
SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act, 1956)
Course \& Branch: B.E/B.Tech-All Branches Except Bio Groups Title of the Paper: Engineering Mathematics - II Max. Marks: 80 Sub. Code: 6C0016 (2006/07/08/09)
Date: 04/12/2010

Time: 3 Hours
Session: AN

$$
\begin{gathered}
\text { PART - A } \\
\text { Answer ALL the Questions }
\end{gathered}
$$

1. Expand $\tan 6 \theta$ in terms of powers of $\tan \theta$.
2. If $\mathrm{x}+\mathrm{iy}=\mathrm{C} \operatorname{Cos}(\mathrm{A}-\mathrm{iB})$ show that $\frac{x^{2}}{C^{2} \operatorname{Cosh}^{2} B}+\frac{y^{2}}{C^{2} \operatorname{Sinh}^{2} B}=1$.
3. Find the direction cosines of the line joining $\mathrm{P}(2,3,5)$ and Q(-1,3,2).
4. Prove that the two spheres $x^{2}+y^{2}+z^{2}-2 x+4 y-4 z=0$ and $x^{2}+y^{2}+z^{2}+10 x+2 z+10=0$ touch each other.
5. Define Beta and Gamma functions.
6. Prove that $\frac{\beta(m+1, n)}{\beta(m, n+1)}=\frac{m}{n}$.
7. Show that $F=\left(y^{2}-z^{2}+3 y z-2 x\right) i+(3 x z+2 x y) j+(3 x y-2 x z+$ $2 \mathrm{z}) \mathrm{k}$ is irrotational.
8. State Green's theorem in a plane.
9. Prove that $\int_{-a}^{a} f(x) d x=\left\{\begin{array}{c}2 \int_{0}^{a} f(x) d x, \text { if } f(x) \text { iseven } \\ 0, \text { if } f(x) \text { is odd }\end{array}\right.$
10. Evaluate $\int_{0}^{1} \int_{0}^{z} \int_{0}^{y+z} d z d y d x$.

$$
\begin{gather*}
\text { PART - B } \\
\text { Answer All the Questions }
\end{gather*}
$$

11. Expand $\operatorname{Cos} 8 \theta$ in a series of powers of (i) $\operatorname{Sin} \theta$ only and
(ii) $\operatorname{Cos} \theta$ only.
(or)
12. If $\tanh (x / 2)=\tan (\theta / 2)$, show that $x=\log \tan (\pi / 4+\theta / 2)$ and conversely.
13. Show that the lines $\frac{x-4}{2}=\frac{y-5}{3}=\frac{z-6}{4}$ and $\frac{x-2}{3}=\frac{y-3}{4}=\frac{z-4}{5}$ are coplanar and find the equation of the plane in which they lie.
(or)
14. Find the equation of the sphere passing through the points ($1,1,-$ 2) and ($-1,1,2$) and having its centre on the line $x+y-z-1=0$ $=2 \mathrm{x}-\mathrm{y}+\mathrm{z}-2$.
15. Prove that $\beta(\mathrm{m}, \mathrm{n})=\int_{0}^{\infty} \frac{x^{m-1}}{(1+x)^{m+n}} d x$. Hence deduce that

$$
\beta(\mathrm{m}, \mathrm{n})=\int_{0}^{1} \frac{x^{m-1}+x^{n-1}}{(1+x)^{m+n}} d x
$$

(or)
16. Express $\int_{0}^{1} x^{p}\left(1-x^{q}\right)^{m} d x$ in terms of Gamma functions.

Hence Evaluate $\int_{0}^{1} x^{3}(1-\sqrt{x}) d x$
17. Verify Stokes theorem when $F=\left(2 x y-x^{2}\right) i-\left(x^{2}-y^{2}\right) j$ and C is the boundary of the region enclosed by the parabolas $y^{2}=x$ and $x^{2}=y$.
(or)
18. Verify Gauss divergence theorem for $F=x^{2} i+y^{2} j+z^{2} k$ where S is the surface of the cuboid formed by the planes $x=0, x=a$, $y=0, \quad y=b, z=0$ and $z=c$.
19. Find a reduction formula for $\int \sin ^{n} x d x$ (n is positive integer) (or)
20. Change the order of integration in $\int_{0}^{4} \int_{\frac{x^{2}}{4}}^{2 \sqrt{x}} d y d x$ and then evaluate it.

