Booklet Code E 2011 D Marks : 160

Time : 3 Hours

Instructions :

- 1. Each question carries one mark.
 - ్రవతి స్రవర్నరు ఒక మార్కు కలదు.
- Choose correct answer to the following questions and darken, with HB pencil, the corresponding digit 1, 2, 3 or 4 in the circle pertaining to the question number concerned in the OMR Answer Sheet, separately supplied to you.

దిగువ ఇచ్చిన స్థతి స్థర్ను సరియైన నమాధానమును ఎన్నుకొని దానిని నూచించే అంకె 1, 2, 3 లేక 4 వేరుగా ఇచ్చిన OMR సమాధాన వస్రములో స్థర్నకు నంబంధించిన సంఖ్యగల "పేటికను HB పెన్సిల్తో నల్లగా చేయవలెను.

MATHEMATICS

- 1. $\lim_{x \to 8} \frac{\sqrt{1 + \sqrt{1 + x}} 2}{x 8} =$ (1) $\frac{3}{2}$ (2) $\frac{1}{4}$ (3) $\frac{1}{24}$ (4)
- If |x| denotes the greatest integer not exceeding x and if the function f defined by

$$f(x) = \begin{cases} \frac{a + 2\cos x}{x^2} & (x < 0) \\ b \tan \frac{\pi}{[x+4]} & (x \ge 0) \end{cases}$$

is continuous at x = 0, then the ordered pair (a, b) =

x కి మొందని అత్యధిక పూరాంకాన్ని [x] తో నూచిన్నూ, $f(x) = \begin{cases} \frac{a + 2\cos x}{x^2} & (x < 0)\\ b \tan \frac{\pi}{[x+4]} & (x \ge 0) \end{cases}$

గా నిర్వచిత ప్రమేయం f, x = 0 వద్ద అవిచ్ఛిన్న మయితే అప్పుడు క్రమ యుగ్మం (a, b) =(1) (-2, 1) (2) (-2, -1) (3) (-1, $\sqrt{3}$) (4) (-2, $-\sqrt{3}$)

3. If
$$y = (1 + x) (1 + x^2) (1 + x^4) \dots (1 + x^{2^n})$$
, then $\left(\frac{dy}{dx}\right)_{x=0} =$
 $y = (1 + x) (1 + x^2) (1 + x^4) \dots (1 + x^{2^n}) \mod \max \max (1 + x^{2^n}) \mod \max (1 + x^{2^n}) =$
(1) 0 (2) $\frac{1}{2}$
(3) 1 (4) 2
4. If $\cos^{-1}\left(\frac{x^2 - y^2}{x^2 + y^2}\right) = k$ (a constant), then $\frac{dy}{dx} =$
 $\cos^{-1}\left(\frac{x^2 - y^2}{x^2 + y^2}\right) = k$ (a constant), then $\frac{dy}{dx} =$
(1) $\frac{y}{x}$ (2) $\frac{x}{y}$
(3) $\frac{x^2}{y^2}$ (4) $\frac{y^2}{x^2}$
5. If $f(x) = |x| + |\sin x|$ for $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, then its left hand derivative at $x = 0$
is
 $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \delta f(x) = |x| + |\sin x| \mod x = 0$ and $x = 0$.

	log, x	$d^2y dy$	
6.	If $y = \frac{\log_e x}{x}$ and $z =$	$\log_e x$, then $\frac{dz^2}{dz^2} + \frac{dz}{dz} =$	
	$y = \frac{\log_e x}{x}, \ z = \log_e x$	అయితే అవ్పుడు $\frac{d^2y}{dz^2} + \frac{dy}{dz} =$	
	(1) e^{-z}	(2) $2e^{-z}$ (4) $-e^{-z}$	
	(3) ze^{-z}	$(4) -e^{-z}$	
7.	If $1^\circ = \alpha$ radians then	the approximate value of cos (60°	1') is
	1° = $lpha$ రేడియన్లు అయితే	ర cos (60° 1') ఉజాయింపు విలువ	÷
	$1 \alpha \sqrt{3}$	1α	14-1
	(1) $\frac{1}{2} + \frac{\alpha\sqrt{3}}{120}$	(2) $\frac{1}{2} - \frac{\alpha}{120}$	- £
	$1 \alpha \sqrt{3}$	1 α	
	(3) $\frac{1}{2} - \frac{\alpha\sqrt{3}}{120}$	(4) $\frac{1}{2} + \frac{\alpha}{120}$	
	2 120	2 120	
8.		2. 120	by $s = t^2 - 2t + $
8.	If the distance s trave	lled by a particle in time t is given	by $s = t^2 - 2t + $
8.	If the distance s trave then its acceleration is	lled by a particle in time t is given	
8.	If the distance s trave then its acceleration is	lled by a particle in time t is given	
8.	If the distance s trave then its acceleration is ఒక అణువు t నమయంలే	lled by a particle in time t is given	
8.	If the distance s trave then its acceleration is ఒక అణువు t నమయంలే త్వరణం	lled by a particle in time t is given s " వయనించే దూరం s ని $s = t^2 - 2$	
8. 9.	If the distance s trave then its acceleration is ఒక అణువు t నమయంలే త్వరణం (1) 0 (3) 2	lled by a particle in time t is given s " వయనించే దూరం s ని $s = t^2 - 2$ (2) 1	t + 5 ಗ್ ಇಸ್ತೆ ದ
	If the distance s trave then its acceleration is ఒక అణువు t నమయంలే త్వరణం (1) 0 (3) 2 The length of the sub	lled by a particle in time t is given s " వయనించే దూరం s ని $s = t^2 - 2$ (2) 1 (4) 3	$t + 5 r = \frac{1}{2} a$
	If the distance s trave then its acceleration is ఒక అణువు t నమయంలే త్వరణం (1) 0 (3) 2 The length of the sub	lled by a particle in time t is given s 6 නරාධියක් කාංජර s වී $s = t^2 - 2$ (2) 1 (4) 3 tangent at any point (x_1 , y_1) on the	$t + 5 r = \frac{1}{2} a$
	If the distance s trave then its acceleration is ఒక అణువు t సమయంలే త్వరణం (1) 0 (3) 2 The length of the sub వత్రం $y = 5^x$ పై బిందు	lled by a particle in time t is given s " పయనించే దూరం s ని $s = t^2 - 2$ (2) 1 (4) 3 tangent at any point (x_1 , y_1) on the వు (x_1 , y_1) వద్ద ఉవ స్పర్శ రేఖాఖండ	$t + 5 r = \frac{1}{2} a$
	If the distance s trave then its acceleration is ఒక అణువు t సమయంలే త్వరణం (1) 0 (3) 2 The length of the sub వత్రం $y = 5^x$ పై బిందు	lled by a particle in time t is given s " పయనించే దూరం s ని $s = t^2 - 2$ (2) 1 (4) 3 tangent at any point (x_1 , y_1) on the వు (x_1 , y_1) వద్ద ఉవ స్పర్శ రేఖాఖండ	$t + 5 r = \frac{1}{2} a$

10.

E 2011 D

$$u = u(x, y) = \sin (y + dx) - (y + dx) - (y + dx) = 0$$
(1)

$$u_{xx} = a^{2}, u_{yy}$$
(2)

$$u_{yy} = a^{2}u_{xx}$$
(3)

$$u_{xx} = -a^{2}, u_{yy}$$
(4)

$$u_{yy} = -a^{2}u_{xx}$$

11.
$$\int \left(\sqrt{\frac{a+x}{a-x}} + \sqrt{\frac{a-x}{a+x}} \right) dx =$$
(1)
$$2\sin^{-1}\left(\frac{x}{a}\right) + c$$
(2)
$$2a\sin^{-1}\left(\frac{x}{a}\right) + c$$
(3)
$$2\cos^{-1}\left(\frac{x}{a}\right) + c$$
(4)
$$2a\cos^{-1}\left(\frac{x}{a}\right) + c$$

12. If
$$\int \frac{\sin^8 x - \cos^8 x}{1 - 2\sin^2 x \cos^2 x} dx = A \sin 2x + B$$
, then A =

$$\int \frac{\sin^8 x - \cos^8 x}{1 - 2\sin^2 x \cos^2 x} dx = A \sin 2x + B \mod A = 1$$
(2)

(1)
$$-\frac{1}{2}$$

(3) $\frac{1}{2}$ (4) 1

13.
$$\int \frac{1+\cos 4x}{\cot x - \tan x} dx =$$
(1) $-\frac{1}{4}\cos 4x + c$
(2) $\frac{1}{8}\cos 4x + c$
(3) $\frac{1}{4}\sin 4x + c$
(4) $-\frac{1}{8}\cos 4x + c$

14.	The area (in square units) of the	he region bounded by the	curves $x = y^2$ and
	$x = 3 - 2y^2$ is		
	వ(కాలు $x = y^2$, $x = 3 - 2y^2$ లతో	పరిబద్ధ (వదేశవు వైశాల్యం (చదరపు యూనిట్లలో)
	$(1) = \frac{3}{2}$	(2) 2	
	(3) 3	(4) 4	
15.	If $I_n = \int_0^{\pi/4} \tan^n \Theta d\Theta$ for $n = 1$,	2, 3, then $I_{n-1} + I_{n+1}$	
	$I_n = \int_{0}^{\pi/4} \tan^n \theta d\theta (n = 1, 2, 3)$,) ගෙයම් $I_{n-1} + I_{n+1} =$	
	(1) 0	(2) 1	
	(3) $\frac{1}{n}$	(4) $\frac{1}{n+1}$	n oraș al
16.	Let $f(0) = 1$, $f(0.5) = \frac{5}{4}$, $f(1) = 2$, $f(1) = 1$	$(1.5) = \frac{13}{4}$ and $f(2) = 5$. Using	ing Simpson's rule,
	$\int_{0}^{2} f(x) dx =$		
	5	19	2 · · · ·
	$f(0) = 1, f(0.5) = \frac{5}{4}, f(1) = 2, f(1.5)$	$5) = \frac{13}{4}, f(2) = 5 అనురోంది.$	సింభ్సన్ నూడాన్ని
	ఉపయోగిస్తు. $\int_{0}^{2} f(x) dx =$		e de la compañía. A compañía
	(1) $\frac{14}{3}$	(2) $\frac{7}{6}$	
	(3) $\frac{14}{9}$	$(4)' \frac{7}{9}$	

17. The solution of the differential equation $\frac{dy}{dx} = \frac{y}{x} + \frac{\varphi(y/x)}{\varphi'(y/x)}$ is

D

అవరలన సమీరరణం
$$\frac{dy}{dx} = \frac{y}{x} + \frac{\varphi(y/x)}{\varphi'(y/x)}$$
 కి సాధన
(1) $x \varphi\left(\frac{y}{x}\right) = k$ (2) $\varphi\left(\frac{y}{x}\right) = kx$
(3) $y \varphi\left(\frac{y}{x}\right) = k$ (4) $\varphi\left(\frac{y}{x}\right) = ky$

18. If y = y(x) is the solution of the differential equation $\left(\frac{2+\sin x}{y+1}\right)\frac{dy}{dx} + \cos x = 0$

with
$$y(0) = 1$$
, then $y\left(\frac{\pi}{2}\right) =$
 $y = y(x)$ මාබ්සි මන්නවන ත්ඛාන්වකං $\left(\frac{2 + \sin x}{y + 1}\right) \frac{dy}{dx} + \cos x = 0$, $y(0) = 1$ න්නා බංధන
තොමේ $y\left(\frac{\pi}{2}\right) =$
(1) $\frac{1}{3}$ (2) $\frac{2}{3}$

43

(4)

Rough Work

(3)

1

E 2011 D D If $f: [2, \infty) \to B$ defined by $f(x) = x^2 - 4x + 5$ is a bijection, then B =19. $f: [2, \infty) \rightarrow B$ බ $f(x) = x^2 - 4x + 5$ බරුඩ $\frac{1}{2}$, පෙයි යිදුරාශ(ස්ක්රාරාකි)ම් అప్పుడు B = (2) [1, ∞) [0, ∞) (1)15, 00) (3)[4, ∞) (4)If $f: \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = \left\lfloor \frac{x}{5} \right\rfloor$ for $x \in \mathbb{R}$, where [y] denotes the greatest 20. integer not exceeding y, then (f(x) : |x| < 71) = $f: \mathbb{R} \to \mathbb{R}$ \Im (if $x \in \mathbb{R}$ if $f(x) = \left[\frac{x}{5}\right] \Leftrightarrow$ $\Im c_{\mathbb{C}} \oplus \frac{1}{2}$, so the y is all of a weight of $f(x) = \left[\frac{x}{5}\right]$ వూర్తాంకాన్ని [y] తో నూచిన్నే, అప్పుడు |f(x): |x| < 71) =[-14, -13,, 0,, 13, 14] (1){-14, -13,, 0,, 14, 15} (2)[-15, -14,, 0,, 14, 15] (3)

(4) {-15, -14,, 0,, 13, 14}

E 2011 D

21. If a, b and n are natural numbers then $a^{2n-1} + b^{2n-1}$ is divisible by : a, b, n සා నహజ నంఖ్యలైతే $a^{2n-1} + b^{2n-1}$ ව විද්යුරුලා ආරංඛයි :

- (1) a + b (2) a b $(3) a^3 + b^3 (4) a^2 + b^2$
- 22. A bag contains n white and n black balls. Pairs of balls are drawn at random without replacement successively, until the bag is empty. If the number of ways in which each pair consists of one white and one black ball is 14,400, then n =

ఒక నంచిలో n తెల్లనివి, n నల్లనివి బంతులు ఉన్నాయి. యాదృచ్చికంగా, వరునగా, తీసిన వాటిని నంచిలో తిరిగి ఉంచకుండా బంతుల జతలను నంచి భాళీ అయేవరకూ తీశారు. [వతి జతలో ఒక తెల్లని బంతి, ఒక నల్లని బంతి ఉండేలా తీసే పద్ధతుల సంఖ్య 14,400 అయితే n =

(1)	6	(2)	5
(3)	4	(4)	3

		D E 2011 D
24.	${}^{15}P_8 = A + 8 \cdot {}^{14}P_7 \Rightarrow A =$	
	(1) ¹⁴ P ₆	(2) ¹⁴ P ₈
	(3) ${}^{15}P_7$	(4) ${}^{16}P_9$
25.	If ${}^{(n-1)}C_3 + {}^{(n-1)}C_4 > {}^nC_3$, th	en the minimum value of n is
	$^{(n-1)}C_3 + {^{(n-1)}C_4} > {^nC_3} \cos^2 6$	n యొక్క కనిష్ఠ విలుచ
	(1) 5	(2) 6
	(3) 7	(4) 8
26.	equal, then $r =$	+ 1)th terms in the expansion of $(3 + 7x)^{29}$ are చ. $(r + 1)$ వ పదాల గుణకాలు సమానమయితే,
	<i>r</i> =	
	(1) 14	(2) 15
	(3) 18	(4) 21
27.	$\frac{x^2 + x + 1}{(x-1)(x-2)(x-3)} = \frac{A}{x-1} + \frac{A}{x}$	$\frac{B}{-2} + \frac{C}{x-3} \qquad A(y-1) (1-3) + B(k-0)(k-3) + B(k-$
	\Rightarrow A + C =	- 11-27(1-5 G[2-
	(1) 4	(2) 5 (+(+) + (-))(-2) = (+)+(+)
	(3) 6	(4) 8 3 1 1 1 1 1 1 1
-	[∞] 2n	
28.	$\sum_{n=1}^{\infty} \frac{2n}{(2n+1)!} =$	And Ca.
	1	at set
	(1) $\frac{1}{e}$	(2) $\frac{e}{2}$
	(3) e	(4) 2e
		peter .

