక్రం $x^{2}+y^{2}+2 x+4 y-11=0$
 ఖロ\&
(1) 59
(2) -59
(3) 19
(4) -19

Rough Work

71. The point of contact of the circles $x^{2}+y^{2}+2 x+2 y+1=0$ and $x^{2}+y^{2}-2 x+2 y+1=0$ is
వృత్లు $x^{2}+y^{2}+2 x+2 y+1=0, x^{2}+y^{2}-2 x+2 y+1=0$ ల ఎ్్రి న్ర్య Dందదువు
(1) $(0,1)$
(2) $(0,-1)$
(3) $(1,0)$
(4) $(-1,0)$
72. If a chord of the parabola $y^{2}=4 x$ passes through its focus and makes an angle θ with the X -axis, then its length is
 చేక్తే ఆ జ్ర పొఠవు
(1) $4 \cos ^{2} \theta$
(2) $4 \sin ^{2} \theta$
(3) $4 \operatorname{cosec}^{2} \theta$
(4) $4 \sec ^{2} \theta$
73. If the straight line $y=m x+c$ is parallel to the axis of the parabola $y^{2}=l x$ and intersects the parabola at $\left(\frac{c^{2}}{8}, c\right)$ then the length of the latus rectum is

```
వరావలయాన్ని (\frac{\mp@subsup{c}{}{2}}{8},c) వద్ద ఖంిిస్తే అహ్పురు Nాథి లంWచు పొరవు
(1) }
(2) 3
(3) 4
(4) 8
```


Rough Work

74. The eccentricity of the ellipse $x^{2}+4 y^{2}+2 x+16 y+13=0$ is ธీర్రృత్రం $x^{2}+4 y^{2}+2 x+16 y+13=0$ ఉత్కేరద్ర
(1) $\frac{\sqrt{3}}{2}$
(2) $\frac{1}{2}$
(3) $\frac{1}{\sqrt{3}}$
(4) $\frac{1}{\sqrt{2}}$
75. The angle between the asymptotes of the hyperbola $x^{2}-3 y^{2}=3$ is అరిపరావలయకం $x^{2}-3 y^{2}=3$ ఝక్క అనంతస్పర్శరేఖల మద్ర 5^{5} cso
(1) $\frac{\pi}{6}$
(2) $\frac{\pi}{4}$
(3) $\frac{\pi}{3}$
(4) $\frac{\pi}{2}$
76. The polar equation of the line perpendicular to the line $\sin \theta-\cos \theta=\frac{1}{r}$ and passing through the point $\left(2, \frac{\pi}{6}\right)$ is
 సరచ్రేఖ ధధ్రువ సమీకరణa
(1) $\sin \theta+\cos \theta=\frac{\sqrt{3}+1}{r}$
(2) $\sin \theta-\cos \theta=\frac{\sqrt{3}+1}{r}$
(3) $\sin \theta+\cos \theta=\frac{\sqrt{3}-1}{r}$
(4) $\cos \theta-\sin \theta=\frac{\sqrt{3}}{r}$

Rough Work

77. The ratio in which the line joining $(2,-4,3)$ and $(-4,5,-6)$ is divided by the plane $3 x+2 y+z-4=0$ is
$(2,-4,3),(-4,5,-6)$ లను รలిపే ถోఖను సమతలం $3 x+2 y+z-4=0$ ฆంఠించే న్షుత్త
(1) $2: 1$
(2) $4: 3$
(3) $-1: 4$
(4) $2: 3$
78. If the angles made by a straight line with the coordinate axes are $\alpha, \frac{\pi}{2}-\alpha, \beta$ then $\beta=$

(1) 0
(2) $\frac{\pi}{6}$
(3) $\frac{\pi}{2}$
(4) π
79. A plane passes through $(2,3,-1)$ and is perpendicular to the line having direction ratios $3,-4,7$. The perpendicular distance from the origin to this plane is
 నరళ వేఖకు అంజంగా ఉంది. మూలబిందువు నుంి ఈ సమతలపు లంట దూరంం
(1) $\frac{3}{\sqrt{74}}$
(2) $\frac{5}{\sqrt{74}}$
(3) $\frac{6}{\sqrt{74}}$
(4) $\frac{13}{\sqrt{74}}$
80. The radius of the circle given by $x^{2}+y^{2}+z^{2}+2 x-2 y-4 z-19=0=$ $x+2 y+2 z+7$, is
$x^{2}+y^{2}+z^{2}+2 x-2 y-4 z-19=0=x+2 y+2 z+7$ నూచ బించే వృత వాgిార్థం
(1) 4
(2) 3
(3) 2
(4) 1

Rough Work

PHYSICS

81. Two photons of energy 2.5 eV and 3.5 eV fall on a metal surface of work function 1.5 eV . The ratio of the meximum velocities of the photoelectrons emitted from the metal surface is :

(1) $1: 4$
(2) $2: 1$
(3) $1: 2$
(4) $1: \sqrt{2}$
82. Cafculate the wavelength of the k_{α} line for $z=31$ when $\alpha=5 \times 10^{7} \mathrm{Hx}^{1 / 2}$ for a characteristic X-ray spectrum.

