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PART – A                (10 x 2 = 20) 

          Answer ALL the Questions 

 

1. Separate sin (x + iy) in to real and imaginary parts. 

 

2. State Demoivre’s Theorem. 

 

3. Find the equation of the plane passing through (1, 2, 3) parallel to 

4x + 5y – 3z = 7. 

 

4. Find the equation of the sphere whose centre is (2, -3, 1) and 

radius is 5 units. 

5. Prove that 
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6. Find the value of 
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7. Find the values of the constants a, b, c, so that 

 ( ) ( ) ( )kyxzjczxibzaxyF −+−++= 223 33  may be 

irrotational.  

 



8. Prove that curl (grad φ) = 0. 

9. Evaluate 
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10. Evaluate 
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PART – B      (5 x 12 = 60) 

Answer All the Questions 

 

11. (a) Expand Cos 7θ in descending powers of cosθ. 

 

 (b) If u = log tan 
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(or) 

12. (a) Separate tan-1(x + iy) in to real and imaginary parts. 

  

 (b) Prove that sinh-1 x = log ( )12 ++ xx  

 

13. Find the shortest distance between the lines 
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(or) 

14. Show that the lines 
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the coordinates of the point of intersection and the equation to the 

plane containing the, 

 

15. (a) Prove that 
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 (b) Find the values of θ
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16. (a) Find the value of ∫ ∫ x
m
 y

n dxdy taken over the area 

 x ≥ 0, y ≥ 0, x + y ≤ 1 in terms of gamma functions. 

(b) Prove that β(m, n + 1) + β(m + 1, n) = β(m, n). 

 

17. Verify Green’s theorem in a plane for 
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6483 22 −+−∫ where c is the boundary of 

the region defined by the lines x = 0, y = 0 and x + y = 1. 

(or) 

18. Verify gauss-Divergence Theorem for 

kyzjzixF ++= 2
over the cube formed by x = ± 1, y = ±1, 

z = ±1 

19. Change the order of integration  
∫∫
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(or) 

20. Establish the reduction formula for eax
 x

n. 
 

 

 

 