E 2011 D If a > 0 and $b^2 - 4ac = 0$, then the curve $y = ax^2 + bx + c$ 29. (1)cuts the x-axis touches the x-axis and lies below it (2)lies entirely above the x-axis (3) touches the x-axis and lies above it (4) $a > 0, b^2 - 4ac = 0 అయితే వృకం <math>y = ax^2 + bx + c$ x-అక్రాన్ని ఖండినుంది (1)(2) జ-అక్రాన్ని నృఫిశిన్నూ, దాని దిగువన ఉంటుంది (3) పూర్తిగా x-అక్రం ఎగువన ఉంటుంది (4) x-అజ్రాన్ని న్పృళిన్నూ, దాని ఎగువన ఉంటుంది If tan A and tan B are the roots of the quadratic equation $x^2 - px + q = 0$, 30. then $\sin^2 (A + B) =$ tan A, tan B හා නිර්ත්භාවරකං $x^2 - px + q = 0$ నිහා නොලොළම් $\sin^2 (A + B) =$ (2) $\frac{p^2}{(p+q)^2}$ (1) $\frac{p^2}{p^2 + q^2}$ (4) $\frac{p^2}{p^2 + (1-q)^2}$ (3) $1 - \frac{p}{(1-q)^2}$ The value of 'a' for which the equations $x^3 + ax + 1 = 0$ and $x^4 + ax^2 + 1 = 0$ 31. have a common root is నమీకరణాలు $x^3 + ax + 1 = 0$, $x^4 + ax^2 + 1 = 0$ లకు ఒక ఉమ్మడి మూలం ఉంటే. 'a' చిలువ (2) -1 (1) -2 (4) 2 (3)1

E 2011 D

38, The locus of the complex number z such that

$$\arg\left(\frac{z-2}{z+2}\right) = \frac{\pi}{3}$$

41.	$\cos A = \frac{3}{4} \Rightarrow 32 \sin\left(\frac{A}{2}\right) \sin\left(\frac{A}{2}$	$ \frac{5A}{2} = $	(26)
41.	$\cos A = \frac{3}{4} \Rightarrow 32 \sin\left(\frac{A}{2}\right) \sin\left(\frac{A}{2}$	$\left(\frac{5A}{2}\right) =$	
	(3) $\frac{\pi}{5}$	(4) $\frac{2\pi}{5}$	
	(1) 2π	 (2) π 	320000
40.	of f is	$f(x) = 7 + \cos(5x + 3)$ for $x \in \mathbb{R}$, then the $x = 7 + \cos(5x + 3)$ గా నిర్వచ్చే, అమృదు,	
1	(3) 2	(4) -2	
	(1) -1	(2) 1	
39.	$\frac{(1+i)^{2011}}{(1-i)^{2009}} =$		
_	(3) ఒక వరావలయం	(4) ఒక దీర్ఘ వృత్తం	
	 ఒక వృత్తం 	(2) ఒక నరశరేఖ	
	$\arg\left(\frac{z-2}{z+2}\right) = \frac{\pi}{3}$ and $\dim \operatorname{supp}(z)$	నంకీర్ణ నంఖ్య జాబిందు వథం :	
	(3) a parabola	(4) an ellipse	
	(1) a circle	(2) a straight line	

13 P

+26 635 -67

15 1227

7 GLIE

E 2011 D

42.	If $f(x) = \sin^6 x + \cos^6 x$ for $x \in \mathbb{R}$, $x \in \mathbb{R} \le f(x) = \sin^6 x + \cos^6 x \otimes c$	then ාාම් fl	f(x) lies in the interval x) ධිපානතාරේ මරේරිර
	(1) $\left[\frac{7}{8}, \frac{5}{4}\right]$	(2)	$\left[\frac{1}{2},\frac{5}{8}\right]$
	(3) $\left[\frac{1}{4}, 1\right]$	(4)	$\left[\frac{1}{4},\frac{1}{2}\right]$
43.	The most general value of θ which $\cos \theta = \frac{1}{\sqrt{2}}$ is	ı satis	sfies both the equations $\tan \theta = -1$ and
	సమీకరణాలు tan $\theta = -1$, cos $\theta = -1$	$\frac{1}{\sqrt{2}}$ \circ	రెండింటినీ తృప్తివరిచే 0 సాధారణ పిలువ
	(1) $n\pi + 7\frac{\pi}{4}$	(2)	$2n\pi + \frac{7\pi}{4}$
	(3) $n\pi + (-1)^n \frac{7\pi}{4}$	(4)	$\frac{7n\pi}{4}$
	Here n is any integer. ఇక్కడ n ఒక పూరాంకం.		
44.	$(\tan^{-1} x)^2 + (\cot^{-1} x)^2 = \frac{5\pi^2}{8} \Rightarrow x =$		
	(1) -1 (3) 0	(2)	1
	(3) 0	(4)	$\pi\sqrt{\frac{5}{8}}$
45.	For $0 < x \le \pi$, $\sinh^{-1} (\cot x) =$	1	
	$0 < x \le \pi \ \text{sinh}^{-1} \ (\cot x) =$		
	(1) $\log\left(\cot\frac{x}{2}\right)$	(2)	$\log\left(\tan\frac{x}{2}\right)$
	(3) $\log(1 + \cot x)$	(4)	$\log(1 + \tan x)$

E 2011 D

- 46. In a triangle ABC if $a\cos^2\frac{C}{2} + c\cos^2\frac{A}{2} = \frac{3b}{2}$, then the sides of the triangle are
 - in
 - (1) an arithmetic progression
 - (2) a geometric progression
 - (3) a harmonic progression
 - (4) an arithmetico-geometric progression

ఒక త్రభుజం ABC లో $a\cos^2\frac{C}{2} + c\cos^2\frac{A}{2} = \frac{3b}{2}$ అయితే అప్పుడు ఆ త్రభుజవు భుజాలు

- (1) అంకతేఢిలో ఉంటాయి
- (2) గుణత్రేఢిలో ఉంటాయి
- (3) వారాత్మక (శేఢిలో ఉంటాయి
- (4) అంక-గుణ(శేఢిలో ఉంటాయి

47. In a triangle ABC if
$$\frac{\cos A}{\alpha} = \frac{\cos B}{b} = \frac{\cos C}{c}$$
, then \triangle ABC is

- (1) Right-angled
- (2) Isosceles right-angled
- (3) Equilateral
- (4) Scalene

ఒక త్రభుజం ABC లో $\frac{\cos A}{a} = \frac{\cos B}{b} = \frac{\cos C}{c}$ అయితే అవ్పుడు \triangle ABC

- වංසම් ස් රා ං
- (2) నమద్విబాహు లంబకోణీయం
- (3) నమబాహు త్రభుజం
- (4) విషమబాహు (తిభుజం)

Г	1.1	-	÷
	T	×.	1
h	а.	,	d
	-		2
-	_	_	-

- **48.** The angle of elevation of a stationary cloud from a point 2500 m above a lake is 15° and from the same point the angle of depression of its reflection in the lake is 45° . The height (in meters) of the cloud above the lake, given that $\cot 15^{\circ} = 2 + \sqrt{3}$, is
 - జక సరస్సుకు 2500 మీటర్గ ఎత్తున్న ఒక బిందువు నుండి ఒక స్థిర మేఘవు ఊర్వకోడిం 15°, అదే బిందువు నుండి సరస్సులో ఆ మేఘవు (పరిబింబవు నిమ్మకోడిం 45°. $\cot 15^\circ = 2 + \sqrt{3}$ అని ఇస్తే, నరస్సు నుంచి ఆ మేఘవు ఎత్తు (మీటర్లలో) (1) 2500 (2) 2500 $\sqrt{2}$

(3) 2500√3 (4)	5000

- 50. If the vectors $\overline{i} 2x\overline{j} 3y\overline{k}$ and $\overline{i} + 3x\overline{j} + 2y\overline{k}$ are orthogonal to each other, then the locus of the point (x, y) is

(1) a circle	(2) an ellipse
--------------	----------------

(3) a parabola (4) a straight line

నదిశలు $\overline{i} = 2x\overline{j} = 3y\overline{k}$, $\overline{i} + 3x\overline{j} + 2y\overline{k}$ లు ఒక దాని కొకటి లంబంగా ఉంటే అవ్పుడు విందువు (x, y) యొక్క విందువధం

- ఒక వృత్తం
 (2) ఒక దీర్త వృత్తం
- (3) ఒక పరావలయం (4) ఒక సరశరేఖ

		D	E 2011
51.	For any vector \overline{r}	F.	
		$\overline{i}\times(\overline{r}\times\overline{i})+\overline{j}\times(\overline{r}\times\overline{j})+\overline{k}\times(\overline{r}\times\overline{j})$	$\overline{k}) =$
	ఏ నదశ ౯ కైనా		
		$\overline{i}\times(\overline{r}\times\overline{i})+\overline{j}\times(\overline{r}\times\overline{j})+\overline{k}\times(\overline{r}\times\overline{j})$	$\overline{k}) =$
	(1) 0	(2) 2 <i>r</i>	
	(3) 3 <i>F</i>	(4) 4 <i>F</i>	
	11 0 20 00 0	మధ్యగత రేఖ పొడవు	21-214814
	(1) $\sqrt{14}$ (3) $\sqrt{25}$	(2) $\sqrt{18}$ (4) $\sqrt{29}$	N.*
53.		(4) √29	
53.	(3) $\sqrt{25}$	(4) $\sqrt{29}$ 2 and the angle between \overline{a} a	
53.	(3) $\sqrt{25}$ If $ \overline{a} = 1, \overline{b} = 2$ $\{(\overline{a} + 3\overline{b}) \times (3\overline{a} - \overline{b})\}$	(4) $\sqrt{29}$ 2 and the angle between \overline{a} a	and $ar{b}$ is 120°, the
53.	(3) $\sqrt{25}$ If $ \overline{a} = 1, \overline{b} = 2$ $\{(\overline{a} + 3\overline{b}) \times (3\overline{a} - \overline{b})\}$	(4) $\sqrt{29}$ 2 and the angle between $\overline{a} = \overline{b}$	and $ar{b}$ is 120°, the

			D]			E 2011
54.			nd $\overline{w} = \overline{i} + 3\overline{k}$. If riple product $[\overline{u}]$		init vec	tor then t	he maxim
		$2\overline{l} + \overline{j} - \overline{k}, \overline{w} = \overline{l}$ ్క్ గరిష్ట విలువ	+ 3k్ అనుకోంది. బ	ఏదేని యూ	నిట్ నద్	రైతే, అదిశా(Beno (U V
	(1)	1	(2)	$\sqrt{10} + \sqrt{10}$	6		
	(3)	√59	(4)	$\sqrt{60}$			
	ముగ్గు		సమంది బాలురు, అ దృచ్చికంగా ఎన్నుక	ొంటే వారి	లో ఇద్ద	రు బాలుర	
	ఒక త ముగ్గు	రు పిల్లలను యా		ెంటే వారి 35		రు బాలుర	
	ఒక ల ముగ్గు ఉండే	రు పిల్లలను యా నంభావ్యత. 35	దృచ్చికంగా ఎన్ను!	ాంటే వారి <u>35</u> 38 35	లో ఇద్ద	రు బాలుర	
	ఒక త ముగ్గు ఉండే (1) (3) Sever	రు పిల్లలను యా నంభావ్యత. <u>35</u> 76 <u>7</u> 76 n white balls an	దృచ్చికంగా ఎన్ను (2) (4) d three black bal	ాంకు వారి <u>35</u> 38 <u>35</u> 72 Is are rand	ේ දෙයු ්	రు బాలుర 	ర, ఒద బా
56.	ఒక ఉ ముగ్గు ఉండే (1) (3) Sever proba	రు పిల్లలను యా నంభావ్యత. $\frac{35}{76}$ $\frac{7}{76}$ n white balls an ability that no t	దృచ్చికంగా ఎన్నుక (2) (4) d three black bal wo black balls ar	ాంకు వారి <u>35</u> 38 <u>35</u> 72 Is are rand e placed s	ල් දේ lomly a djacent	రు బాలుర 	స, ఒక బాం n a row. T
56.	ఒక ఉ ముగ్గు ఉండే (1) (3) Sever proba విడు	రు పిల్లలను యా నంభావ్యత. 35 76 7 76 n white balls an ability that no t తెల్ల బంతులు, మ	దృచ్చికంగా ఎన్నుక (2) (4) d three black bal wo black balls ar ూడు నల్లబంతులు	ాంశు వారి <u>35</u> 38 <u>35</u> 72 Is are rand e placed s యూదృచ్చికం	లో ఇద్ద kiomly a djacent	రు బాలుర Pranged i ly is వరనల్	ర, ఒక బాగ n a row. T అమర్చారు.
56.	ఒక ఉ ముగ్గు ఉండే (1) (3) Sever proba విడు	రు పిల్లలను యా నంభావ్యత. 35 76 7 76 n white balls an ability that no t తెల్ల బంతులు, మ	దృచ్చికంగా ఎన్నుక (2) (4) d three black bal wo black balls ar	ాంశు వారి <u>35</u> 38 <u>35</u> 72 Is are rand e placed s యూదృచ్చికం	లో ఇద్ద kiomly a djacent	రు బాలుర Pranged i ly is వరనల్	ర, ఒక బాగ n a row. T అమర్చారు.