(1) $1,33 \AA$
(2) 1.38 nm
(3) $183 \times 10^{-10} \mathrm{~m}$
(4) 183 nm
83. If 200 MeV of energy is released in the fission of one nucleus of ${ }_{\frac{125}{25}}^{25}$, the number of nuclei that must undergo fission to release an energy of 1000 J is :

(1)
3.125×10^{13}
(2) 6.25×10^{13}
(3) 12.5×10^{13}
(4) 3.125×10^{14}

Rough Work

84. In a $p-n$ junction diade the thickness of depletion layer ia $2 \times 10^{-6} \mathrm{~m}$ and burrier potential is $0: 3 \mathrm{~V}$. The intensity of the olectric field at the junction is ;
(1) $0.6 \times 10^{-6} \mathrm{Vm}^{-1}$ from n to P side
(2) $0.6 \times 10^{-6} \mathrm{Vm}^{-1}$ from P to n side
(3) $1.5 \times 10^{5} \mathrm{Vm}^{-1}$ from n to P side
(4) $1.5 \times 10^{5} \mathrm{Vm}^{-1}$ from P to n side

(2) $0.6 \times 10^{-6} \mathrm{Vm}^{-1} \mathrm{P}$ 2008 n aje

(4) $1.5 \times 10^{5} \mathrm{Vm}^{-1} \mathrm{P}$ soos n 32む心
85. The dimensional formula of $\frac{1}{2} \mu_{0} \mathrm{H}^{2}\left(\mu_{0}-\right.$ Permeability of free space and H -magnetic field intensity) is :

(1) MLT ${ }^{-1}$
(3) $\mathrm{ML}^{-1} \mathrm{~T}^{-2}$
(2) $\mathrm{ML}^{2} T^{-2}$
(4) $\mathrm{ML}^{2} \mathrm{~T}^{-1}$
86. A cortain vector in the $x y$ plane has an x component of 4 m and-a y component of 10 m . It is then rotuted in the $x y$ plane so that its x-component is doubled. Then its new y component is (approximately) :
(1) 20 m
(2) 7.2 m
(3) 5.0 m
(4) 4.5 m

 ($\omega^{2} / 2 \cdot \alpha j \pi$) :
(1) 20 \&
(2) 7.2 G
(3) 5.0 (a)
(d) $4.5=5$

Rough Work

87. A police party is moving in a jeep at a constant speed u. They saw a thief at a distance x on a motorcycle which is at rest. The moment the police saw the thief, the thief started at constant acceleration as. Which of the following relations is true if the police is able to catch the thief?

(1) $x^{2}<\alpha x$
(2) $v^{2}<2 k x$
(3) $v^{2} \geq 2 a x$
(4) $u^{2}=u \times$
88. A I N pendulum bob is held at an angle of from the vertical by a 2 N horizontal force $\overrightarrow{\mathrm{F}}$ as shown in the ligure. The tension in the string supporting the pendulum bob (in Newtons) is

Er 1 N db
 © ne ${ }^{6}$ No singe (Sregosse ${ }^{6}$) :

(1) $\cos 0$
(2) $\frac{2}{\cos \theta}$
(3) $\sqrt{5}$
(4) 1

Rough Work
89. The maximum tension a rope can withstand is 60 kg wh. The ratio of maximum accelaration with which two boys of masses 20 kg and 30 kg can climb op the rope at the same time is :

(1)
$1: 2$
(2) $2: 1$
(3) $4 \div 8$
(4) $3: 2$
90. A ball in let fall from an beight h_{0}. It mukes n collisions with the earth. After ' n ' collisions it rebounds with a velocity 'i/n' and the ball rises to a height h_{a}, then coefficient of restitution is given by :
h_{0} 玉. m
 h_{n} dagSo alass
(1) $s=\left[\frac{h_{A}}{h_{0}}\right]^{I / 2 \omega}$
(2) $c=\left[\frac{h_{9}}{h_{n}}\right]^{1 / 2 n}$
(3) $\pi=\frac{1}{n} \sqrt{\frac{h_{n}}{h_{0}}}$

$$
\begin{equation*}
\varepsilon=\frac{1}{n} \sqrt{\frac{h_{1}}{h_{k}}} \tag{4}
\end{equation*}
$$

91. A circular disc of radins ' R ' is removed from a bigger circular disc of radius " $2 \mathrm{R}^{\prime}$ ' such that the circumferences of the discs touch. The centre of mass of the new disc is at a distance ' αR ' from the centre of the bigger disc; The value of ' α ' is .
'R' ag

(1) $\frac{1}{2}$
(2) $\frac{1}{3}$
(3) $\frac{1}{4}$
(4) $\frac{1}{6}$

Rough Work

92. A miform chain of length L. is lying on the harizontal table If the coefficient of frietion between the chain and the table top is ' μ ', what is the maximum length of the chain that can hang over the edge of the table without diatarbing the rest of the chain on the table ?

