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PART - A   (10 X 2 = 20) 

Answer ALL the Questions 

 

1. Expand tan6θ in terms of powers of tanθ. 

   

2. If x + iy = C Cos (A – iB) show that .1
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3. Find the direction cosines of the line joining P(2,3,5) and         

Q(-1,3,2). 

 

4. Prove that the two spheres x2+y2+z2-2x+4y-4z = 0 and 

x2+y2+z2+10x+2z+10=0 touch each other. 

 

5. Define Beta and Gamma functions. 

 

6. Prove that .
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7. Show that F = (y2 - z2 + 3yz - 2x)i + (3xz + 2xy) j + (3xy – 2xz + 

2z) k is irrotational. 

 

8. State Green’s theorem in a plane. 

 



9. Prove that 
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10. Evaluate ∫ ∫ ∫
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     PART – B      (5 x 12 = 60) 

Answer All the Questions 

 

11. Expand Cos8θ in a series of powers of (i) Sinθ only and  

               (ii) Cosθ only.  

(or) 

12. If tanh (x/2) = tan (θ/2), show that x = log tan (π/4 + θ/2) and 

conversely. 

 

13. Show that the lines 
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coplanar and find the equation of the plane in which they lie. 

(or) 

14. Find the equation of the sphere passing through the points (1,1,-

2) and (-1,1,2) and having its centre on the line x + y – z – 1 = 0 

= 2x – y + z – 2. 

15. Prove that β(m,n) = ∫
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(or) 

16. Express ∫ −
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 in terms of Gamma functions. 
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17. Verify Stokes theorem when F = (2xy – x2)i – (x2 – y2)j and C is 

the boundary of the region enclosed by the parabolas y2 = x and 

x2 = y. 

(or) 

18. Verify Gauss divergence theorem for F = x2i + y2j + z2k where S 

is the surface of the cuboid formed by the planes x = 0, x = a,       

y = 0,     y = b, z = 0 and z = c. 

 

19. Find a reduction formula for ∫sinnx dx (n is positive integer) 

(or) 

20. Change the order of integration in ∫ ∫
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and then evaluate it. 
 

 

 



 