		Я		D			E :	2011 D
57.	Let A and B and $P(A \cup B)$			ourse of the second			(A) = 0.5, P(B)	3) = 0.4
	ఒక గాంపుల్	ఆచరణ	S 5° a	ఘటనల	5 A, B	20 P(A)	= 0.5, P(B)	= 0,4.
	$P(A \cup B) = 0$.6 అయ్యేట	్గన్నాయి.	800 1	కాదితాలు	గమనించ	oå :	
	List I (mode	(I •	L	ist II	(జాదితా	II)		
	(<i>i</i>) P(A ∩ J	3)		(<i>a</i>)	0.4			
	(<i>ii</i>) P(A ∩ j	B)		(b)	0.2		2.0	
	(iii) $P(\overline{A} \cap$	B)		(c)	0.3		Go.W.	
	(iv) $P(\overline{A} \cap$	Ē)		(d)	0.1		3,4	
	The correct m	atch of Li	st I from	n List	II is			
	జాబితా II నుం	చి జాబిలా	IS a	రరియెన	88		: 10 / al	
	<i>(i)</i>	(<i>ii</i>)	(iii)	(<i>iv</i>)			PTP	1.3
	(1) (a)	(b)	(c)	(d)			104	83
	(2) (c)	(b) -	(d)	(a)			(Care)	1
	(3) (c)	(b)	(<i>a</i>)	(<i>d</i>)				
	(4) (c)	(<i>a</i>)	(b)	(<i>d</i>)				

58. The probability distribution of a random variable X is given below : ఒక యాదృచ్చిక చలరాశి X నంభావ్యతా విభాజనం కిందనీయబడింది :

X = x	0	1	2	3
D/V - w	1	2	3	4
$\Gamma(\Delta = x)$	10	10	10	10

Then the variance of X is

అప్పుడు X	ವಿಸ್ತೃತಿ		
(1) 1		(2)	2
(3) 3		(4)	4

E 2011 D

59. The probability that an individual suffers a bad reaction from an injection is 0.001. The probability that out of 2000 individuals exactly three will suffer bad reaction is

ఒక ఇంజక్షన్ తీసుకొన్నవారిలో ఒక వ్యక్తి చెడు (వతిచర్య పొందే నంభావ్యత 0.001. ఆ ఇంజక్షన్ తీసుకొన్న 2000 మందిలో నరిగ్గా ముగ్గురు మాత్రమే చెడు (పతిచర్య పొందే నంభావ్యత

gó	$\frac{1}{e^2}$	(2)	$\frac{2}{3e^2}$
(3)	$\frac{8}{3e^2}$	(4)	$\frac{4}{3e^2}$

60. The locus of a point such that the sum of its distances from the points (0, 2) and (0, -2) is 6, is
 Dochajeu (0, 2), (0, -2) e べっこ たっつっ こいろっ 6 さまうざい みっさ たったよう でいちょ たったよう こいちょう たいちょう (1) タx² - 5y² = 45

14/ 1	DL = DY = 4D	(2) ou + oy = 40
(3)	$9x^2 + 5y^2 = 45$	$(4) 5x^2 - 9y^2 = 45$

61. The number of points P(x, y) with natural numbers as coordinates that lie inside the quadrilateral formed by the lines 2x + y = 2, x = 0, y = 0 and x + y = 5 is Sovode 2x + y = 2, x = 0, y = 0, x + y = 5 velote 2 v

E 2011 D

62. The image of the point (3, 8) in the line x + 3y = 7 is

నరశరేఖ x + 3y = 7 లో బిందువు (3, 8) [వతిబింబం

$$(1, 4) (2) (4, 1)$$

$$(3) \quad (-1, -4) \qquad (4) \quad (-4, -1)$$

63. The line joining the points A(2, 0) and B(3, 1) is rotated through an angle of 45°, about A in the anticlockwise direction. The coordinates of B in the new position

బిందువులు A(2, 0), B(3, 1) లను కలెప్ రేఖను, అమ్రదక్షిణ దిళలో A పై 45° కోణంతో వరిభామణం చేశారు 15ొత్త స్థానంలో B నిరూపకాలు

(1)	$(2,\sqrt{2})$	(2)	$\left(\sqrt{2},2\right)$
(3)	(2, 2)	(4)	$\left(\sqrt{2},\sqrt{2}\right)$

64. If one of the lines in the pair of straight lines given by $4x^2 + 6xy + ky^2 = 0$ bisects the angle between the coordinate axes, then $k \in$

 $4x^2 + 6xy + ky^2 = 0$ నూచించే నరళరేఖా యుగ్మంలో ఒక రేఖ నిరూపకాక్షాల మధ్య కోణాన్ని నమద్విఖండన చేస్తే అప్పుడు $k \in$

- $(1) \quad \{-2, -10\} \qquad (2) \quad \{-2, 10\}$
- (3) [-10, 2] (4) {2, 10}

Rough Work

Ċ

E 2011 D D If $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ represents a pair of parallel lines then 65. $\sqrt{\frac{g^2 - ac}{f^2 - bc}} =$ $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ ఒక నమాంతర రేఖాయుగ్మాన్ని సూచిస్తే. అప్పుడు $\sqrt{\frac{g^2 - ac}{f^2 - bc}} =$ (2) $\sqrt{\frac{a}{b}}$ $\frac{a}{b}$ (1) $\sqrt{\frac{b}{a}}$ (4) <u>b</u> (3)If s and p are respectively the sum and the product of the slopes of the lines 66. $3x^2 - 2xy - 15y^2 = 0$, then s : p = $3x^2 - 2xy - 15y^2 = 0$ నూచించే నరళరేఖల వాలుల మొత్తం, వాలుల లబ్దం వరనగా s, p 23 s : p = (2) 2:3 (1) 4:3 (3) 3:5 (4) 3:4

E 2011 D

68. A line segment AM = a moves in the XOY plane such that AM is parallel to the X-axis. If A moves along the circle $x^2 + y^2 = a^2$, then the locus of M is εs δφ-φοσο AM = a, XOY συοσ⁶ λυχωράν X-ωχωβδ κανοσσον σουν σωυσ⁶οώ, φοωσ⁶ A ωδά α<u>λό</u>ο $x^2 + y^2 = a^2$ σου σωθδ M δοωσο (1) $x^2 + y^2 = 4a^2$ (2) $x^2 + y^2 = 2ax$ (3) $x^2 + y^2 = 2ay$ (4) $x^2 + y^2 = 2ax + 2ay$

69. If the lines 3x + 4y - 14 = 0 and 6x + 8y + 7 = 0 are both tangents to a circle, then its radius is నరళరేఖలు 3x + 4y - 14 = 0, 6x + 8y + 7 = 0 లා ටංదూ ఒక వృత్తానికి స్పర్శ రేఖలైకే. దాని వార్టసారం

(1) 7
(2) 7/2
(3) 7/4
(4) 7/6

- 70. If the circle $x^2 + y^2 + 8x 4y + c = 0$ touches the circle $x^2 + y^2 + 2x + 4y$

 -11 = 0 externally and cuts the circle $x^2 + y^2 6x + 8y + k = 0$ orthogonally

 then k =

 $z_0 \leq o \ x^2 + y^2 + 8x 4y + c = 0$
 $z_0 \leq o \ x^2 + y^2 + 8x 4y + c = 0$
 $z_0 \leq o \ x^2 + y^2 + 8x 4y + c = 0$
 $z_0 \leq o \ x^2 + y^2 + 2x + 4y 11 = 0$
 $z_0 \approx z_0 = z_0$
 $z_0 = z_0$
 - (3) 19 (4) -19

1P-10

E 2011 D 71. The point of contact of the circles $x^2 + y^2 + 2x + 2y + 1 = 0$ and $x^{2} + y^{2} - 2x + 2y + 1 = 0$ is వృత్తాలు $x^2 + y^2 + 2x + 2y + 1 = 0, x^2 + y^2 - 2x + 2y + 1 = 0 ల ఉమ్మడి స్పర్శ$ బిందువు (1) (0, 1)(3) (1, 0) If a chord of the parabola $y^2 = 4x$ passes through its focus and makes an angle 72. θ with the X-axis, then its length is పరావలయం $y^2 = 4x$ యొక్క ఒక జ్యా దాని నాభిగుండా పోతూ, X-అక్రంతో 0 కోడం చేస్తే ఆ జ్యూ పొడవు $(1) \neq 4 \cos^2 \theta$ (2) $4 \sin^2 \theta$ 4 $cosec^2 0$ (4) 4 $\sec^2 \theta$ (3) If the straight line y = mx + c is parallel to the axis of the parabola $y^2 = lx$ 73. and intersects the parabola at $\left(\frac{c^2}{8}, c\right)$ then the length of the latus rectum is నరశరేఖ y = mx + c, మరావలయం $y^2 = lx$ యొక్క అక్షానికి నమాంతరంగా ఉంటూ. వరావలయాన్ని $\left(rac{c^2}{8}, c\right)$ వద్ద ఖండి స్తే అవ్పుడు నాభి లంబవు పొడవు (1) 2 (2)3 (3) (4) 8 4 **Rough Work**

E 2011 D D The eccentricity of the ellipse $x^2 + 4y^2 + 2x + 16y + 13 = 0$ is 74. దీర్హవృత్తం $x^2 + 4y^2 + 2x + 16y + 13 = 0$ ఉత్యేందత (1) $\frac{\sqrt{3}}{2}$ $(2) \frac{1}{2}$ (4) 1/2 $\frac{1}{\sqrt{3}}$ (3) The angle between the asymptotes of the hyperbola $x^2 - 3y^2 = 3$ is 75. అతిపరావలయం x^2 - $3y^2$ = 3 యొక్క అనంతన్ఫర్మరేఖల మధ్య కోణం (1) $\frac{\pi}{6}$ (2) $\frac{\pi}{4}$ $\frac{\pi}{3}$ $(4) \frac{\pi}{2}$ (3) The polar equation of the line perpendicular to the line $\sin \theta - \cos \theta = \frac{1}{r}$ and 76. passing through the point $\left(2, \frac{\pi}{6}\right)$ is నరశరేఖ $\sin \theta - \cos \theta = \frac{1}{r}$ కి లంబంగా ఉంటూ బిందువు $\left(2, \frac{\pi}{6}\right)$ ద్వారా పోతూ ఉండే నరళరేఖ ద్రువ సమీకరణం (1) $\sin \theta + \cos \theta = \frac{\sqrt{3}+1}{r}$ (2) $\sin \theta - \cos \theta = \frac{\sqrt{3}+1}{r}$ (3) $\sin \theta + \cos \theta = \frac{\sqrt{3} - 1}{r}$ (4) $\cos \theta - \sin \theta = \frac{\sqrt{3}}{r}$ **Rough Work**

		D	E 20
77.	The ratio in which the line	joining (2, -4, 3) and (-4, 5,	-6) is divided by
	plane $3x + 2y + z - 4 = 0$	is	
	(2, -4, 3), (-4, 5, -6) లను	కల్పే రేఖను సమతలం 3x + 2y	+z-4=0 ac
	నిచ్చత్తి		
	(1) 2:1	(2) 4 : 3	
	(3) -1 : 4	(4) 2:3	
78.	If the angles made by a str	aight line with the coordinate	axes are $\alpha = \frac{\pi}{\alpha}$
	then $\beta =$	"But mus have not shot direction	2
		π	-
	ra 2010a vor 22.08.	చేసే రోజాలు $\alpha, \frac{\pi}{2} - \alpha, \beta$ అం	wa β =
	(1) 0	(2) $\frac{\pi}{6}$	
		6	
	(3) $\frac{\pi}{2}$	(4) π	
79.	A plana pageog through (9, 2	-1) and is perpendicular to the	line having dire
10.		dicular distance from the orig	
		incular distance from the one	
		-1) దాందా పోతూ దిక్ నివాతు	en 34. 7 de
	ఒక నమతలం బిందువు (2, 3,	-1) ద్వారా పోతూ, దిక్ నివృత్త మూలబిందువు నుండి ఈ నిం	
	ఒక నమతలం బిందువు (2, 3,	-1) ద్వారా పోతూ, దిక్ నివ్పత్త మూలబిందువు నుండి ఈ నశ 5	
	ఒక నమతలం బిందువు (2, 3,		
	ఒక నమతలం విందువు (2, 3, నరళ రేఖకు లంబంగా ఉంది. (1) <u>3</u> √74	మూలబిందువు నుండి ఈ నం (2) <u>5</u> √74	
	ఒక నమతలం విందువు (2, 3, నరళ రేఖకు లంబంగా ఉంది. 3	మూలబిందువు నుండి ఈ నశ 5	
80.	ఒక నమతలం విందువు (2, 3, నరళ రేఖకు లంబంగా ఉంది. (1) <u>3</u> (3) <u>6</u> $\sqrt{74}$	మూలబిందువు నుండి ఈ నవ (2) $\frac{5}{\sqrt{74}}$ (4) $\frac{13}{\sqrt{74}}$	పతలవు లంబ ద
80.	ఒక నమతలం పిందువు (2, 3, నరళ రేఖకు లంబంగా ఉంది. (1) $\frac{3}{\sqrt{74}}$ (3) $\frac{6}{\sqrt{74}}$ The radius of the circle give	మూలబిందువు నుండి ఈ నం (2) <u>5</u> √74	పతలవు లంబ ద
80.	జక నమతలం బిందువు (2, 3, నరళ రేఖకు లంబంగా ఉంది. (1) $\frac{3}{\sqrt{74}}$ (3) $\frac{6}{\sqrt{74}}$ The radius of the circle giv x + 2y + 2z + 7, is	మూలబిందువు నుండి ఈ నచ (2) $\frac{5}{\sqrt{74}}$ (4) $\frac{13}{\sqrt{74}}$ ven by $x^2 + y^2 + z^2 + 2x - 1$	పతలవు లంబ ద 2y – 4z – 19 =
80.	జక నమతలం బిందువు (2, 3, నరళ రేఖకు లంబంగా ఉంది. (1) $\frac{3}{\sqrt{74}}$ (3) $\frac{6}{\sqrt{74}}$ The radius of the circle giv x + 2y + 2z + 7, is	మూలబిందువు నుండి ఈ నవ (2) $\frac{5}{\sqrt{74}}$ (4) $\frac{13}{\sqrt{74}}$	పతలవు లంబ ద 2y – 4z – 19 =

In the second se	25.000	
44	Th	
18	~	
184	_	

PHYSICS

81. Two photons of energy 2.5 eV and 3.5 eV fall on a metal surface of work function 1.5 eV. The ratio of the maximum velocities of the photoelectrons emitted from the metal surface is :

2.5 eV మరియు 3.5 eV శర్తిగల రెండు ఫోటాన్లు 1.5 eV పని (పమేయంగల లో హతలంపై పతవం చెందినవి. లో హతలంపై నుండి వెలువడే కాంతి ఎలక్రానుల గరిష వేగాల నిష్పత్రి:

(1)	1:4	(2) 2:1	
(3)	1:2	(4) 1: √2	

82. Calculate the wavelength of the k_{α} line for z = 31 when $a = 5 \times 10^7 \text{ Hz}^{1/2}$ for a characteristic X-ray spectrum. $z = 31, a = 5 \times 10^7 \text{ Hz}^{1/2}$ అయిన ఒక జఫీలక్షడ X-కిరణ వర్ధవటంలో ని k_{α} దేఖ యొక్క తరంగదైరాజ్రవ్వ గణించంది.