(1) $\frac{\mathrm{L}}{(1+\mu)}$
(2) $\frac{\mu}{(1+\mu)}$
(3) $\frac{\mathrm{L}}{(1-\mu)}$
(4) $\frac{\mu L}{(1-\mu)}$
93. Two uniform circular dises having the same mass and the same thickness but different radii are made from different materials. The dise with the smaller rotational inertia is :
(1) the one made from the more dense material
(2) the one made from the less dense material
(3) the dise with the larger angular velocity
(d) the dise with the larger torque

Rough Work

94. A thin hollow sphere of mass ' m ' is completely filled with a liquid of mass ' m ', Wheo the sphere rolls with a velocity of, kinetic energy of the system is (neglect friction) :
' m^{\prime} [5వ
这 (6)
(1) $\frac{1}{2} m v^{2}$
(2) $m v^{2}$
(3) $\frac{4}{3} m v^{2}$
(4) $\frac{4}{5} m v^{2}$
95. Assertion (A) : An astronaut insids a musive spaceahip orbiting around the earth will experience a finite but small gravitutional foree
Reason (R) : The centripotal force necessary to keep the spaceakiop in orbit around the earth is provided by the gravitational force between the aurth and the spaceship.
(1) Both (A) and (\mathbf{R}) are troe and (R) is the correct explamation of (A)
(2) Both (A) and (R) are true and (R) in not the correct explanation of (A)
(3) (A) is true but (\mathbf{R}) is not true
(4) (A) is not true but (I)) is true

 Dec pousuros
(1) (A)

Rough Work

96. A simple harmonic oscillator consiste of a particle of mass ' m ' and an deal spring with spring constant ' k '. The particle oscillates with a time period 'T". The spring is cut into two equal parts. If one part oscillates with the same particle, the time period will be :

(1) 2 T
(2) $\sqrt{2} T$
(3) $\mathrm{T} / \sqrt{2}$
(4) $\frac{T}{2}$
97. Two blocks of masses 1 kg and 2 kg are connected by timetal wire going over a smooth pulley. The breaking stress of metal is $\frac{40}{3 \pi} \times 10^{6} \mathrm{Nm}^{-2}$, What should be the minimum radias of wire used if it should not break ? $\left(g=10 \mathrm{~ms}^{-2}\right)$

 $\left.(g)=10 \mathrm{~ms}^{-2}\right)$
(1) 0.5 mm
(2) 1 mm
(3) 1.5 mm
(4) 2 mm

Rough Work

98. If two soap bubbles of different radii are connected by a tube, then :
(1) Air flows from bigger bubble to the smaller bubble till sizes become equal
(2) Air flows from bigger bubble to the smaller bubble till sizes are interchanged
(3) Air flows from smaller bubble to bigger
(4) There is no flow of air

 |వవహించును
 టుఠగた దచవవహాంచును

(4) గాల (ుబాస్ము ల్రదు
99. A large open tank has two holes in the wall. One is a square hole of side 'L' at a depth ' y ' from the top and the other is a circular hole of radius R at a depth ' $4 y$ ' from the top. When the tank is completely filled with water, the quantities of water flowing out per second from the two holes are the same. Then value of R is :

 విలుక:
(1) $\frac{\mathrm{L}}{\sqrt{2 \pi}}$
(2) $2 \pi \mathrm{~L}$
(3) $\mathrm{L} \sqrt{\frac{2}{\pi}}$
(4) $\frac{\mathrm{L}}{2 \pi}$

Rough Work

100. A non-conducting body flonts in a liquid at $20^{\circ} \mathrm{C}$ with $\frac{2}{3}$ of its volume immersed in the liquid. When liquid temperature is increased to $100^{\circ} \mathrm{C}, \frac{3}{4}$ of body's volume is immersed in the liquid. Then the coefficient of real expansion of the liquid is (neglecting the expanzion of container of the liquid) : $20^{\circ} \mathrm{C}$ \&

(1)
$15.6 \times 10^{-4}{ }^{\circ} \mathrm{C}^{-1}$
(2) $156 \times 10^{-4} \mathrm{C}^{-1}$
(3)
$1.56 \times 10^{-4} \mathrm{C}^{-1}$
(4) $0.156 \times 10^{40} \mathrm{C}^{-1}$
101. An insulated cylindrical vessel filled with an insulated piston of negligiblo weight and negligible thickness at the mid point of the vessel. The cylinder contains In gas at $0^{\circ} \mathrm{C}$. When the gas is heated to $100^{\circ} \mathrm{C}$, the piston moves through a length of 5 cm . Length of the cylindrical vessel in cm is :

 Sudioran 5 To.
(1) 13.65
(2) 273
(3) 38.6
(4) 64.6

Rough Work

102. A revenible ongine converts one-sixth of the heat supplied into work. When the temperature of the sink is reduced by $62^{\circ} \mathrm{C}$, the efficiency of the engine is doubled. The temperatures of the source and sink are :

(1)
$99^{\circ} \mathrm{C}, 37^{\circ} \mathrm{C}$
(2) $800^{\circ} \mathrm{C}, 37^{\circ} \mathrm{C}$
(3) $95^{\circ} \mathrm{C}, 37^{\circ} \mathrm{C}$
(4) $90^{\circ} \mathrm{C}, 37^{\circ} \mathrm{C}$
103. During an adiabatic process, the pressure of a gas is proportional to the cube of its temperature. The value of $\mathrm{C}_{\mathrm{p}} / \mathrm{C}_{\mathrm{e}}$ for that gas is :
स

(1) $\frac{7}{5}$
(2) $\frac{4}{5}$
(3) $\frac{5}{3}$
(4) $\frac{3}{2}$
104. Two slabs A and B of different materials but of the same thickness aro joinod end to and to form a composite slab. The thermal conductivities of A and B ure ${ }^{\prime} h_{1}{ }^{\prime}$ and $\%_{2}{ }^{\prime}$ respectively. A steady temperature difforence of $12^{\circ} \mathrm{C}$ is maintained acroiss the composite slab: If $k_{1}=\frac{k_{2}}{2}$, the temperuture difference ucross alab A is:

