SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act,1956)
Course \& Branch :B.E/B.Tech - Common to ALL Branches (Except Bio groups)
Title of the Paper :Engineering Mathematics - II Max. Marks :80
Sub. Code :6C0016
Date :10/05/2010

Time : 3 Hours
Session :FN

$$
\text { PART }-\mathrm{A} \quad(10 \times 2=20)
$$

Answer ALL the Questions

1. If $\tan (x / 2)=\tanh (y / 2)$ prove that $\cos x \operatorname{coshy}=1$.
2. If $x+\frac{1}{x}=2 \cos \alpha, y+\frac{1}{y}=2 \cos \beta, z+\frac{1}{z}=2 \cos \gamma$, prove that
$x y z+\frac{1}{x y z}=\cos (\alpha+\beta+\gamma)$.
3. Find the equation of the line passing through $(2,3,4)$ and perpendicular to the plane $y+3 x+2 z=6$.
4. Find the coordinates of centre and radius of the sphere $2 x^{2}+2 y^{2}+2 z^{2}-4 x+8 y+10 z+9 / 2=0$.
5. Evaluate $I=\int_{0}^{\frac{\pi}{2}} \sqrt{\tan \theta d \theta}$
6. Evaluate $\int_{0}^{\infty} x^{6} 5^{-x} d x$.
7. Find the directional derivative of $f(x, y, z)=2 x^{2}+3 y^{2}+z^{2}$ at the point $\mathrm{P}(2,1,3)$ in the direction of $\mathbf{a}=\mathbf{i} \mathbf{-} \mathbf{2 k}$.
8. Evaluate $\iint_{S}\left(x^{3} d y d z+x^{2} y d z d x+x^{2} z d x d y\right)$, where S is the surface of the cube $\mathrm{x}=0, \mathrm{y}=0, \mathrm{z}=0, \mathrm{x}=1, \mathrm{y}=1, \mathrm{z}=1$.
9. Prove that $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$
10. Evaluate $\int_{0}^{a b}(x+y) d x d y$.

$$
\begin{array}{cl}
\text { PART - B } & (5 \times 12=60) \\
\text { Answer ALL the Questions } &
\end{array}
$$

11. (a) Solve approximately $\cos \left(\frac{\pi}{3}+\theta\right)=0.49$.
(b) Separate into real and imaginary parts of $\tan ^{-1}(x+i y)$. (or)
12. Expand $\cos ^{5} \theta \sin ^{7} \theta$ in a series of sines of multiples of θ.
13. (a) The plane $x-y-z=2$ is rotated through 90° about its line of intersection with the plane $x+2 y+z=2$. Find its equation in the new position.
(b) Find the equation of the spheres passing through the circle $x^{2}+y^{2}+z^{2}-6 x-2 z+5=0, y=0$ and touching the plane $3 x+$ $4 \mathrm{z}+5=0$.

(or)

14. Find the shortest distance and its equation between the lines.

$$
\frac{x-6}{3}=\frac{y-7}{-1}=\frac{z-4}{1} \text { and } \frac{x}{-3}=\frac{y+9}{2}=\frac{z-2}{4} .
$$

15. Prove $\beta\left(n, \frac{1}{2}\right)=2^{2 n-1} \beta(n, n)$ and hence deduce the duplication formula.
(or)
16. (a) Evaluate $\int_{0}^{1} \frac{d x}{\sqrt{\log (1 / x)}}$.
(b) Prove that $\beta(m, n)=\Gamma(m) \Gamma(n) / \Gamma(m+n)$.
17. Verify divergence theorem for $\mathrm{F}=(\mathrm{x} 2-\mathrm{yz}) \mathrm{I}+(\mathrm{y} 2-\mathrm{zx}) \mathrm{j}+(\mathrm{z} 2-$ $\mathrm{xy}) \mathrm{k}$ taken over rectangular parallelepiped $0 \leq \mathrm{x} \leq \mathrm{a}, 0 \leq \mathrm{y} \leq \mathrm{b}, 0$ $\leq \mathrm{z} \leq \mathrm{c}$.
(or)
18. Determine $f(r)$ so that the vector $f(r) r$ is both solenoidal and irrotational.
19. (a) Evaluate by changing the order of integration $\int_{0}^{1 \sqrt{2-x^{2}}} \frac{x d y d x}{\sqrt{x^{2}+y^{2}}}$.
(b) Derive the reduction formula for $\int_{0}^{\pi / 2} \sin ^{m} x \cos ^{n} x d x$.
(or)
20. (a) Evaluate $\int_{0}^{\log a} \int_{0}^{x+y} \int_{0}^{x} e^{(x+y+z)} d z d y d x$.
(b) Prove that $\int_{0}^{\pi / 2} \log \sin x d x=-\frac{\pi}{2} \log 2$.