(1)	1.33 Å	(2)	1.33 nm
	10		

- (3) 133×10^{-10} m (4) 133 nm
- 83. If 200 MeV of energy is released in the fission of one nucleus of ²³⁶/₉₂U, the number of nuclei that must undergo fission to release an energy of 1000 J is :

ఒక ²³⁵ U కేంద్రం ఏచ్చికి చెందినవుడు విడుదలయ్యే శక్తి 200 MeV అయిజే 1000 J

- శక్తి విడుదలచేయుటకు ఎన్ని కేందరాలు విచ్చిత్రికి లోనుకాచలెను?
- (1) 3.125×10^{13} (2) 6.25×10^{13}
- (3) 12.5×10^{13} (4) 3.125×10^{14}

Rough Work

		D	E 20
84.	potential is 0.3 V. The	he thickness of depletion layer is 2 × intensity of the electric field at th	10 ⁻⁶ m and br
	(1) $0.6 \times 10^{-6} \text{ Vm}^{-1}$	from n to P side	
	(2) $0.6 \times 10^{-6} \text{ Vm}^{-1}$	from P to n side	
	(3) $1.5 \times 10^5 \text{ Vm}^{-1} \text{ fm}^{-1}$		
	(4) $1.5 \times 10^5 \text{ Vm}^{-1} \text{ fm}$	om P to n side	
	68 p-n 200 aams Etti s	ింద మందం $2 \times 10^{-6} { m m}$ మరియు అవద్ $^6 \phi$	పాపినియల్ 0.3
	ఈన్నది. అయిన నంధి వద వ (1) 0.6 × 10 ⁻⁶ Vm ⁻¹ /	దుర్రత్ కైట్ తిప్రత :	
	(1) $0.6 \times 10^{-6} \text{ Vm}^{-1}$ / (2) $0.6 \times 10^{-6} \text{ Vm}^{-1}$ I	1 Anod P 更高的。	
	(3) $1.5 \times 10^5 \text{ Vm}^{-1} n$	్ మండి గి వైపుకు	
	(4) $1.5 \times 10^{5} \text{ Vm}^{-1} \text{ P}$	1000 P 2000	
20			
85.	The dimensional formul	a of $\frac{1}{2}$ $\mu_0 H^2$ (μ_0 – Permeability	of free space
85.	The dimensional formul H-magnetic field intensit $\frac{1}{2} \mu_0 H^2$ and the field intensit $\frac{1}{2} \beta_0 H^2$ and the field intensit $\beta_0 H^2$ and	a of $\frac{1}{2}$ $\mu_0 H^2$ (μ_0 - Permeability y) is : కము (μ_0 - ేస్టాల్లా (పదేశ (పదేశ్యశీలత	
85.	The dimensional formul H-magnetic field intensit $\frac{1}{2} \mu_0 H^2$ and intensit \hat{D}_{1} and intensit \hat{D}_{2} and intensit \hat{D}_{3} and intensit \hat{D}_{3} and intensit \hat{D}_{1} and \hat{D}_{2} and \hat{D}_{3} \hat{D}_{3} and \hat{D}_{3} and \hat{D}_{3} \hat{D}_{3} and \hat{D}_{3} and \hat{D}_{3} \hat{D}_{3} and \hat{D}_{3} and \hat{D}_{3} and \hat{D}_{3} and \hat{D}_{3} \hat{D}_{3} and \hat{D}_{3} and	a of $\frac{1}{2}$ $\mu_0 H^2$ (μ_0 - Permeability y) is : కము (μ_0 - ేస్టాల్లా (పదేశ (పదేశ్యశీలత	
85.	The dimensional formul H-magnetic field intensit $\frac{1}{2} \mu_0 H^2$ and the field intensit $\frac{1}{2} \beta_0 H^2$ and the field intensit $\beta_0 H^2$ and	a of $\frac{1}{2} \mu_0 H^2 (\mu_0 - Permeability y)$ is :	
85.	The dimensional formul H-magnetic field intensit $\frac{1}{2} \mu_0 H^2$ (Los), and μ_0 $\hat{D}_{2}(SS)$: (1) MLT ⁻¹ (3) ML ⁻¹ T ⁻²	a of $\frac{1}{2} \mu_0 H^2 (\mu_0 - Permeability$ y) is : Sau $(\mu_0 - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j$	H-కయహ్యెంత
-	The dimensional formul H-magnetic field intensit $\frac{1}{2} \mu_0 H^2$ (ALT ⁻¹ (3) MLT ⁻¹ A certain vector in the xy	a of $\frac{1}{2} \mu_0 H^2 (\mu_0 - Permeability$ y) is : Sau $(\mu_0 - \frac{1}{2} \sqrt{2} \sqrt{2})$ [Sat (Sat) (2) $ML^2 T^{-2}$ (4) $ML^2 T^{-1}$ plane has an x component of 4 m a	H-schiltyca
-	The dimensional formul H-magnetic field intensit $\frac{1}{2} \mu_0 H^2$ dias, is it is $\hat{a}_{(SS)}$: (1) MLT ⁻¹ (3) ML ⁻¹ T ⁻² A cortain vector in the xy of 10 m. It is then rotate	a of $\frac{1}{2} \mu_0 H^2 (\mu_0 - Permeability$ y) is : Sau $(\mu_0 - \frac{1}{2} \chi \pi_0)$ (255 (255)) (2) ML ² T ⁻² (4) ML ² T ⁻¹ plane has an x component of 4 m a d in the xy plane so that its x-comp	H-schiltyca
-	The dimensional formul H-magnetic field intensit $\frac{1}{2} \mu_0 H^2$ (ALT ⁻¹ (3) MLT ⁻¹ A certain vector in the xy	a of $\frac{1}{2} \mu_0 H^2 (\mu_0 - Permeability$ y) is : Sau $(\mu_0 - \frac{1}{2} \chi \pi_0)$ (255 (255)) (2) ML ² T ⁻² (4) ML ² T ⁻¹ plane has an x component of 4 m a d in the xy plane so that its x-comp	H-schiltyca
86,	The dimensional formul H-magnetic field intensit $\frac{1}{2} \mu_0 H^2$ (JUS), (DS (JFR)) $\hat{\sigma}_{(SS)}$: (1) MLT ⁻¹ (3) ML ⁻¹ T ⁻² A certain vector in the xy of 10 m. It is then rotate Then its new y component	a of $\frac{1}{2} \mu_0 H^2 (\mu_0 - Permeability$ y) is : Sau $(\mu_0 - \frac{1}{2} \sqrt{2} \sqrt{2})$ (2024 (2024) (2) ML ² T ⁻² (4) ML ² T ⁻¹ plane has an x component of 4 m a d in the xy plane so that its x-comp at is (approximately) :	H-కయహ్యేంత ind a y compos
86.	The dimensional formul H-magnetic field intensit 1/2 μ ₀ H ² σωσ ₃ , ωσ ωσ ₁ g δ(SS) : (1) MLT ⁻¹ (3) ML ⁻¹ T ⁻² A cortain vector in the xy of 10 m. It is then rotate Then its new y component (1) 20 m (3) 5.0 m xy 60 Δxe ⁻⁶ Ω as 364 σ	a of $\frac{1}{2}$ $\mu_0 H^2$ (μ_0 - Permeability y) is : Sau (μ_0 - $\frac{1}{\sqrt{2}}$ μ_0^2 (μ_0^2 - $\frac{1}{\sqrt{2}}$) μ_0^2 (μ_0^2 - $\frac{1}{\sqrt{2}}$) (2) ML ² T ⁻² (4) ML ² T ⁻¹ plane has an x component of 4 m s d in the xy plane so that its x-comp at is (approximately) : (2) 7.2 m (4) 4.5 m μ_0^2 y movia 10 fm	H-schift _e od and a y composi ponent is doub
86.	The dimensional formul H-magnetic field intensit 1/2 μ ₀ H ² σωσ ₃ , ωσ ωσ ₁ g δ(SS) : (1) MLT ⁻¹ (3) ML ⁻¹ T ⁻² A cortain vector in the xy of 10 m. It is then rotate Then its new y component (1) 20 m (3) 5.0 m xy 60 Δxe ⁻⁶ Ω as 364 σ	a of $\frac{1}{2}$ $\mu_0 H^2$ (μ_0 - Permeability y) is : Sau (μ_0 - $\frac{1}{\sqrt{2}}$ μ_0^2 (μ_0^2 - $\frac{1}{\sqrt{2}}$) μ_0^2 (μ_0^2 - $\frac{1}{\sqrt{2}}$) (2) ML ² T ⁻² (4) ML ² T ⁻¹ plane has an x component of 4 m s d in the xy plane so that its x-comp at is (approximately) : (2) 7.2 m (4) 4.5 m μ_0^2 y movia 10 fm	H-schift _o od and a y compor ponent is doub
86.	The dimensional formul H-magnetic field intensit 1/2 μ ₀ H ² σωσ ₃ , ωσ ωσ ₁ g δ(SS) : (1) MLT ⁻¹ (3) ML ⁻¹ T ⁻² A cortain vector in the xy of 10 m. It is then rotate Then its new y component (1) 20 m (3) 5.0 m xy 60 Δxe ⁻⁶ Ω as 364 σ	a of $\frac{1}{2} \mu_0 H^2 (\mu_0 - Permeability$ y) is : Sau $(\mu_0 - \frac{1}{\sqrt{2}} \sqrt{2} \frac{1}{\sqrt{2}})$ [Sat (Sat) (2) ML ² T ⁻² (4) ML ² T ⁻¹ plane has an x component of 4 m a d in the xy plane so that its x-comp at is (approximately) : (2) 7.2 m (4) 4.5 m	H-schilt _g od and a y compor ponent is doul
86.	The dimensional formul H-magnetic field intensit $\frac{1}{2} \mu_0 H^2$ causy, and are $\theta_{(SS)}$: (1) MLT ⁻¹ (3) ML ⁻¹ T ⁻² A cortain vector in the xy of 10 m. It is then rotate Then its new y component (1) 20 m (3) 5.0 m sy Scanet a sat at $\theta_{a} \circ \theta_{b} = \theta_{a}^{2} \circ \theta_{b}$, $\theta_{b} \circ \theta_{b} = \theta_{b}^{2} \circ \theta_{b}$	a of $\frac{1}{2}$ $\mu_0 H^2$ (μ_0 - Permeability y) is : Sau (μ_0 - π_2 μ_0 (μ_0^2) (μ_0^2 μ_0^2) (μ_0^2 μ_0^2) (2) ML ² T ⁻² (4) ML ² T ⁻¹ plane has an x component of 4 m s d in the xy plane so that its x-comp at is (approximately) : (2) 7.2 m (4) 4.5 m (5) x cottain 4 flue, y cottain 10 flue	H-schilt _g od and a y compor ponent is doul

87. A police party is moving in a jeep at a constant speed v. They saw a thief at a distance x on a motorcycle which is at rest. The moment the police saw the thief, the thief started at constant acceleration x. Which of the following relations is true if the police is able to catch the thief ?

ఒక జీవులో V నమవేగముతో చెలించుచున్న పోలీసులు x దూరములో నిశ్చల స్థితలోనున్న మోటరు సైకిల్పై ఉన్న ఒక దొంగను దూశారు. పోలీసులు చూసిన వెంటనే దొంగ a నమత్వరణముతో పొరిపోయారు. పోలీసులు ఆ దొంగను వట్లకొనినట్లయితే డ్రింది నంబంధాలలో విది నరియైనది ? (1) v² < ax -(2) v² < 2ax

- (1) $v^2 \ge 2\alpha x$ (4) $v^2 = \alpha x$
- 88. A 1 N pendulum bob is held at an angle 9 from the vertical by a 2 N horizontal force F as shown in the figure. The tension in the string supporting the pendulum bob (in Newtons) is

ఒక $1 \ N$ లోలకవు గుండును, $2 \ N$ పెలువగల \overline{F} అనే క్రీతిజ సమాంతర బలము ద్వారా నిలువుతలముతో $0 \ s$ ో ఉము చేయునట్లు (తటములో చూపినట్ల) ఉంచబడినది. లోలకవు తీగలో గల తన్యత (మ్యాటన్లలో) :

Rough Work

(1)

(3)

Sector Sector Sector

89. The maximum tension a rope can withstand is 60 kg wt. The ratio of maximum acceleration with which two boys of masses 20 kg and 30 kg can climb up the rope at the same time is :

దర తాడు తట్టుకోదరిగిన గరిష్ట తన్యత 60 kg wt. 20 kg మరియు 30 kg ద్రవ్యరాకులు గల ఇద్దరు బాలురు ఎకేసారి తాడు మీదరు పొఠుచున్న, వారి గరిష్ట త్వరణాల నివృత్తి: (1) 1:2 (2) 2:1 (3) 4:3 (4) 3:2

90. A ball is let fall from a beight h_0 . It makes n collisions with the earth. After 'n' collisions it rebounds with a velocity ' v_n ' and the ball rises to a height h_n , then coefficient of restitution is given by :

h₀ ఎత్తు నుండి ఒక బంతి (కిందపడునట్లు చేయబడినది, అది దూమితో n అభిభూతాలు చేసినది. 'n' అభిభూతాల తరువాత వేగము 'v_n' తో అది పైకి లేచింది మరియు ఆ బంతి h_n ఎత్తుకు ఎగిరినచో (వత్యావ్యస్తాన గుణకము :

(1)
$$v = \left[\frac{h_n}{h_0}\right]^{1/2n}$$

(2) $v = \left[\frac{h_0}{h_n}\right]^{1/2n}$
(3) $v = \frac{1}{n}\sqrt{\frac{h_n}{h_0}}$
(4) $v = \frac{1}{n}\sqrt{\frac{h_0}{h_n}}$

91. A circular disc of radius 'R' is removed from a bigger circular disc of radius '2R' such that the circumferences of the discs touch. The centre of mass of the new disc is at a distance 'αR' from the centre of the bigger disc. The value of 'α' is.