(I) $4^{\circ} \mathrm{C}$
(2) $6^{6} \mathrm{C}$
(3) $8^{\circ} \mathrm{C}$
(4) $10^{\circ} \mathrm{C}$

Rough Work

105. The wavelengths of two sound notes in air are $\frac{40}{195} \mathrm{~m}$ and $\frac{40}{193} \mathrm{~m}$. Earh note produces 9 beats per second separately with a third note of fixed frequency. The velocity of sound in air in m / s is :

(1) 360
(2) 320
(8) 300
(4) 340

106, Two uniform stretched btrings A and B, made of ateel, are vibrating under the same tension. If the first overtone of A is equal to the second overtone of B and if the radius of A is twice that of B , the ratio of the lengths of the strings is ぃ \ddagger.

(1) $2: 8$
(2) $1: 2$
(3) $1: 3$
(4) 1:4

Rough Work

107. The focal length of a lens of dispersive power 0.45 which should be placed in contact with a convex lens of focal length 84 cm and dispersive power 0.21 to make the achromatic combination from the two tenses, in cm is :
 तोगig
 (70. $2,0 \sigma^{\circ}$) :
(1) 45
(2) 90
(3) 180
(4) $=180$
108. Which of the following statements are trie in the context of a Compound Microscope ?
(A) Each lens produces a virtual and inverted image
(B) The objective has a very short focal length
(C) The eyepiece is used as a simple magrifying glass
(D) The objective and eyepiece are convex and concave lenses respectively
(1)
(A), (B) and (D)
(2) (B) and (C)
(3)
(A), (G) and (D)
(4) (B) and (D)

(1)
(A), (B) ふడీ
(2) (B) 山రంయ (C)
(3)
(A), (C) 500 cos (D)
(4) (B) 500
(D)

Rough Work

109. A ray of light refracts from medium 1 into a thin layer of medium 2, crosses the layer and is incident at the critical angle on the interface between the medium 2 and 3 as shown in the figure. If the angle of incidence of ray is θ, the value of θ is:

ш
 ఫ్రంఫ స్ర Q वuघl θ పెలువ :

(1) $\sin ^{-1}\left(\frac{8}{9}\right)$
(2) $\sin ^{-1}\left(\frac{13}{18}\right)$
(3) $\sin ^{-1}\left(\frac{13}{16}\right)$
(4) $\sin ^{-1}\left(\frac{8}{13}\right)$

Rough Work
110. In the Young's double slit experiment, the resultant intensity at a point on the screen is 75% of the maximum intensity of the bright fringe Then the phase difference befween the two interfering rays at that point is :

(1) $\frac{\pi}{6}$
(2) $\frac{\pi}{4}$
(3) $\frac{\pi}{3}$
(4) $\frac{\pi}{2}$
111. If n bar magnet of pole strength m and magnetic momeat M is cat equally 5 times parallel to its axis and again 3 times perpendicular to itn asis, then the pole strength and magnetic moment of each piece are respactively:
 S"Mroromir
 \$erosige zoriser :
(1) $\frac{m}{20}, \frac{\mathrm{M}}{4}$
(2) $\frac{m}{5}, \frac{M}{20}$
(3) $\frac{m}{6}, \frac{\mathrm{M}}{24}$
(4) $\frac{m}{5}, \frac{\mathrm{M}}{24}$

Rough Work

112. Some physical quantities are given in the List 1 and the related urits are given in the List II. Matels the carrect poire in the lints :

List I

(a) Magnetic field intenaity
(e) $\mathrm{A}-\mathrm{m}$
(b) Mugnetic flux
(i) $\mathrm{Wb} \mathrm{m}^{-2}$
(c) Magnotic pole streagth
(g) Wb
(d) Magnotic induction
(i) Am^{-1}
(i) Am^{2}

$$
\begin{aligned}
& \text { In } \mathrm{D} 0=1
\end{aligned}
$$

$$
\begin{aligned}
& \text { (i) } \mathrm{A} \cdot \mathrm{~m}
\end{aligned}
$$

> (D) Wb m^{-2}
> (c) acovinuor peasisgo
> (ig) Wb
> (d) ecosizior fiona
> (h) Am^{-1}
> (ii) Am^{2}

The correct match is ;

(1)
(3)
$(a)-(e),(a)-(n) .(c)-(x),(d)-(i)$
(12)
$(a)-(h),(b)-(g),(c)-(c),(d)-(f)$
$(a)-(h),(b)-(b),(b)-(b),(d)-(A$
(4) (a)-(f), (b)-(g), (s)-(e) $(d)-(a)$
113. A fully chargod capacitor han a capacitance ' C. It is discharged through a small wil of resistance wire, embedded in a block of specific hest 's' and mass ' m ' under thermally isolated conditions. If the temperature of the block in raised by " $\Delta \mathrm{T}$ ", the potential difference V ucross the capacitor imitially is ;
 Dvミr

(1) $\left(\frac{2 m_{s} \Delta \mathrm{~F}}{\mathrm{C}}\right)^{\mathrm{Z}}$
(2) $\left(\frac{2 m_{s} \Delta T}{\mathrm{C}}\right)^{1 / 2}$
(i) $\left(\frac{2 m s, \Delta T}{\mathrm{C}}\right)$
(4) $2 \mathrm{~ms}, \Delta \mathrm{TO}$

