SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act, 1956)
Course \& Branch: B.E/B.Tech - Common to ALL Branches
(Except Bio Groups)
Title of the paper: Engineering Mathematics - II
Semester: II
Sub.Code: ET202A(2002/2003/2004/2005)
Date: 04-12-2008
Max. Marks: 80
Time: 3 Hours
Session: AN

PART - A

(10 x $2=20$)

Answer All the Questions

1. Show that $x^{7}-3 x^{4}+2 x^{3}-1=0$ has atleat four imaginary roots.
2. If α, β, γ are the roots of the equation $3 x^{3}+6 x^{2}-9 x+2=0$ find the value of $\sum \frac{\alpha}{\beta}$.
3. Find the radius of curvature at $(1,0)$ on $x=e^{t} \operatorname{Cost}, \mathrm{y}=\mathrm{e}^{\mathrm{t}} \operatorname{Sin} \mathrm{t}$.
4. Find the envelope of the family of lines $y=m x+a m^{2}$.
5. Obtain the particular integral of $\left(D^{2}-2 D+5\right) y=\operatorname{Cos} 2 x$.
6. Solve the equation $\left(\frac{d y}{d x}\right)^{2}-8 \frac{d y}{d x}+15=0$.
7. The time period of a particle executing simple harmonic motion is 20 seconds. Four seconds after it passes through the centre of oscillation, its velocity is $3 \mathrm{~m} / \mathrm{s}$. Find its amplitude.
8. A particle falls under gravity in a medium whose resistance is mk times the velocity. Write the equation of motion of particle.
9. Find the directional derivative of $\phi=x^{2} y^{2} z^{2}$ at the point $(1,1,1)$ in the direction $\hat{i}+\hat{j}+\hat{k}$.
10. Find the value of 'a' so that the vector $\bar{F}=(x+3 y) \hat{i}+(a y-3 z) \hat{j}+(x=3 z) \hat{k}$ is solenoidal.

Answer All the Questions

11. Find the equation whose root are the reciprocal of the roots of $x^{4}-7 x^{3}+8 x^{2}+9 x-6=0$.
12. Transform the equation $2 x^{3}-9 x^{2}+13 x-6=0$ into one in which the second term is missing and hence solve the given equation.
13. Find the equation of circle of curvature of the parabola $y^{2}=12 x$ at the point $(3,6)$.
(or)
14. A rectangle box open at the top is to have a volume of 32 cc . Find the dimension of the box, that requires the least material for its construction.
15. Solve $x^{2} D^{2} y-2 x D y-4 y=x^{2}+2 \log x$.

> (or)
16. Solve $\frac{d x}{d t}+2 y=\operatorname{Sin} 2 t, \frac{d y}{d t}-2 x=\operatorname{Cos} 2 t$.
17. An electric circuit contains a resistance R and condenser of capacitance C in series and an emf E Sin ωt applied to it. The charge on the condenser is given by $R \frac{d q}{d t}+\frac{q}{c}=E \operatorname{Sin} \omega t$. Find q where the initial charge on the condenser is zero.
(or)
18. The differential equation satisfied by a beam with a uniform loading $\omega \mathrm{Kg} / \mathrm{m}$ with one end fixed and other end subject to a tensile force P is given by $E I \frac{d^{2} y}{d x^{2}}=p y-\frac{\omega x^{2}}{2}$. Find the equation to the elastic curve subject to boundary conditions $\mathrm{y}=0$ at $\mathrm{x}=0$ and $\frac{d y}{d x}=0$ at $\mathrm{x}=0$.
19. Show that $\nabla^{2} r^{n}=n(n+1) r^{n-2}$ andhencede duce $\nabla^{2}\left(\frac{1}{r}=0\right.$. $)$
(or)
20. Verify Gauss divergence theorem for $\bar{F}=4 x z \hat{\boldsymbol{i}}-y^{2} \hat{\boldsymbol{j}}+y z \hat{\boldsymbol{k}}$ over the cube bounded by $\mathrm{x}=0, \mathrm{x}=1, \mathrm{y}=0, \mathrm{y}=1 . \mathrm{z}=0$ and $\mathrm{z}=1$.