R' వ్యాసార్థము గల ఒక వృత్తార దిర్శను '2R' వ్యాసార్థము గల ఒక పొద్ద దిళ్ళ నుండి వాచి పరిధులు లారునట్లు తొలగించినారు. పొద్ద దిళ్ళ కేంద్రము నుండి కొత్త దిళ్ళ యొక్క ద్రవ్య స్థారం ' $\alpha R'$ అయిన 'జీ విలువ :

(1)	$\frac{1}{2}$	(2)	$\frac{1}{3}$
(3)	$\frac{1}{4}$	(4)	$\frac{1}{6}$

- 92. A uniform chain of length L is lying on the horizontal table. If the coefficient of friction between the chain and the table top is 'µ', what is the maximum length of the chain that can hang over the edge of the table without disturbing the rest of the chain on the table ?
 - L పొడవు గల ఒక ఏకరీతె గోలును క్రితిజ నమాంతర బల్లపై నున్నది. గొలును మరియు బల్లపై భాగముల మధ్య భుర్తణ గుణకము 'µ' అయిన, బల్లపై గల మిగిలిన గొలును స్థితిని మార్చకుండా, బల్ల అంచు నుండి (వేలాడవలసిన గొలును గరిష పొడవ) ఎంత?

145	L	100	piL.	
(1)	$\overline{(1 + \mu)}$	(2)	$(1 + \mu)$	
	L		μL	
(3)	$(1 - \mu)$	(4)	$\frac{\mu L}{(1-\mu)}$	

93. Two uniform circular discs having the same mass and the same thickness but different radii are made from different materials. The disc with the smaller rotational inertia is :

(1) the one made from the more dense material

(2) the one made from the less dense material

(3) the disc with the larger angular velocity

(4) the disc with the larger torque

ఒకే దవ్యరాళ్ ఒకే మందము గల రెండు పరరీతి వృత్తాకార బిళ్ళలు విధిన్న పదార్శాలతో చేయటడినవి. కాని వాటి వ్యాసార్తములు చేరు. తక్కువ జడత్వ (భామకము గల బిళ్ళ:

(1) ఎక్కువ సాందత గల వదారముతో చేయబడినది

(2) తక్కువ సాందత గల వదారముతో చేయబడినది

- (3) ఎక్కువ కోజీయ వేగము గల దిళ్ళ
- (4) ఎక్కువ బలభూచుకము (భార్క్) గల దిళ్ళ

When the sphere rolls with a velocity 'v', kinetic energy of the system is (neg friction) : 'm' (దవ్వరాశి గల ఒక పలుచని బోలు గోకము 'm' (దవ్వరాశి గల (దవముతో పూ			D E 2011		
 'm' దవ్యరాశి గల ఒక కలునని లోలు గోళము 'm' దవ్యరాశి గల దవమంతో ప్రా సంఫటడినది, గోళము 'ల వేగముతో దోర్పుచున్న, ఆ వ్యవస్త గతిజ శక్తి (పురణచ పరిగడిం తిడు). (1) ¹/₂ me² (2) me² (3) ⁴/₃ me² (4) ⁴/₅ me² 95. Assertion (A) : An astronaut inside a massive spaceship orbiting around earth will experience a finite but small gravitational for Reason (R) : The centripotal force necessary to keep the spaceship in a around the earth is provided by the gravitational force betwee the earth and the spaceship. (1) Both (A) and (R) are true and (R) is the correct explanation of (A) (2) Both (A) and (R) are true and (R) is not the correct explanation of (3) (A) is true but (R) is not true (4) (A) is not true but (R) is not true (5) Assertion (R) : constrain solution of (3) (A) is not true but (R) is true (4) (A) is not true but (R) is not true (5) Both (A) and (R) are true and (R) is not the correct explanation of (3) (A) is true but (R) is not true (4) (A) is not true but (R) is true (5) Solution (R) : weekely stocking a state stat	94.	A thin hollow sphere of mass 'm' is completely filled with a liquid of mass 'n When the sphere rolls with a velocity 'v', kinetic energy of the system is (negle friction) : 'm' దవ్వరాశి గట ఒక పలుచని బోలు గోళము 'm' దవ్వరాశి గల దవముతో పూర్తి నింపలడినది. గోళము 'v' వేగముతో దొర్పుచున్న, ఆ వ్యవస్థ గతిజ శక్తి (ఘరణను వరిగడించ			
 95. Assertion (A) : An astronaut inside a massive spaceship orbiting around earth will experience a finite but small gravitational for Reason (R) : The centripetal force necessary to keep the spaceship in a around the earth is provided by the gravitational force betwee the earth and the spaceship. (1) Both (A) and (R) are true and (R) is the correct explanation of (A) (2) Both (A) and (R) are true and (R) is not the correct explanation of (A) (3) (A) is true but (R) is not true (4) (A) is not true but (R) is not true (5) (A) is not true but (R) is not true (6) (A) is not true but (R) is not true (7) (A) is not true but (R) is not true (8) (2) solate etal around a star algebra wordy etal around a star algebra wordy. (1) (A) algebra (R) doctor star algebra (A) to (R) algebra algebra around a star algebra (R) doctor around algebra around a star algebra around a star algebra (R) algebra around a star algebra around a star algebra around a star algebra (R) algebra around a star algebra around a star algebra (R) algebra (R) doctor around a star algebra around a star algebra (R) algebra (R) algebra around a star around a star around a star algebra (R) algebra (R)					
 95. Assertion (A) : An astronaut inside a massive spaceship orbiting around earth will experience a finite but small gravitational for Reason (R) : The centripetal force necessary to keep the spaceship in a around the earth is provided by the gravitational force betwee the earth and the spaceship. (1) Both (A) and (R) are true and (R) is the correct explanation of (A) (2) Both (A) and (R) are true and (R) is not the correct explanation of (3) (A) is true but (R) is not true (4) (A) is not true but (R) is not true (5) (A) is not true but (R) is not true (6) (A) is not true but (R) is true (7) (A) is not true but (R) is not true (8) (2) Easily a fixed stage alogsized sublicity excepts and alogsize sublicity of a stage of the st		(1) $\frac{1}{2} mv^2$	(2) mv^2		
earth will experience a finite but small gravitational for Reason (R) : The centripetal force necessary to keep the spaceship in a around the earth is provided by the gravitational force betw the earth and the spaceship. (1) Both (A) and (R) are true and (R) is the correct explanation of (A (2) Both (A) and (R) are true and (R) is not the correct explanation of (3) (A) is true but (R) is not true (4) (A) is not true but (R) is not true (4) (A) is not true but (R) is true సిళ్ళితము (A) : దూమి దుట్టా పరిశ్రమించుదున్న అదుదైన అంతరిక్ష సౌకలో గల వ్యేమం వరిమిత తక్కువ గురుత్నాకర్నం ఒలాన్ని అనుధూత చెందువు. కారణము (R) : అంతరిక్ష సౌకరు భూమిచుట్టా కర్షక్షలో వుంచుకుకు అవనరమైన కారితే బలాన్ని, భూమి మరియు అంతరిక్ష సౌక మధ్య గల గురుత్నాక బలాన్ని, భూమి మరియు అంతరిక్ష సౌక మధ్య గల గురుత్నాక బలం సమకూరున్నంది. (1) (A) మరియు (R) రెండూ సరిమైనవి (A) కు (R) సరియైన వివరణ (2) (A) మరియు (R) రెండూ సరిమైనవి (A) కు (R) సరియైన వివరణ కాద (3) (A) నిరియైనది, కాని (R) సరియైనది కాదు		(3) $\frac{4}{3} mv^2$	(4) $\frac{4}{5}mv^2$		
 Reason (R): The centripetal force necessary to keep the spaceship in a around the earth is provided by the gravitational force between the earth and the spaceship. (1) Both (A) and (R) are true and (R) is the correct explanation of (A) (A) and (R) are true and (R) is not the correct explanation of (3) (A) is true but (R) is not true (4) (A) is not true but (R) is not true (4) (A) is not true but (R) is true (5) (A) is not true but (R) is true (6) (A) is not true but (R) is true (7) (A) is not true but (R) is true (8) (A): crail wear solid works and solid works and statistic solid explored a correly where a domain a solid explored work and statistic solid explored works and statistic solid explored works and statistic solid explored. (1) (A) with (R) to day statistical (A) to (R) with a statistic solid solid (A) with (R) to day statistical (A) to (R) with a statistic solid (A) with (R) to day statistical (A) to (R) with (R) to day statistical (A) to (R) with a statistic solid (A) with (R) to day statistical (A) to (R) with a statistic solid (A) with (R) to day statistical (A) to (R) with (R) with (R) to day statistical (A) to (R) with (R) with (R) to day statistical (A) to (R) with (R) with (R) to day statistical (A) to (R) with (R) with	95.				
 (1) Both (A) and (B) are true and (B) is the correct explanation of (A) (2) Both (A) and (B) are true and (B) is not the correct explanation of (3) (A) is true but (B) is not true (4) (A) is not true but (B) is true (3) (A) is not true but (B) is true (4) (A) is not true but (B) is true (5) (A) is not true but (B) is true (4) (A) is not true but (B) is true (5) (A) is not true but (B) is true (6) (A) is not true but (B) is true (7) (A) is not true but (B) is true (8) (B) : කමෛරිදු సౌకగు భూమిచుద్ద్ద బదాన్ని అదంరిక సౌకరో గల వ్యోదందు (9) : කමෛරිදු సౌకగు భూమిచుద్దా కర్ష్యలో వుంచుడుకు అదనదిదమైన ఆధితే బలాన్ని, భూమి మరియు అంతరిక్ష సౌక మధ్య గల గుడుత్పార బలం సమకరారున్నంద. (1) (A) మరియు (B) రెండూ సరియైనపి (A) కు (B) పరియైన వివరణ (2) (A) మరియు (B) రెండూ సరియైనపి (A) కు (B) పరియైన వివరణ కాద (3) (A) నరియైనది, కాని (B) సరియైనది కాడు 		Reason (R) : The	centripetal force necessary to keep the spaceship in a		
 (4) (A) is not true but (R) is true సిళ్ళితము (A) : భూమి దుట్నా పరిభమించుదున్న బరువైన అంతరిక్ష సౌకలో గల వ్యోమం వరిమిత తక్కువ గురుత్వాకర్తం బలాన్ని అనుభూత చెందువు, కారణము (R) : అంతరిక్ష సౌకరు భూమిచుట్నా కక్ష్యలో వుంచుటరు అవనరమైన అధికే బలాన్ని, భూమి మరియు అంతరిక్ష సౌక మధ్య గల గురుత్వాత బలం సమకూరుస్తుంద. (1) (A) మరియు (R) రెండూ నరియైనపి (A) కు (R) పరియైన వివరణ (2) (A) మరియు (R) రెండూ నరియైనపి (A) కు (R) పరియైన చివరణ కాద (3) (A) నరియైనది. కాని (R) సరియైనది కాదు 			and the second		
వరిమిత తక్కువ గురుత్వాకర్తం బలాన్ని అనుభూత్ చెందువు. కారణము (R) : అంతరిక్ష నౌకను భూమిచుట్నా కక్ష్యలో వుంచుటరు అవనరమైన అధికే బలాన్ని, భూమి మరియు అంతరిక్ష నౌక మధ్య గల గురుత్వార బలం నెమకూరుస్తుంది. (1) (A) మరియు (R) రెండూ నరియైనషి (A) కు (R) పరియైన వివరణ (2) (A) మరియు (R) రెండూ నరియైనషి (A) కు (R) పరియైన వివరణ కాద (3) (A) నెరియైనది. కాని (R) సరియైనది కాదు		 Both (A) and (R) Both (A) and (R) 	earth and the spaceship. () are true and (\mathbf{R}) is the correct explanation of (A)) are true and (\mathbf{R}) is not the correct explanation of		
బలాన్ని, ధూమి మరియు అంతరిక నౌక మధ్య గల గురుత్రాక బలం నభుకూరుస్తుంది. (1) (A) మరియు (R) రెండూ నరియైనపి (A) కు (R) పరియైన వివరణ (2) (A) మరియు (R) రెండూ నరియైనపి (A) కు (R) నరియైన చివరణ కాద (3) (A) నరియైనది. కాని (R) సరియైనది కాదు		 Both (A) and (R) Both (A) and (R) (3) (A) is true but (A) 	earth and the spaceship. (1) are true and (\mathbf{R}) is the correct explanation of (A)) are true and (\mathbf{R}) is not the correct explanation of (\mathbf{R}) is not true		
 (1) (A) మరియు (R) రెండూ సరియైనషి (A) కు (R) సరియైన వివరణ (2) (A) మరియు (R) రెండూ సరియైనషి (A) కం (R) సరియైన వివరణ కాద (3) (A) నరియైనది. కాని (R) సరియైనది కాదు 		 Both (A) and (B) Both (A) and (B) Both (A) and (B) (A) is true but (B) (4) (A) is not true b බාණකා (A) : ආංඛා ය ක්‍රීකාම 	earth and the spaceship. () are true and (R) is the correct explanation of (A)) are true and (R) is not the correct explanation of (R) is not true out (R) is true రట్టూ పరిశ్రమించుదున్న అదువైన అంతరేక్త సౌకలో గల వ్యోమం కట్కువ గురుత్నాకర్షణ బలాన్ని అనుభూత్ చెందువు.		
(3) (A) నరియైనది. జాని (R) సరియైనడి జాదు		 Both (A) and (B) Both (A) and (B) Both (A) and (B) (A) is true but (B) (4) (A) is not true b බවුණකා (A) : ආංඛා ශ කර්ධාන් පාර්තකා (B) : කානේනු 	earth and the spaceship. () are true and (R) is the correct explanation of (A)) are true and (R) is not the correct explanation of (R) is not true out (R) is true ంట్లా పరిభమించుదున్న అదువైన అంతరెక్ష నౌకలో గల వ్యోమం ంట్లా పరిభమించుదున్న అదువైన అంతరెక్ష నౌకలో గల వ్యోమం తర్కువ గురుత్వాకర్షణ బలాన్ని అనుభూతి చెందువు. నౌకదు భూమిందుట్నా కక్ష్యలో వుంచుటరు అవనదమైన అధికే భూమి మరియు అంతరెక్ష నౌక మధ్య గల గురుత్వార		
		 Both (A) and (B) Both (A) and (B) Both (A) and (B) (A) is true but (B) (4) (A) is not true b බවුණකා (A) : ආංඛා ය කර්ධාන් පාර්තකා (B) : කරේන්න් කර්ධාන් 	earth and the spaceship. () are true and (R) is the correct explanation of (A)) are true and (R) is not the correct explanation of (R) is not true out (R) is true ంట్లా పరిభమించుదున్న అదువైన అంతరెక్ష సౌకలో గల వ్యోమం లట్నా పరిభమించుదున్న అదువైన అంతరెక్ష సౌకలో గల వ్యేమం నాకను భూమించుట్నా కక్ష్యలో వుంచుటరు అదనరమైన ఆధికే భూమి మరియు అంతరెక్ష సౌక మధ్య గల గురుత్చార వురూరుస్తుంది.		
(4) (A) వరియైనది కాదు, కాని (R) నరియైనది		 Both (A) and (R) Both (A) and (R) Both (A) and (R) (A) is true but (R) (4) (A) is not true b බවුණකා (A) : ආංඛා ය කර්ධාර (1) (A) ක්රීක්ක (R) 	earth and the spaceship. () are true and (R) is the correct explanation of (A)) are true and (R) is not the correct explanation of (R) is not true out (R) is true ంట్లా పరిభమించుదున్న అదువైన అంతరిక్ష సౌకలో గల వ్యోమం తక్కువ గురుత్వాకర్షణ బలాన్ని అనుభూత్ చెందువు. సౌకను భూమిందుద్దా కక్ష్యలో వుంచుటరు అవనదమైన ఆధికే భూమి మరియు అంతరిక్ష సౌక మధ్య గల గురుత్వాక బుకూరుస్తుంది. శెందూ నరియైనషి (A) కు (R) పరియైన వివరణ		
		 Both (A) and (R Both (A) and (R Both (A) and (R (A) is true but ((4) (A) is not true b බිමුෂකය (A) : ආංඛි ය ක්රීඩාජ 	earth and the spaceship. () are true and (R) is the correct explanation of (A)) are true and (R) is not the correct explanation of (R) is not true out (R) is true out (R) is true our adjation దున్న అదువైన అంతరిక్ల సౌకలో గల వ్యోమం తక్కువ గురుత్వాకర్షణ బలాన్ని అనుభూతి చెందువు. సౌకరు భూమిదుట్నా కక్ష్యలో వుంచుటరు అవనరమైన అధికే భూమి మరియు అంతరిక్ల సౌక మధ్య గల గురుత్వార వుకూరుస్తుంది. శెందూ నరియైనపి (A) కు (R) నరియైన వివరణ శెందూ నరియైనపి (A) కు (R) నరియైన వివరణ కార		