Rough Work

114. Two identical condensers M and N are connected in series with a battery. The space between the plates of M is completely filled with a dielectric medium of dielectric constant 8 and a copper plate of thickness $\frac{d}{2}$ is introduced between the plates of N. (id is the distance between the plates). Then potential differences across M and N are, respectively, in the ratio :

 (d ed

(1) $1: 4$
(2) 4:1
(3) $3: 8$
(4) $1: 6$
115. The electric current i in the circuit shown is :

(1) 6A
(2) 2 A
(3) 3 A
(4) 4 A

Rough Work

116．In the circuit shown below，the ammeter reading is zero，Then the value of the resistance R is ：

117．The therm emf．of a hypothetical thermocouple varies with the temperature θ of hot junction as $\mathrm{E}=a \Theta+b \theta^{2}$ in volts，where the ratio a / b is $700^{\circ} \mathrm{C}$ ．If the cold junction is kept at $0^{\circ} \mathrm{C}$ ，then the neutral temperature is ：
（d） $700^{\circ} \mathrm{C}$
（2） $1400^{\circ} \mathrm{C}$
（3） $390^{\circ} \mathrm{C}$
（4）no neutral temperature is possible for this thermocouple

由ジ
（1） $700^{\circ} \mathrm{C}$
（2） $1400^{\circ} \mathrm{C}$
（3） $390^{\circ} \mathrm{C}$

Rough Work

118. Match the following and find ther correct pairs :

List I

List II
(e) Direction of induced current
(b) Right hand thumb rule
(f) Magnitude and direction of magnetic induction
(c) Biot-Savart law
(g) Direction of force due to magnetic induction
(d) Fleming's right hand rale (h) Direction of magnetic lines due to current

EDDO I

[20

(b) So心.

Av
(1)
$(a)-(g),(b)-(k),(c)-(f),(d)-(k i)$
(2) (a)-(g),(b)-(h),(c)-(b),(d)-(e)
(8)
$(a)-(f),(b)-(h),(c)-(g),(d)-(e)$
(4) $(a)-(h),(b)-(g),(e)-(c),(d)-(f)$

Rough Work

119. A constant voltage of 25 V is applied to a series $\mathrm{L}-\mathrm{R}$ eircuit at $t=0$, by closing a switch. What is the potential difference across the resistor and the inductor at timet $t=0$?

(1) $0 . \mathrm{V}, 25 \mathrm{~V}$
(2) $12.5 \mathrm{~V}, 12.5 \mathrm{~V}$
(3) $10 \mathrm{~V}, 15 \mathrm{~V}$
(4) $25 \mathrm{~V}, 0 \mathrm{~V}$
120. The sensitivity of a galvanometer is 60 divisions/Amp, When a shumt is used, its sensitivity becomes 10 divisions/Amp. If the galvanometer is of resistance 20Ω, the value of shunt used is :

(1) 4Ω
(2) 5Ω
(8) 20Ω
(4) 2Ω

Rough Work

CHEMISTRY

121. A metal nitride contains 28% nitrogen by weight. The molecolur formuln of metal nitride is $\mathrm{M}_{3} \mathrm{~N}_{2}$. What is the atomic weight of metal ?
Ls ली

(1) 72
(2) 64
(3) 100
(4) 24
122. Which one of the following statements is not correct?
(1) The fraction of total number of molecules of a gas having mont probable velocity increases with an increase in temperature of the gas
(2) The concentration of an ideal gas at 100 K and 0.0821 atm of pressure is $1.0 \times 10^{-2} \mathrm{~mol}$. $\mathrm{lit}^{-2}\left(\mathrm{R}=0.0821 \mathrm{lit} \mathrm{atm} \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)$
(3) If the rms velocity of an ideal gas at $\mathrm{T}(\mathrm{K})$ is $\mathrm{C}^{\prime} \mathrm{cm} . \mathrm{g}^{-1}$, its rus velocity at 4T(K) if $2 \mathrm{Cl} \mathrm{cm}_{\mathrm{cm}} \mathrm{cm}^{-1}$
(4) The average kinetic onergy of gas molecules is proportional to their absolute temperature

 $1.0 \times 10^{-2} \mathrm{Zs}, \mathrm{B}^{-1}\left(\mathrm{R}=0.0821\right.$ B. eerg $\left.\mathrm{ar}^{-1}, \mathrm{~K}^{-1}\right)$
 ant cms डicio '2C' $720.5: \quad \mathrm{T}^{-1}$
 + 0.6 s

Rough Work

123. In acidic modium, 100 ml af $0.01 \mathrm{M} \mathrm{KMnO}_{4}$ solution axidizes 100 ml of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution. Tho volume of $0.01 \mathrm{M} \mathrm{KMnO}_{4}$ required to oxidize the same valume of $\mathrm{H}_{2} \mathrm{O}_{2}$ in alkaline medium in ml. is :

(1) $\frac{800}{2}$
(2) $\frac{800}{5}$
(3) $\frac{500}{3}$
(4) $\frac{500}{2}$
124. A solution of 10 g of a non-volatile binary clectrolyte ($\mathrm{mol} . \mathrm{wt}=100$) in 500 g of water freezes at $-0.74^{\circ} \mathrm{C}$. What is the degree of ionisation?
(k_{f} of water $=1.85 \mathrm{~K}$ molality ${ }^{-1}$)

