## SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act, 1956)
Course \& Branch: B.E/B.Tech
Title of the paper: Engineering Mathematics - II
(Common to all branches except Bio groups)

Semester : II
Sub.Code: 6C0016
Date: 21-05-2007

Max. Marks: 80
Time: 3 Hours
Session: FN

## PART - A

$(10 \times 2=20)$

## Answer ALL the Questions

1. Separate $\sin (x+i y)$ in to real and imaginary parts.
2. State Demoivre's Theorem.
3. Find the equation of the plane passing through $(1,2,3)$ parallel to $4 x+5 y-3 z=7$.
4. Find the equation of the sphere whose centre is $(2,-3,1)$ and radius is 5 units.
5. Prove that $\int x^{4} e^{-x^{2}} d x=\frac{3}{8} \sqrt{\pi}$
6. Find the value of $\int_{0}^{\frac{\pi}{2}} \sin ^{5} \theta \cos ^{7} \theta d \theta$.
7. Find the values of the constants $\mathrm{a}, \mathrm{b}, \mathrm{c}$, so that
$\vec{F}=\left(a x y+b z^{3}\right) \vec{i}+\left(3 x^{2}-c z\right) \vec{j}+\left(3 x z^{2}-y\right) \vec{k}$ may be irrotational.
8. Prove that curl $(\operatorname{grad} \phi)=0$.
9. Evaluate $\int_{0}^{2} \int_{0}^{1} \int_{0}^{3} d z d y d x$.
10. Evaluate $\int_{0}^{1} \int_{0}^{2} x y d y d x$
PART - B
$(5 \times 12=60)$
Answer All the Questions
11. (a) Expand $\cos 7 \theta$ in descending powers of $\cos \theta$.
(b) If $\mathrm{u}=\log \tan \left(\frac{\pi}{4}+\frac{\theta}{2}\right)$ then prove that $\tanh \left(\frac{u}{2}\right)=\tan \left(\frac{\theta}{2}\right)$
(or)
12. (a) Separate $\tan ^{-1}(x+$ iy $)$ in to real and imaginary parts.
(b) Prove that $\sinh ^{-1} x=\log \left(x+\sqrt{x^{2}+1}\right)$
13. Find the shortest distance between the lines

$$
\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1} \text { and } \frac{x}{1}=\frac{y-7}{-3}=\frac{z+7}{2}
$$

14. Show that the lines
$\frac{x-3}{3}=\frac{y-8}{-1}=\frac{z-3}{1}$ and $\frac{x+3}{-3}=\frac{x+7}{2}=\frac{z-6}{4}$ intersect. Find
the coordinates of the point of intersection and the equation to the plane containing the,
15. (a) Prove that $\beta(m, n)=\frac{\Gamma m \Gamma n}{\Gamma m+n}$
(b) Find the values of $\int_{0}^{\frac{\pi}{2}} \sqrt{\sin \theta} d \theta \int_{0}^{\frac{\pi}{2}} \frac{d \theta}{\sqrt{\sin \theta}}$
(or)
16. (a) Find the value of $\iint x^{m} y^{n} d x d y$ taken over the area $x \geq 0, y \geq 0, x+y \leq 1$ in terms of gamma functions.
(b) Prove that $\beta(m, n+1)+\beta(m+1, n)=\beta(m, n)$.
17. Verify Green's theorem in a plane for $\int_{c}\left[\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y\right]_{\text {where } \mathrm{c}}$ is the boundary of the region defined by the lines $x=0, y=0$ and $x+y=1$. (or)
18. Verify

Theorem for $\vec{F}=x^{2} \vec{i}+z \vec{j}+y z \vec{k}$ over the cube formed by $x= \pm 1, y= \pm 1$, $z= \pm 1$
19. Change the order of integration $\int_{0}^{4} \int_{\frac{x^{2}}{4}}^{2 \sqrt{x}} d y d x$ and then evaluate it. (or)
20. Establish the reduction formula for $e^{a x} x^{n}$.