		D	E 2011		
96.	A simple harmonic oscilla	tor consists of a particle of mass	'm' and an ideal spri		
	with spring constant 'k'. T	The particle oscillates with a tim	e period T. The spri		
	is cut into two equal parts	s. If one part oscillates with the	same particle, the ti		
	period will be :				
	ఒక నరశ హారాత్మక దోజక	ం 'm' (దవ్యరాశ్ గల ఒక కణమున	ు మరియు జలస్త్రీరాంక		
	'శ' కెలిగిన ఒక ఆదర్శ గ్రహం	గుడు కలిగియున్నద. ఆ కణము T	్ దోలనానర్షన కాలము		
	రోలనాలు చేస్తుంది. ఆ (స్పి	ంగును రెండు నమాన ధాగములుగ	తేపినాడు. ఒక భాగ		
	అదే కడముతో డోలనాలు	పోస్తి, దోలనావర్తన కాలము :			
	(1) 2 T	(2) $\sqrt{2} T$			
	(3) T/ <u>√2</u>	(4) $\frac{T}{2}$			
97.		1 kg and 2 kg are connect	ted by a metal w		
	going over a smooth pulley. The breaking stress of metal is $\frac{40}{3\pi}$ × 10 ⁶ Nm				
	What should be the minimum radius of wire used if it should not break				
	$(g = 10 \text{ ms}^{-2})$				
	1 kg మరియు 2 kg ద్రవ్యరా	శులు గల రెండు దిమ్మలు ఒక ల్	ిపావు తీగతో కలుపల		

1 గ్రామంటు 2 గ్రామ్యాంటరు గార్ రెంట్ చెమ్మింది 2 ద్వార్ కొండిని 10 కొండిని 2 గ్రామ్ ఒక నున్నపైన కెప్పిపిడుగా పోసిడ్చారు. ఆ లో పావు పెచ్చేదన (పతిబలము $\frac{40}{3\pi} \times 10^6 \text{ Nm}^{-2}$ తీగ తెగకుండా ఉండవలెనన్న తీగ కనిష్ట వ్యాసార్థము ఎంత? ($g = 10 \text{ ms}^{-2}$) (1) 0.5 mm (2) 1 mm (3) 1.5 mm (4) 2 mm

E 2011 D D 98. If two soap bubbles of different radii are connected by a tube, then : Air flows from bigger bubble to the smaller bubble till sizes become (1)equal (2)Air flows from bigger bubble to the smaller bubble till sizes are interchanged (3) Air flows from smaller bubble to bigger There is no flow of air (4) రెండు విభిన్న వ్యాసారాలు గల రెండు నట్ను సీటి బుడగలను ఒక గొట్టముతో కరిపిన: వాటి పరిమాడాలు ఒకటయ్యే వరకు గాలి పెద బుడగ నుండి చిన్న బుడగకు (1)| వవహించును వాటి పరిమాణాలు తారుమారు అయ్యేవరకు గాలి పెద్ద బుడగ నుండి చిన్న (2)బుడగకు (పవహించును గాలి చిన్న బుడగ నుండి పెద్ద బుడగకు ప్రవహించును (3)(4) గాలి (వవాహము ఉండదు A large open tank has two holes in the wall. One is a square hole of side 'L' 99. at a depth 'y' from the top and the other is a circular hole of radius R at a depth '4v' from the top. When the tank is completely filled with water, the quantities of water flowing out per second from the two holes are the same. Then value of R is : ఒక తెరచి ఉన్న పెద్ద తొట్టి గోడకు రెండు రంద్రాలను కల్లియున్నది. ఒకటి పైభాగము నుండి 'y' లో తులో 'L' పొడవు గల చతుర్పిశార రంద్రము, రెండవది పైభాగము నుండి '4y' లో కులో 'R' వ్యాసారము గల వృత్తార రంధము. తొటిని పూర్తిగా నీటితో నింపినపుడు రెండు రంధాల నుండి సెకనులో (వవహించే నీటి పరిమాణాలు నమానము. అయిన R విలువ : $\frac{L}{\sqrt{2\pi}}$ (1)(2) $2\pi L$ L_{1} $\frac{L}{2\pi}$ (3) (4)Rough Work

E 2011 D

- 100. A non-conducting body floats in a liquid at 20°C with $\frac{2}{3}$ of its volume immersedin the liquid. When liquid temperature is increased to 100°C, $\frac{3}{4}$ of body's volumeis immersed in the liquid. Then the coefficient of real expansion of the liquidis (neglecting the expansion of container of the liquid) :20°C ఉమ్మోగత వద్ద ఉన్న (దవములో ఒక వాపాఠత్వము లేసి వన్నువు, దాని ఘనవరిమాడాములో $\frac{2}{3}$ వంతు మునిగురది. (దవ ఉమ్మోగతను 100°C కు ెఎంచినవుడు ఆ వన్నువు, దానిఘనవరిమాడాములో $\frac{3}{4}$ వంతు మునిగురది. (దవము యొక్క నిజ వాహ్రల్వేము లేదు కు.) :(1) 15.6 × 10⁻⁴°C⁻¹(2) 156 × 10⁻⁴°C⁻¹(3) 1.56 × 10⁻⁴°C⁻¹(4) 0.156 × 10⁴°C⁻¹
- 101. An insulated cylindrical vessel filled with an insulated piston of negligible weight and negligible thickness at the mid point of the vessel. The cylinder contains a gas at 0°C. When the gas is heated to 100°C, the piston moves through a length of 5 cm. Length of the cylindrical vessel in cm is :

ఒక ఉష్టుంధక న్యూపాకార పాత్రయందు పరిగణించలేని భారము మరియు వరిగణించలేని మందముగల ఉద్ద బంధక ముషలకము ఆ పాత్ర మధ్య బిందువు ధగ్గర బిగించబడినది. ఆ న్యూపము 0°C వద్ద వాయువును కలిగి యున్నది. వాయువును 100°C కు వేడిచేసినవుడు ముషలకము 5 ె.70.మీ. పొడవు చలించినది. న్యూపాకార పాత్ర పొడవు (ె.70.మీ.లలో)

- (1) 13.65 (2) 27.3
- (3) 38.6

Rough Work

35 P

(4)

64.6

	E 2011			
	D			
102.	A reversible ongine converts one-sixth of the heat supplied into work. When the temperature of the sink is reduced by 62° C, the efficiency of the engine is doubled. The temperatures of the source and sink are : adgeds a added 1/6 doesn as a adjected diverse and sink are : adgeds a added 1/6 doesn as a adjected diverse and sink are : adjected diverse added diverse added diverse adjected			
103.	During an adiabatic process, the pressure of a gas is proportional to the cub			
1005	of its temperature. The value of C_p/C_q for that gas is :			
	ఒక స్పిర్లో ప్రత (ప్రతీయనందు, ఒక పాయు పీడనం దాని వరను ఉప్పోగత మహాచి			
	అనులోదూడుపొతములో ఉన్నది. ఆ వాయువునకు C_p/C_q విణువ			
	(1) $\frac{7}{5}$ (2) $\frac{4}{5}$			
	e			
	(3) $\frac{3}{3}$ (4) $\frac{3}{2}$			
104.	Two slabs A and B of different materials but of the same thickness are joined			
	end to end to form a composite slab. The thermal conductivities of A and B ar			
	\mathcal{H}_1 and \mathcal{H}_2 respectively. A steady temperature difference of 12°C is maintained			
	across the composite slab. If $k_1 = \frac{k_2}{2}$, the temperature difference across alab			
	A is :			
	విధిన్న పదారాలతో చేయబడిన ఒకే మందము గల రెండు దిమ్మలు A మరియు B, ఒక గంయుక్త దిమ్మీ అగునట్టుగా కొనకు కొన కలుపబడినవి A, B ఉప్పవహన గంటరాలు చరునగా 'k'' మరియు 'k'' ఆ నంయుక్త దిమ్మకు నిలకడగా 12°C ఉప్పొగతా చేధము			
	ອະນາກິສີ້ແນນອັລລີ, $k_1 = \frac{k_2}{2}$ ແລະ A ພິລອດ ລຽ ເລີ່ຊີເກດ ມີລຸລັມ:			
	(1) 4°C (2) 6°C			

D

E 2011 D

105. The wavelengths of two sound notes in air are $\frac{40}{195}$ m and $\frac{40}{193}$ m. Each note produces 9 beats per second separately with a third note of fixed frequency. The velocity of sound in air in m/s is :

గాలలో రెండు ధ్వది స్వరాలు $\frac{40}{195}$ m మరియు $\frac{40}{198}$ m తరంగలైర్మార్థలను కలిగి ఉన్నాయి. (పతి స్వరం, స్థిర పౌవుపున్యం గల ఒక మూడవ స్వరంతో పెకనుకు 9 విన్ఫందనాలు నృష్టిస్తోంది. గాలలో ధ్వని వేగము (మీ.గెపె.లలో): (1) 360 - (2) 320

(3) 300 (4) 340

			D E 201
107.	The	focal length of a lens of dis	persive power 0.45 which should be place
	cont	act with a convex lens of for	cal length 84 cm and dispersive power 0.2
	mak	e the achromatic combinatio	on from the two lenses, in cm is :
	0.45	విశ్రేవడి సామర్థ్యం గల కటరాన్ని	్ర 84 నెం.మీ.ల నాథ్యంతరం మరియు 0.21 వి
	సామ	ర్యం గల కుండాకార కటరంతో	్ స్పర్శిస్తూ ఉన్నచ్చాడు, ఆ రెండు కటకాలు
	ෂක්ර	శ నంయాగంగా వనిచేయనలెన	సాజి, కటరానికి ఉండవలసిన నాధ్యంతరం క
	(700	.lu.∞6*) :	
	(1)	45	(2) 90
	(3)	180	(4) -180
	(A)	Each lens produces a virt	
	(A)	Each lens produces a virt	ual and inverted image
	(B)	The objective has a very	
	(C)	The eyepiece is used as a	
	(D)		e are convex and concave lenses respecti
	(1)	(A), (B) and (D)	(2) (B) and (C)
	(3)		(4) (B) and (D)
			ఈ టింది వివరణలలో ఎవి 'యదార్గము'?
	(A)		రైన మిథాక్ర (వతివిందాన్ని విర్పరుస్తుంది
	(B)	వస్తు కటకానికి అతి అల్ప	
	(C)		వర్తనం కలిగించే గాజాగా వాడతారు
	(D)	the second s	కంంభాకార, పుటాకార కటకాలు
	(1)	(A), (B) మరియు (D)	
	(3)	(A), (C) మరియు (D)	(4) (B) あいさっかい (D)

109. A ray of light refracts from medium 1 into a thin layer of medium 2, crosses the layer and is incident at the critical angle on the interface between the medium 2 and 3 as shown in the figure. If the angle of incidence of ray is θ, the value of θ is :

ఒక కాంత్ కిరణం యానకం 1 నుంచి యానకం 2 యొక్క పెబుచని పారలోనికి వర్రీభవనం చెందిన తర్వాత దానిని దాటి యానకం 2 మరియు యానకం 8 ల మధ్య గల అంతర ఫలకంపై నంధిగ్త కోణం చేన్నూ పతనం చెందుతుంది. కాంత్ కిరణం వతన కోణం 9 అయికే, 9 విలువ :

E 2011 D

- 111. If a har magnet of pole strength m and magnetic moment M is cut equally 5 times parallel to its axis and again 3 times perpendicular to its axis, then the pole strength and magnetic moment of each piece are respectively (ధువసత్సం m, అయస్కాంత బ్రామకము M గం దండాయస్కాంతాన్ని దాని ఇద్దానికి సమాంతరముగా 5 సార్లు నమాచంగాను, అద్దానికి అంబంగా 3 సారు నమానంగాను కోసనవుడు, ఏర్పడే ఒక్కొంక్క అయస్కాంతవు ముక్క యొక్క (ధువ సత్సము, అయస్కాంత బ్రామకముల విలువలు వరునగా :

as	$\frac{m}{20},\frac{\mathrm{M}}{4}$	(2)	$\frac{m}{5}, \frac{\mathrm{M}}{20}$
(3)	$\frac{m}{6}, \frac{M}{24}$	(4)	$\frac{m}{5}, \frac{M}{24}$

13. A fully charged capacitor has a capacitance 'C'. It is discharged through a small coil of resistance wire, embedded in a block of specific heat 's' and mass 'm' under thermally isolated conditions. If the temperature of the block is raised by 'AT', the potential difference V across the capacitor initially is ;

సంపూరంగా ఆవెళితం చేసిన కెపాసిటర్ యొక్క కెహెసి టెస్స్ 'C'. పీరిన ఉచ్చయొక్త వరిసితుంలో. విశిషోషం 's', (దవ్యరాశ్' 'm' గల ఒక దమ్మలో పొదిగిన సరోధం గల చిన్న 'తీగచుల్ల వ్యారా ఉత్పరం చేసినపుడు దమ్మ ఉష్యోగత 'AT' పెరిగితే, పెపాపిటర్ కొనల మద్య తొలిగా ఉన్న పొటిస్టియల్ తేడా. V పిలువ :

(1)	$\left(\frac{2 ms \Delta T}{C}\right)^{3}$	(2) $\left(\frac{2 ms \Delta T}{C}\right)^{1/2}$
(8)	$\left(\frac{2\ ms\ \Delta T}{C}\right)$	(4) 2 ms [] ΔT.C

Rough Work

114.