($\mathrm{BC} \mathrm{A}_{f}=1.85 \mathrm{~K}$ 30erel d^{-1})
(1) 50%
(2) 75%
(3) 100%
(4) 0%

Rough Work

125. For the electrochemical cell $\mathrm{M}\left|\mathrm{M}^{+} \| \mathrm{X}^{-}\right| \mathrm{X}, \mathrm{E}^{\bullet}\left(\mathrm{M}^{+} \mid \mathrm{M}\right)=0.44 \mathrm{~V}$ and $\mathrm{E}^{*}(\mathrm{X} \mid \mathrm{X})=0.33 \mathrm{~V}$. Which one of the following is true for this data?
(1) $\mathrm{M}+\mathrm{X} \rightarrow \mathrm{M}^{+}+\mathrm{X}^{-}$is at spontaneous reaction
(2) $\mathrm{M}^{+}+\mathrm{X} \rightarrow \mathrm{M}+\mathrm{X}$ is a spontaneous reaction
(3) $E_{\text {cell }}=0.77 \mathrm{~V}$
(4) $\mathrm{E}_{\text {eli }}=-0.77 \mathrm{~V}$

(3) $\mathrm{E}_{\text {wii }}=0.77 \mathrm{~V}$
(4) $\mathrm{E}_{\text {we o }}=-0.77 \mathrm{~V}$
126. In electrochemical corrosion, the metal undergoing corrosion
(1) Acts as anode
(2) Acts us cathode
(3) Undergoes reduction
(4) Liquefies

(1) Sis $^{6} \%$ anton

(3) ब్రథుకరణష్ము అరుగును

Rough Work

127. If the length of the unit cell is 5 A , the smallest distance in \AA between the two neighbouring metal atoms in a face centred cubic lattice is :

 206?
(1) 2.50
(2) 5.00
(3) 7,07
(k) 3.535
128. Match the following :

List I

(A) Arrhenius equation
(i) Free anergy change
(B) Slowest step in a reaction
(ii) ene $^{-1}$, time ${ }^{-1}$ mechanism
(C) Bate constant of a II order (iii) cone ${ }^{2-n}$,time ${ }^{-1}$ reaction
(D) The possibility of a resection (w) Rate determining step depends on
(ii) $k=\mathrm{A} \cdot \mathrm{c}^{-\mathrm{E}_{d} / R T}$

Boss audit easservan ;

$$
\text { endue } 1
$$

(G) oo.

Tow porno so
 -
(i) $k=A \quad v-E_{i d} / R T$

The correct answer is :
(T oman గixjecrisun

	(A)	(B)	(C)	(D)
(1)	(v)	(i)	(iii)	(ii)
(2)	(v)	(iv)	(iii)	(i)
(3)	(v)	(ii)	(ii)	(z)
(4)	(iii)	(iv)	(ii)	(i)

Rough Work
129. At $\mathrm{T}(\mathrm{K})$, the partial pressures of $\mathrm{SO}_{2}, \mathrm{O}_{2}$ and SO_{3} are $0.662,0.100$ and 0.831 atm. respectively for the reaction $2 \underset{\text { (g) }}{2 \mathrm{SO}_{2}}+\underset{\text { (b) }}{\mathrm{O}_{3}}=2 \underset{\text { (g) }}{2 \mathrm{SO}_{y}}$ at equilibrium. What is the partial pressure in atm. of O_{2} when the equilibrium partial pressures of SO_{2} and SO_{4} are equal at the same temperature?

```
2 SO
    (बए) (बम) (ब०)
```


(1) 0.4
(2) 0.8
(3) 0.25
(d) 2.5
130. The order of pH of 0.200 M solutions of $\mathrm{NH}_{4} \mathrm{NO}_{3}, \mathrm{NaNO}_{3}$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is :

(1) $\mathrm{NH}_{4} \mathrm{NO}_{3}<\mathrm{Na}_{2} \mathrm{CO}_{3}<\mathrm{NaNO}_{3}$
(2) $\mathrm{NH}_{4} \mathrm{NO}_{3}<\mathrm{NaNO}_{3}<\mathrm{Na}_{2} \mathrm{CO}_{3}$
(3) $\mathrm{Na}_{2} \mathrm{CO}_{3}<\mathrm{NaNO}_{3}<\mathrm{NH}_{4} \mathrm{NO}_{3}$
(4) $\mathrm{NaNO}_{8}<\mathrm{NH}_{4} \mathrm{NO}_{3}<\mathrm{Na}_{2} \mathrm{CO}_{3}$

Rough Work

131. Which one of the following pairs represents the intensive propertiea ?
(1) Specific heat and temperature
(2) Entropy and demsity
(3) Enthalpy and mole fraction
(4) Heat and temperature

(3) Douply mdan Sure proio

132. According to Langmuir adsorption inotherm, the amount of gas adsorbed by unit surface area is :
(a, b, k and n are constants; $\mathrm{P}=$ pressure of gas)
CROFD
సందు aroun జbమాణయu:

(1) $h \cdot P^{\prime \prime}$
(2) $\frac{1+b P}{a P}$
(3) $k \cdot \mathrm{P}^{1 / n}$
(4) $\frac{a \mathrm{P}}{1+b \mathrm{P}}$

