SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act, 1956)

Course & Branch: B.E/B.Tech – Common to ALL Branches	
(Except Bio Groups)	
Title of the paper: Engineering Mathematics - II	
Semester: II	Max. Marks: 80
Sub.Code: ET202A(2002/2003/2004/2005)	Time: 3 Hours
Date: 04-12-2008	Session: AN

(10 x 2 = 20)

Answer All the Questions

PART - A

Show that $x^7 - 3x^4 + 2x^3 - 1 = 0$ has at least four imaginary roots.

- 2. If α , β , γ are the roots of the equation $3x^3 + 6x^2 9x + 2 = 0$ find the value of $\sum \frac{\alpha}{\beta}$.
- 3. Find the radius of curvature at (1, 0) on $x = e^t \text{Cost}$, $y = e^t \text{Sin t}$.
- 4. Find the envelope of the family of lines $y = mx + am^2$.
- 5. Obtain the particular integral of $(D^2 2D + 5) y = \cos 2x$.
- 6. Solve the equation $\left(\frac{dy}{dx}\right)^2 8\frac{dy}{dx} + 15 = 0.$

1.

- 7. The time period of a particle executing simple harmonic motion is 20 seconds. Four seconds after it passes through the centre of oscillation, its velocity is 3 m/s. Find its amplitude.
- 8. A particle falls under gravity in a medium whose resistance is mk times the velocity. Write the equation of motion of particle.
- 9. Find the directional derivative of $\phi = x^2 y^2 z^2$ at the point (1, 1, 1) in the direction $\hat{i} + \hat{j} + \hat{k}$.
- 10. Find the value of 'a' so that the vector

 $\overline{F} = (x+3y)\hat{i} + (ay-3z)\hat{j} + (x=3z)\hat{k}$ is solenoidal.

Answer All the Questions

11. Find the equation whose root are the reciprocal of the roots of $x^4 - 7x^3 + 8x^2 + 9x - 6 = 0$.

(or)

- 12. Transform the equation $2x^3 9x^2 + 13x 6 = 0$ into one in which the second term is missing and hence solve the given equation.
- 13. Find the equation of circle of curvature of the parabola $y^2 = 12x$ at the point (3, 6).

(or)

- 14. A rectangle box open at the top is to have a volume of 32cc. Find the dimension of the box, that requires the least material for its construction.
- 15. Solve $x^2 D^2 y 2xDy 4y = x^2 + 2log x$. (or)

16. Solve
$$\frac{dx}{dt} + 2y = Sin 2t$$
, $\frac{dy}{dt} - 2x = Cos 2t$.

- 17. An electric circuit contains a resistance R and condenser of capacitance C in series and an emf E Sin ω t applied to it. The charge on the condenser is given by $R \frac{dq}{dt} + \frac{q}{c} = ESin \ \omega t$. Find q where the initial charge on the condenser is zero.
 - (or)
- 18. The differential equation satisfied by a beam with a uniform loading ω Kg/m with one end fixed and other end subject to a tensile force P is given by $EI \frac{d^2 y}{dx^2} = py \frac{\omega x^2}{2}$. Find the equation to the elastic curve subject to boundary conditions y = 0 at x = 0 and $\frac{dy}{dx} = 0$ at x = 0.
- 19. Show that $\nabla^2 r^n = n(n+1)r^{n-2}$ and hence $duce \nabla^2 \left(\frac{1}{r} = 0\right)$ (or)
- 20. Verify Gauss divergence theorem for $\overline{F} = 4xz\hat{i} y^2\hat{j} + yz\hat{k}$ over the cube bounded by x = 0, x = 1, y = 0, y = 1. z = 0 and z = 1.