E 2011 D D Two identical condensers M and N are connected in series with a battery. The space between the plates of M is completely filled with a dielectric medium of dielectric constant 8 and a copper plate of thickness $\frac{d}{2}$ is introduced between the plates of N. (d is the distance between the plates). Then potential differences across M and N are, respectively, in the ratio : రెండు నర్వ నమాన కెహిసిబర్లు M మరియు N లను ఒక ఘటంతో తేజీ నంధానం చేసినారు. M కండెన్సర్ పలకల మధ్య (పదేశాన్ని రోధర స్థిరాంకం 8 గల రోధక యానకంతో పూర్తిగా నింపినారు. N కండెన్సర్ పలకల మధ్య 💆 మందం గల రాగి వలకను ఉంచినారు. (d జనేది వలకల మధ్య దూరం). అయితే, M, N ల కొనల మధ్య హౌబన్యిల్ తేదాల నిష్పత్తి, వరునగా: (1) / 1:4 (2)4:1(4) 1:6 (3) 3:8

115. The electric current i in the circuit shown is : థింద చూపిన చలయంలో చిద్యుత్పవాహిం i విలువ :

Rough Work

(1)

(3)

E 2011 D D 116. In the circuit shown below, the ammeter reading is zero. Then the value of the resistance R is : టింద చూపిన వలయంలో ఆమ్మేటర్ రీడింగు నున్నా. అయికే నిరోధం R ఏలువ : 2V12 V비니는 ∛R R 500 Q 100 Ω (2)(1) 50 D 400 Ω (4) 200 \ (3)

117. The thermo e.m.f. of a hypothetical thermocouple varies with the temperature θ of hot junction as $E = a\theta + b\theta^2$ in volts, where the ratio a/b is 700°C. If the cold junction is kept at 0°C, then the neutral temperature is :

- (1) 700°C
- (2) 1400°C
- (3) 390°C
- (4) no neutral temperature is possible for this thermocouple

ఒక వరికల్పిత ఉష్ణయుగ్యం యొక్క ఉష్ణ విద్యుచ్చాలక బలం, వేడి నంధి ఉష్మోగత 0 తో, E = a0 + b0² (వోబ్డలలో)గా మారుతుంది. ఇక్కడ నిష్పత్తి a/b 700°C. చల్లని నంధి ఉష్మోగతను 0°C వద్ద ఉంచితే, తటన్న ఉష్మోగ్రత :

- (1) 700°C
- (2) 1400°C
- (3) 390°C
- (4) ఈ ఉష్టయుగ్యానికి తటన ఉష్యోగ్రత ఉండటం సాధ్యం కాదు

			D	E 2011
118.	Mate	h the following and find the	corr	ect pairs :
		List I		List II
	(α)	Fleming's left hand rule	(e)	Direction of induced current
	(b)	Right hand thumb rule	(0)	Magnitude and direction of magnet
				induction
	(c)	Biot-Savart law	(q)	Direction of force due to magneti
				induction
	(d)	Fleming's right hand rule	(h)	Direction of magnetic lines due to currer
	50	కింద జాబితాలలో నరియ్రైన జ	ంటలన	ಟ ಗುತ್ತಿಂದಂಡಿ :
		erber I		ar Dor 11
	(a)	్మామింగ్ ఎడమరేకి నిజంధన	(e)	(పేరితి చిద్దుత్ (వహిహి దిశ
	(b)	కుడిపేట్ దాటనవేలు నిఖంధన	())	అయస్కాంత (పేరణ పరిమాణం మరియు ది
	(c)	లయాట్ సావర్డ్ నియమం	(g)	అయస్కాంత క్షేతంవల్ల కళిగే ఇజదిశ
	(d)	్ళామంగ్ కుడిచేతి నిబంధన	(h)	పద్యుత్ (దవాహందల్ల కలిగే అయస్కాంత రేఖ
				DV
	(1)	$(a) \!$	(2)	(a) – (g), (b) – (h), (e) – (f), (d) – (e)
	(3)	(a) - (f), (b) - (h), (c) - (g), (d) - (e)	(4)	(a) - (h), (b) - (g), (e) - (e), (d) - (f)

D

E 2011 D

119. A constant voltage of 25 V is applied to a series L-R circuit at t = 0, by closing a switch. What is the potential difference across the resistor and the inductor at time t = 0?

 L-R (dd accords t = 0 ac by by a by a straight and be and the accord by the straight and the accord by the straight and the s

120. The sensitivity of a galvanometer is 60 divisions/Amp. When a shunt is used, its sensitivity becomes 10 divisions/Amp. If the galvanometer is of resistance 20 Ω, the value of shunt used is :

ఒక గాల్వనామేటర్ యొక్క నూర్ర్య గ్రాహ్యత 60 పిధాగాలు/అంపియర్, ఒక వంట్ సరోధరను వాడినవుడు, దాని నూర్ర్యగాహ్యత 10 పెధాగాలు/అంపియర్ అవుతుంది. గాల్వనామీటరు సరోధం 20 Ω లు అయితే, ఆటయోగించిన మండ్ సరోధం పిలువ :

(1)	4 Ω	(2)	5Ω
(8)	20 Ω	(4)	2 12

-	
	D E 2011
E	CHEMISTRY
1	121. A metal nitride contains 28% nitrogen by weight. The molecular formula of met
6	nitride is M ₃ N ₂ . What is the atomic weight of metal ?
	ఒక లోహా సె(టెడ్లో భారాత్మకంగ 28% సైట్లో జన్ కందు. ఆ లోపాసె(టైడ్ అయిఫార్ము)
11	MgNg లో వ≠ పరమాటు భారమంత?
1.1	(1) 72 (2) 64 (3) 100 (4) 24
1.5	THE WEIGHT OF ALL AND THE STREET AND A DESCRIPTION OF A
62	122. Which one of the following statements is not correct ? (1) The fraction of total number of molecules of a gas having most probab
21	velocity increases with an increase in temperature of the gas
4	(2) The concentration of an ideal gas at 100 K and 0.0821 atm. of pressure is 1.0 × 10 ⁻² mol. lit ⁻² (R = 0.0821 lit. atm. mol ⁻¹ .K ⁻¹)
÷.,	(3) If the rms velocity of an ideal gas at T(K) is 'C' cm. s ⁻¹ , its rms velocit at 4T(K) is '2C' cm.s ⁻¹
	(4) The average kinetic energy of gas molecules is proportional to their absolu
8	temperature
	కింది పెవరణలలో ఏది నరియైనది కాదు?
	(1) గరచ్చ నంభావ్యతా వేగం కలిగిన మొత్తం వాయు అయివుల భాగం, ఆష్మోగ
	పరిగన కోలది పెరుగును
	(2) 100 K మరియు 0.0821 అహ్మా, పీడనము వద్ద ఒక అవర్మ వాయు గాఢ
5.1	1.0×10^{-2} Zr. l^{-1} (R = 0.0821 l. werz Zr ⁻¹ .K ⁻¹)
13	(8) T(K) వద్ద ఒక ఆదర్శ వాయు rms వేగం 'C' సం.మీ సో అయితే 4T(K) చ
11	దాని rms వేగం '2C' 750.మీ 75 ⁻¹
1	(4) వాయు అణువుల నగటు గతిజ శక్తి వాటి వరమ ఉష్యోగతకు అనులో మానుపాతంక
a second	ఉండును
14.70	

E 2011 D

123. In acidic medium, 100 ml of 0.01 M KMnO_4 solution exidizes 100 ml of H_2O_2 solution. The volume of 0.01 M KMnO_4 required to exidize the same volume of H_2O_2 in alkaline medium in ml. is :

అమ్తయానకంలో 100 మి.లీ.ల 0.01 M KMnO4 ద్రావణము 100 మి.లీ.ల H₂O₂ దావడాన్ని అక్సికరణము చేయును. క్రార యానకములో అదే ఘనపరిమాణముగల H₂O₂ ను ఆక్సికరణము చేయుటకు కావలసిన 0.01 M KMnO4 ఘనపరిమాణము మి.లీ.లో ఎంక?

œ	$\frac{300}{2}$	(2)	$\frac{300}{5}$
-	500	(4)	$\frac{500}{2}$
(3)	3	(4)	2

124. A solution of 10 g of a non-volatile binary electrolyte (mol. wt. = 100) in 500 g of water freezes at -0.74°C. What is the degree of ionisation ?

 $(k_f \text{ of water} = 1.85 \text{ K molality}^{-1})$

10 గా. అజావ్పళీల ద్విగుజాత్మక పద్దుత్ పెళ్లేష్య వదార్థము (అణుజారము = 100) ను 500 గా. వీటిలో కరిగించిన ద్రావణము -0.74°C వద్ద ఘనీభపొస్తే ఆ పదార్థ పేఘటన అవడి ఎంత?

 $(\mathbb{A} \mathcal{L} \ k_f = 1.85 \ \mathrm{K} \ \mathrm{Soc} \mathrm{soc} \mathcal{A}^{-1})$

(1) 50% (2) 75%

(3) 100% (4) 0%

E 2011 D D 125. For the electrochemical cell $M | M^* || X^- | X$, $E^{\circ}(M^+ | M) = 0.44 V$ and $E^{\circ}(X|X) = 0.33$ V. Which one of the following is true for this data ? $M + X \rightarrow M^{+} + X^{-}$ is a spontaneous reaction (1) M^{*} + X^{-} \rightarrow M + X is a spontaneous reaction (2) $E_{cell} = 0.77 V$ (3) $E_{cell} = -0.77 V$ (4)' $M \, | \, M^* \| \ X^- | \, X$ ಅನು ವಿದ್ವುಕ್ ರನೇಯನ ಘಟಕಮುನಕು $E^o(M^* \, | \, M) = 0.44 \ V$ ಮರಿಯು $\mathbf{E}^{\circ}(X \mid X) = 0.33 \ V$, би саточашево вос атабе вс або-шло? (1) $M^+ + X^- \rightarrow M + X$ is solved to a solution of the second (2) $E_{\text{spinor}} = 0.77 \text{ V}$ (3) $E_{ijjico} = -0.77 V$ (4)126. In electrochemical corrosion, the metal undergoing corrosion :

(1) Acts as anode (2) Acts as cathode

(3) Undergoes reduction (4) Liquefies

విద్యుత్ రసాయన లో హిక్రయంలో, లో హాము :

- (1) ఏనోడ్గా వనిచేయును (2) కాఫోడ్గా వనిచేయును
- (3) క్రయకరణము జరుగును (4) ద్రవీధవించును

	F	E 201
	L	
127.	neighbouring metal atoms in a fa	Å, the smallest distance in Å between the face centred cubic lattice is : మూవిజ్ పెల్ పొడవు 5 Å అయికే, ఆ జాంక
	వర్క పర్కనే ఉన్న రెందు లో హి క	పరమాయువుల మధ్య గల కనిష్ణ దూరం Â
	5087	(2) /5.00
	(1) 2.50 (3) 7.07	(4) 3.535
128.	Match the following :	
	List I	List II
	(A) Arrhenius equation	(i) Free energy change
	(B) Slowest step in a reaction	(ii) conc ⁻¹ .time ⁻¹
	(C) Rate constant of a II order	a com annal-n sime-1
	(C) Rate constant of a II order reaction	r (iii) cone anne
		on (w) Rate determining step
	depends on	(v) $k = \mathbf{A} \cdot e^{-\mathbf{E}_{q}/\mathbf{RT}}$
	కింది వాటిని ఆతపరచుము :	
	ender 1	జాదిలా II
	(A) అరీనెయస్ నమీకరణం	్ (గ) ప్వేచ్ఛాన శక్రిలో మార్పు
	 (B) ఒక చరాజ్రదీధానంలో 	(iii) 1745-1 100-1
	కనిచ రేటుగల అంచె	
	(C) ರಂಧವ ಕರ್ಮಂಕ ದರಕ್ಷ	(iii) model-1.5000-1
		1111/ 11/20 10/20
	តិយ ភ្នំចុះ១៩០	
	(D) చర్య జరుగు సాధ్యత దీనిపై	(in) రేటు నిరాదక అంది గ్రామాలు
	అధారవడును	$(v) k = \mathbf{A} e^{-\mathbf{E}_{d}/\mathbf{R}\mathbf{T}}$
	The correct answer is :	
	సరయిన సమాధానము:	
	(A) (B) (C)	(D)
	(1) (v) (i) (iii)	(iv)
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(iii) (i)
	The second second second	4.97

130. The order of pH of 0.200 M solutions of NH4NO3, NaNO3 and Na2CO3 is :

0.200 M NH4NO3, NaNO3 మరియు Na2CO3 ద్రావతాల pH వరుసక్రమము :

(1)
$$NH_4NO_3 < Na_2CO_3 < NaNO_3$$
.