Rough Work

133. Calcium carbide is hydrolyzed using heavy water: What are the products formed ?

(1) $\mathrm{Ca}\left(\mathrm{OH}_{2}, \mathrm{C}_{2} \mathrm{D}_{2}\right.$
(2) $\mathrm{Ca}(\mathrm{OD})_{2}, \mathrm{C}_{2} \mathrm{D}_{2}$
(3) $\mathrm{Ca}(\mathrm{OD})_{2}, \mathrm{CD}_{4}$
(4) $\mathrm{Ca}(\mathrm{OH})_{2}, \mathrm{CD}_{4}$
134. The reactivity of $\mathrm{Ca}, \mathrm{Sr}, \mathrm{Mg}$ and Ba with water follow the order :

(1) $\mathrm{Sr}>\mathrm{Ba}>\mathrm{Mg}>\mathrm{Ca}$
(2) $\mathrm{Ba}>\mathrm{Sr}>\mathrm{Ca}>\mathrm{Mg}$
(3) $\mathrm{Ca}>\mathrm{Mg}>\mathrm{Ba}>\mathrm{Sr}$
(4) $\mathrm{Sr}>\mathrm{Ca}>\mathrm{Mg}>\mathrm{Ba}$
135. Electronegativity of group 13 elements follow the order ;

(1) $\mathrm{B}>\mathrm{Ga}>\mathrm{Al}>\mathrm{Tl}>$ In
(2) B $>$ Tl $>$ Ga> Al $>$ In
(3) $\mathrm{B}>\mathrm{TI}>\mathrm{In}>\mathrm{GB}>\mathrm{Al}$
(4)
$\mathrm{B}>\mathrm{Al}>\mathrm{Tl}>\mathrm{In}>\mathrm{Ga}$

Rough Work
136. What is the empirical formula of sheet silicates ?

(1) $\left(\mathrm{Si}_{2} \mathrm{O}_{6}\right)_{n}^{1 \mathrm{P}_{n} n-}$
(2) $\left(\mathrm{SiO}_{3}\right)_{n}^{2 n-}$
(3) $\left(\mathrm{SiO}_{3}\right)_{n}^{n-}$
(4) $\left.\mathrm{SiH}_{2} \mathrm{O}_{7}\right)_{n}^{3 n=}$
137. The gases evolved in the decomposition of lead nitrate are ?

(1) $\mathrm{N}_{2} \mathrm{O}_{3}, \mathrm{NO}$
(2) $\mathrm{NO}_{2}, \mathrm{O}_{2}$
(3) $\mathrm{N}_{2} \mathrm{O}_{3}, \mathrm{O}_{2}$
(4) $\mathrm{N}_{2} \mathrm{O}, \mathrm{O}_{2}$
138. Which of the following sfatements are correct?
(1) Monoclinic sulphur contains S_{8} molecules.
(II) Sulphur forms $\mathrm{SF}_{6}, \mathrm{SF}_{4}, \mathrm{SF}_{2}$ and $\mathrm{S}_{2} \mathrm{~F}_{2}$.
(III) Peroxo group is present in $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{6}$.

BOE むవomed 23 Nounsil
(1) 505

(1) II, III
(2) I, II
(3) 1. III
(4) I, II, III

Rough Work

139. Bond energy of $\mathrm{F}_{2}, \mathrm{Cl}_{2}$ and Br_{2} follow the order :

(1) $\mathrm{F}-\mathrm{F}>\mathrm{Cl}-\mathrm{Cl}>\mathrm{Br}-\mathrm{Br}$
(2) $\mathrm{Cl}-\mathrm{Cl}>\mathrm{Br}-\mathrm{Br}>\mathrm{F}-\mathrm{F}$
(3) $\mathrm{Br}-\mathrm{Br}>\mathrm{Cl}-\mathrm{Cl}>\mathrm{F}-\mathrm{F}$
(4) $\mathrm{Cl}-\mathrm{Cl}>\mathrm{F}-\mathrm{F}>\mathrm{Br}-\mathrm{Br}$
140. A mixture of $\mathrm{He}, \mathrm{Ne}, \mathrm{Kr}$ and Xe is cooled. Which one of them condenses first ?

(1) Xe
(2) Ne
(3) Kr
(4) He
141. The solution of X having excess of caustic potash in used to detect ammonia. Which of the following is X ?

1008 ar $80^{\circ} X$?
(1) $\mathrm{K}_{2} \mathrm{HggI}_{4} \mathrm{~J}$
(2) $\mathrm{Co}\left(\mathrm{NH}_{8}\right)_{6} \mathrm{Cl}_{3}$
(3) $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{NCS})_{6}\right]$
(4) $\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4} \mathrm{Br}$

Rough Work

142．Which of the following metallurgical processes does not involve heating ？
（1）Smelting
（2）Calcination
（9）Roasting
（4）Leaching

（2）qiogrodazu：
（3）porso
（4）Tずマニ゚

143．Which one of the following is not a green－house gas ？

（1）$\quad \mathrm{CO}_{2}$
（2） $\mathrm{N}_{2} \mathrm{O}$
（3） O_{3}
（4） N_{2}

144．The reagent used to detect phosphorous in an organic compound is ：

（1） FeSO_{4}
（2） AgNO_{3}
（8）$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{MoO}_{4}$
（4） BaCl_{2}

145．Which one of the following alkenes gives only ethanal on ozonolyaiz？
（1）Propene
－（2）2－Butme
（3）1－Butene