(2)
$$NH_4NO_3 < NaNO_3 < Na_2CO_3$$

(3)
$$Na_2CO_3 < NnNO_3 < NH_4NO_3$$

(4)
$$NaNO_3 < NH_4NO_3 < Na_2CO_3$$

131. Which one of the following pairs represents the intensive properties ?

- (1) Specific heat and temperature
- (2) Entropy and density
- (3) Enthalpy and mole fraction
- (4) Heat and temperature
- కింది వాటిలో ఏ జత గహన థర్మాలను నూచించును?
- (1) విశిషోషం మరియు ఉష్యోగత
- (2) ఎంట్ పీ మరియు సాందర
- (3) ఎంథాల్సీ మరియు మోల్ ధాగం
- (4) ఉష్టము మరియు ఉష్ణేగత

132. According to Langmuir adsorption isotherm, the amount of gas adsorbed by unit surface area is : (a, b, k and n are constants; P = pressure of gas) e=ofidicuo f Narez effetaisamet, control factor defetaise defetaise

	D E 2011
133.	Calcium carbide is hydrolyzed using heavy water. What are the produ
	formed ?
	కాల్షియం కార్రైడ్ <i>ను భారజలం</i> తో జలవిశ్లేషణ గావించారు. ఏర్పడిన (కియాజన్యాలు క
	(1) $Ca(OH)_2$, C_2D_2 (2) $Ca(OD)_2$, C_2D_2
	(3) $Ca(OD)_2$, CD_4 (4) $Ca(OH)_2$, CD_4
134.	The reactivity of Ca, Sr, Mg and Ba with water follow the order :
	వీటితో Ca, Sr. Mg మరియు Ba ల చరాజ్రత్మకత పాటించు (కముము ఏది?
÷.,	(1) $Sr > Ba > Mg > Ca$ (2) $Ba > Sr > Ca > Mg$
	(3) $Ca > Mg > Ba > Sr$ (4) $Sr > Ca > Mg > Ba$
135.	Electronegativity of group 13 elements follow the order :
	గూపు 13 మూలకాల ఋడ విద్యుదాత్మకత పాటించు (కమము పది?
	(1) $B > Ga > Al > Tl > In$
	(2) $B > Tl > Ga > Al > In$
	(3) $B > TI > In > Ga > Al$
	(4) $B > Al > Tl > In > Ga$

		D	E 2011
136,	What is the empirical form	nula of sheet silicates ?	
	వలక సిలికేట్ల అనుభావిక కె	సార్ములా పది?	
	(1) (Si ₂ O ₅) ²ⁿ⁻	(2) $(SiO_3)_a^{2a-}$	
	(3) $(SiO_3)_n^{n-}$	(4) $(Si_2O_7)_n^{3n^-}$	
137.	The gases evolved in the d	lecomposition of lead nitrate ar	es I
	ఇడ్ వైడుజ్,మ వియాగం గా	విస్తే విర్పడు వాయువులు:	
	(1) N ₂ O ₃ , NO	(2) NO _{2*} O ₂	phone?
	(3) N ₂ O _{3*} O ₂	(4) N ₂ O, O ₂	
138.	Which of the following stat	tements are correct ?	a farmer a
	(I) Monoclinic sulphur c	ontains S ₈ molecules.	
	(II) Sulphur forms SF ₆ ,	SF4, SF2 and S2F2	
	(III) Peroxo group is pres	ent in $H_2S_2O_6$.	
	కింద పవరణలలో ఏపి నరిం	స్తునవి?	
	(I) మోనోక్లినిక్ నల్ఫర్లో క	S ₈ కణువు లుంటాయి	
	$(\mathrm{II}) \mathrm{seg} \mathbb{S} \ \mathrm{SF}_6, \ \mathrm{SF}_4, \ \mathrm{SF}_2$	మరియు $\mathbf{S}_{2}\mathbf{F}_{2}$ లను ఏర్పరుస్తుంది	
	$(\mathrm{III}) \mathrm{H}_2\mathrm{S}_2\mathrm{O}_6 \ \mathfrak{S}^4 \Im \sigma \mathfrak{S}^4_{\ \mathbb{C}}$	నమూపామున్న ది	
	(1) II, III	(2) I, II	
	(3) 1. 111	(4) I, II, III	

www.	previouspapers.	ın

			D		E 2011 D
	142.	Which of the fo	llowing metallurgical	processes does	not involve heating ?
		(1) Smelting	6) Calcination	
		(3) Roasting	6	Leaching	
		తింద లోకా పిక	శ్రిర్ధణ పద్ధతులలో ఏద	ತನ್ನ (ಪ್ರಕಿಯ ಸ	ూదు?
		(1) (සිරපයිය) ಧನ್ನಿಕರಣಮು	
		(3) థర్థనం	() Dgr\$30	
	143.	Which one of th	ne following is not a	green-house gas	. ?
		ఈ క్రంద వాడిర	ో పది గ్రేస్ వళాస్	కాయువు కాదు?	
		(1) CO ₂	(5	N ₂ O	
×.		(3) O ₃	(4) N ₂	
	144.	The reagent use	ed to detect phosphor	ous in an organ	nie compound is :
		కర్భన వడార్థముల్	ోని పావృంద్ <i>ను</i> గు <u>క</u> ిం	డుబరు వాడు కా	రరము.
		(1) $FeSO_4$	6) AgNO ₃	
		(3) (NH ₄) ₂ Mo	O ₄ (4	BaCl ₂	
	145.	Which one of th	e following alkenes	gives only ethan	al on ozonolysis ?
		(1) Propene	-6	2-Butene	
		(3) 1-Butene	(4) 2-Pentene	
		్రకంద అర్కినంలో	ి ఒకోనాలిసిస్ ద్వారా	ఏద కేవలం ఇక	గనాల్.దు మాత్రమే ఇద్దుంది?
		(1) jörbő	6	2-201005	
		(3) 1-20mg 25	(4) 2-2025	

			D		E 201	1 1
151.	Identify X in the following :					
	ఈ (కింద దానిలో X ను గుర్తింపుదు:					
			$H_3CCO_2H\frac{(i)}{(ii)}$	$\xrightarrow{\mathrm{VH}_3} \mathrm{X}$	S. B. S.	
	(1)	H ₃ CCN	(2)-	H3CCO2NH4	87 84	
	(3)	(H ₃ CCO) ₂ O	(4)	H_3CCONH_2		
152.				ich one of the పరీశ్ర ద్వారా		
		తింద వాటిలో చేసిన C ₆ H ₅ CHO	కార్రైల్ ఎమైన్ (2)	ಪಠಿಕ್ಷ ದ್ವಾರ್ C ₆ H ₅ CO ₂ H		
	50	ట్రింద వాటిలో చేసిని	కార్రైల్ ఎమైన్ (2)	పరీశ్ర ద్వారా		A CONTRACT OF
153.	රං (1) (3)	తింద వాటిలో చేసిన C ₆ H ₅ CHO	కార్రైల్ ఎమైన్ (2)	ಪಠಿಕ್ಷ ದ್ವಾರ್ C ₆ H ₅ CO ₂ H		
	රං (1) (3)	టింద వాటిలో చేసిన C ₆ H ₅ CHO C ₆ H ₅ NH ₂	కార్రైల్ ఎమైన్ (2)	ಪಠಿಕ್ಷ ದ್ವಾರ್ C ₆ H ₅ CO ₂ H	గుర్తిస్తారు?	State of the other of the other
	бс (1) (3) Prot	డింద రాటిలో చేసిన C_6H_5CHO $C_6H_5NH_2$ eins are :	కార్ప్రెల్ ఎమైన్ (2) (4)	వరీశ్ర దాస్తరా C ₆ H ₅ CO ₂ H C ₆ H ₅ OH	സ്ട്രുഷ്ട്രയ? es	A DAMA NAMES OF
	50 (1) (3) Prot (1) (3)	ල්ංය ෙන්රේ බිවව C ₆ H ₅ CHO C ₆ H ₅ NH ₂ eins are : Polysaccharides	కార్రైల్ ఎమైన్ (2) (4)	వరీశ్ర దాస్థరా C ₆ H ₅ CO ₂ H C ₆ H ₅ OH	സ്ട്രുഷ്ട്രയ? es	
	50 (1) (3) Prot (1) (3)	ල්ංය නස්ත ⁶ සීබඩ C ₆ H ₅ CHO C ₆ H ₅ NH ₂ eins are : Polysaccharides Polypeptides	కార్రైల్ ఎమైన్ (2) (4)	వరీశ్ర దాస్థరా C ₆ H ₅ CO ₂ H C ₆ H ₅ OH	rugු බුංු රා? es	

D

E 2011 D

- 156. The number of radial nodes present in the radial probability distribution curves for the orbital wave function with quantum numbers n = 4, l = 0 and m = 0is :
 - n = 4, l = 0, m = 0 క్వాంబం దంఖ్యలు గల ఆర్బెటాల్ తరంగ (వమేయం రేడియల్ దంధావ్వదా పితరణ వద్రేఖల రేడియల్ నోడ్ల వంఖ్య ఎంత?
 - (1) 4

3

(3) 2

(2)

- (4) 1
- 157. If the uncertainty in velocities of two particles A and B with mass 1.0×10^{-27} kg and 1.0×10^{-31} kg respectively is the same, the ratio of uncertainty in the positions of A and B is :

1.0 × 10⁻²⁷ kg మరియు 1.0 × 10⁻³¹ kg ద్రవ్యరాకులు చరునగా గల A మరియు B కణాల వేగములో అనిశ్చితత్వము నమానమయితే, A మరియు B ల స్థానములో అనిశ్చితత్వార నిష్మత్తి ఎంత?

- and the second
- (1) 1000 : 1
- (2) 10,000 : 1
- (3) 1 : 1000
- (4) 1:10,000

		D		E 2011					
158,		The							
	(ci ci								
	YN	INT							
	1								
	BDA	C A' D' B'							
			With reference to the diagram given, the van der Waals radius is equal to						
		to the diagram given.	the van der	Waals radius is equal t					
	With reference	to the diagram given. 10 ;ජූපත්ර, කරයර් ගැඳී	the van der ා කාබුමාරට ල්	Waals radius is equal t ంది వాటిలో దేనికి నమానన					
	With reference	ుం చ్రహారం, వాండర్ వాల్స్	the van der సహ్యాపార్థం ద్ర B–A	Waals radius is equal t ంది వాటిలో దేనికి నమానవ					
	With reference పేర్చానలడిన వట	ుం చ్రహారం, వాండర్ వాల్స్	్ర ప్రాస్థార్థం త్ర B-A	Waals radius is equal t ంద వాటిలో దేనికి నమానవ					
159.	With reference పేర్పైనబడిన పట (1) A-A' (3) B-D	ుం చైకారం, పాండర్ పాల్ (2)) వార్రసార్థం త్ర B-A A-C	ంది వాటిలో దేనికి నమానవ					
159.	With reference 26° 3 Sod 3 So (1) A-A' (3) B-D In which one of	o వైకారం, వాండర్ వాల్ (2) (4) f the following, the bo) వార్టిసార్థం ద్ర B-A A-C nd angle is t	ంది వాటిలో దేనికి నమానవ					
159.	With reference 26 ⁻ ැනයකින් නිස (1) A-A' (3) B-D In which one of (දියයි කංකීම් ⁴ ක	ు వైకారం, పాండర్ వాల్ (2) (4)	ు వార్రసార్థం ద్ర B-A A-C nd angle is t ఇద్ పది?	ంది వాటిలో దేనికి నమానవ					
159.	With reference 26 ² ැනයේ න කය (1) A-A' (3) B-D In which one of (දියයි කංකීම් ⁴ ක	ుం చైకారం, వాండర్ వాల్స్ (2) (4) f the following, the bo అత్యల్ప బంధక్ ⁶ ణము క (2)	argసార్థం ద్ర B-A A-C nd angle is t బద పద?	ంది వాటిలో దేనికి నమానవ					
159.	With reference $36^{\circ}b 303 3 40$ (1) A-A' (3) B-D In which one of 306° a (1) H ₃ 0 (1) H ₃ 0	ుం చైకారం, వాండర్ వాల్స్ (2) (4) f the following, the bo అత్యల్ప బంధక్ ⁶ ణము క (2)	argàrgo ເອັ B-A A-C nd angle is t ເວັ ລຣ? NH ₄ BCl ₃	ంది వాటిలో దేనికి నమానవ					
	With reference $36^{\circ}b 303 3 40$ (1) A-A' (3) B-D In which one of 306° a (1) H ₃ 0 (1) H ₃ 0	ుం వైకారం, వాందర్ వాల్ (2) (4) f the following, the bo అత్యల్ప బంధకోణము క (2) (4) aber cycle of the given	ు వార్రసార్థం ద్ర B-A A-C and angle is t కద్ పది? NH4 BCl3 reaction	ంది వాటిలో దేనికి నమానవ					
_	With reference あち み あ あ あ あ (1) A-A' (3) B-D In which one of (3) B-D (1) H3 0 (3) F20 In the Born-Ha	ు వైకారం, వాండర్ వాల్ (2) (4) f the following, the bo అత్యల్ప బంధకోణము క (2) (4)	a a b	ంది వాటిలో దేనికి నమానవ he lowest ?					
_	With reference $36^{\circ}b 3033 500$ (1) A-A' (3) B-D In which one of $(30^{\circ} - 30^{\circ} - 30^{\circ})$ (1) $H_3 \overset{\circ}{O}$ (3) $F_2 O$ In the Born-Ha the number of	ා දුනුපතිං, කංශයි කළේ (2) (4) f the following, the bo මෙළඳට කරේට් ⁶ ශන්න ක් (2) (4) nber cycle of the given $Na(s) + \frac{1}{2}Cl_2(g)$ endothermic and exoth $Na(zo) + \frac{1}{2}Cl_2(g)$	$B \rightarrow A$ A - C A - C and angle is t a = a = a B - A A - C and angle is t a = a = a B - A A - C A - C a = a B - A A - C A - C a = a B - A A - C B - A A - C a = a B - A A - C B - A A - C B - A A - C B - C B - A A - C B - C B - A A - C A - C	ంద వాటిలో దేనికి నమానవ he lowest ? respectively are : ప)					
_	With reference $36^{\circ}b 3033 500$ (1) A-A' (3) B-D In which one of $(30^{\circ} - 30^{\circ} - 30^{\circ})$ (1) $H_3 \overset{\circ}{O}$ (3) $F_2 O$ In the Born-Ha the number of	ා දුනුපතිං, කංශයි කළේ (2) (4) f the following, the bo මෙළඳට කරේට් ⁶ ශන්න ක් (2) (4) nber cycle of the given $Na(s) + \frac{1}{2}Cl_2(g)$ endothermic and exoth $Na(zo) + \frac{1}{2}Cl_2(g)$	$B \rightarrow A$ A - C A - C and angle is t a = a = a B - A A - C and angle is t a = a = a B - A A - C A - C a = a B - A A - C A - C a = a B - A A - C B - A A - C a = a B - A A - C B - A A - C B - A A - C B - C B - A A - C B - C B - A A - C A - C	ంద వాటిలో దేనికి నమానవ he lowest ? respectively are :					