（1）EొWN
（2） 2 －varides
（3） $1-2 \operatorname{din} 2 \mathrm{~F}=$
（4）2－3odE

Rough Work

146. Which one of the following does not give precipitate with amminnical cuprous chloride?

```
(1) }\mp@subsup{\textrm{H}}{3}{}\textrm{C}-\mp@subsup{\textrm{CH}}{2}{}-\textrm{C}=\textrm{CH
(2) \(\mathrm{H}_{3} \mathrm{C}-\mathrm{C}=\mathrm{CH}\)
(3) \(\mathrm{HC=CH}\)
(4) \(\mathrm{H}_{2} \mathrm{C}-\mathrm{C}=\mathrm{C}-\mathrm{CH}_{3}\)
```

147. The number of stereoisomers possible for $\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{3}$ is :

(1) 1
(2) 2
(3) 3
(4) 4
148. $\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{OH} \xrightarrow{\mathrm{PCl}_{5}} \mathrm{~A} \xrightarrow{\mathrm{AgNO}_{2}} \mathrm{~B}$. Identify A and B :
$\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{OH} \xrightarrow{\mathrm{PCl}_{5}} \mathrm{~A} \xrightarrow{\mathrm{AgNO}_{2}} \mathrm{~B} \cdot \mathrm{~A} \sim 0.02 \mathrm{~B}$ ह KaO
(1) $\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{Cl}_{4}, \mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{O}-\mathrm{C}_{2} \mathrm{H}_{5}$
(2) $\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{O}-\mathrm{C}_{2} \mathrm{H}_{5}$
(3) $\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{Cl}, \mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{ONO}$
(4) $\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NO}_{2}$

Rough Work
149. Assertion (A) ; Ethanol beits at lower termperature than ethane.

Reason (R) : The molecular weight of ethanol is higher than that of ethane.

The correct answer is :
(1) Both (A) and (R) are true and (R) is the correct axplanation of (A)
(2) Both (A) and (R) are true but (\mathbf{R}) is not the correct explanation of (A)
(3) (A) is true but (R) is not true
(4) (A) is not true but (R) is true

150. Which compound is formed when a mixture of calcium acetate and calcimm formate is heatod?
 007

(3) НСНО

(4) $\mathrm{H}_{3} \mathrm{C}-\mathrm{CHO}$

Rough Work

151. Identify X in the following ;

$$
\mathrm{H}_{3} \mathrm{CCO}_{2} \mathrm{H} \frac{(i) \mathrm{NH}_{3}}{(i \bar{i}) \Delta} \mathrm{X}
$$

(1) $\mathrm{H}_{3} \mathrm{CCN}$
(2) $\mathrm{H}_{8} \mathrm{CCO}_{2} \mathrm{NH}_{4}$
(3) $\left(\mathrm{H}_{3} \mathrm{CCO}\right)_{2} \mathrm{O}$
(4) $\mathrm{H}_{3} \mathrm{CCONH}_{2}$
152. Carbylamine test is used to detect which one of the following ?

(1) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$
(2) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}$
(3) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$
(4) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$
153. Proteins are :
(1) Polysaccharides
(2) Polynucleotides
(3) Polypeptides
(4) Triglycerides
[20 0.500$]$:
(1) 200001050

(3) むे चेच
(4) W్లిగ్ర్యem

Rough Work

D

E 2011 D
154. Scurvy is caused by the deficiency of which vitamin?

(1) C
(2) B_{1}
(3) D
(4) B_{2}
155. Which one of the following is a food preservative?

(1)

(2)

(3)

Rough Work
156. The number of radial nodes present in the radial probability distribution curves for the orbital wave function with quantum numbere $n=4, t=0$ and $m=0$ is:

(1) 4
(2) 3
(3) 2
(4) 1
157. If the uncertainty in velocities of two particles A and B with mass $1.0 \times 10^{-27} \mathrm{~kg}$ and $1.0 \times 10^{-31} \mathrm{~kg}$ respectively is the same, the ratio of uncertainty in the positions of A and B is :

 2ant 203?
(1) $1000: 1$
(2) $10,000: 1$
(3) $1: 1000$
(4) $1: 10,000$

Rough Work
158.

With reference to the diagram given，the van der Waals radius is equal to ：

（1） $\mathrm{A}-\mathrm{A}^{\prime}$
（2） $\mathrm{B}-\mathrm{A}$
（3） $\mathrm{B}-\mathrm{D}$
（4） $\mathrm{A}-\mathrm{C}$

159．In which ane of the following，the bond angle is the lowest？

ざもあ あん？
（1） $\mathrm{H}_{3} \mathrm{O}$
（2） NH_{4}
（3） $\mathrm{F}_{2} \mathrm{O}$
（4） BCl_{3}

160．In the Born－Haber cycle of the given reaction

$$
\mathrm{Na}(\mathrm{~s})+\frac{1}{2} \mathrm{C}_{2}(\mathrm{~g}) \rightarrow \mathrm{NaCl}(\mathrm{~s})
$$

the number of endothermic and exothermic stages respectively are

$$
\mathrm{Na}(幺)+\frac{1}{2} \mathrm{Cl}_{2}\left(\omega_{0}\right) \rightarrow \mathrm{NaCl}(\psi)
$$

 వదునడ：
（1） 2,3
（2） 3.1
（3） 3,2
（4） 2,2

Rough Worls

