DipIETE - ET / CS (OLD SCHEME)

Code: DE01 / DC01
Time: 3 Hours
JUNE 2011
Subject: MATHEMATICS - I
Max. Marks: 100
NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. How many terms are there in the sequence

3, 6, 9, 12, 111 ?
(A) 34
(B) 36
(C) 37
(D) 33
b. If $\sin \mathrm{A}=\frac{3}{5}$ and $\cos \mathrm{B}=\frac{9}{41}, 0<\mathrm{A}<\frac{\pi}{2}, 0<\mathrm{B}<\frac{\pi}{2}$, find the value of $\sin (A+B)$
(A) $-\frac{133}{205}$
(B) $\frac{187}{205}$
(C) $\frac{156}{205}$
(D) $\frac{-84}{205}$
c. The area of triangle whose vertices are $(6,3),(-3,5) \&(4,-2)$ is :
(A) 24.5 sq. unit
(B) 24 sq. unit
(C) 25.5 sq. unit
(D) 25 sq unit
d. Evaluate $\underset{x \rightarrow 0}{ } \operatorname{lt}^{\cos 2 x-1} \frac{\cos -1}{\cos x}$
(A) 2
(B) $\frac{1}{2}$
(C) 4
(D) $\frac{1}{4}$
e. If $y=\tan ^{-1}\left(\frac{1+\tan x}{1-\tan x}\right)$ then $\frac{d y}{d x}$ is :
(A) 1
(B) -1
(C) 0
(D) $\frac{1}{2}$
f. Evaluate $\int \frac{1}{16+9 x^{2}} d x$
(A) $\frac{1}{6} \tan ^{-1}\left(\frac{3 x}{4}\right)+C$
(B) $\frac{1}{12} \tan ^{-1}\left(\frac{3 x}{4}\right)+C$
(C) $\tan ^{-1}\left(\frac{3 x}{4}\right)+C$
(D) $-\frac{1}{12} \tan ^{-1}\left(\frac{3 \mathrm{x}}{4}\right)+\mathrm{C}$
g. Evaluate $\int_{0}^{1} \mathrm{xe}^{\mathrm{x}} \mathrm{dx}$
(A) 0
(B) -1
(C) 2
(D) 1
h. If $\frac{d y}{d x}=x \log x$ then the value of y will be:
(A) $\frac{\mathrm{x}^{2}}{2} \log \mathrm{x}+\frac{1}{2}\left(\frac{\mathrm{x}^{2}}{2}\right)+\mathrm{C}$
(B) $\frac{x^{2}}{2} \log x-\frac{1}{2}\left(\frac{x^{2}}{2}\right)+C$
(C) $\frac{\mathrm{x}}{2} \log \mathrm{x}+\frac{1}{2}\left(\frac{\mathrm{x}^{2}}{2}\right)+\mathrm{C}$
(D) $\frac{\mathrm{x}^{2}}{2} \log \mathrm{x}-\frac{\mathrm{x}^{2}}{2}+\mathrm{C}$
i. From a class of 32 students, 4 are to be chosen for a competition. In how many ways can this be done?
(A) 35960
(B) 35900
(C) 35940
(D) 35980
j. Find the equation of the line which makes intercepts $-4 \& 5$ on the axes.
(A) $5 \mathrm{x}+4 \mathrm{y}-20=0$
(B) $5 \mathrm{x}+4 \mathrm{y}+20=0$
(C) $5 x-4 y+20=0$
(D) $-5 x+4 y+20=0$

Answer any FIVE Questions out of EIGHT Questions.
 Each question carries 16 marks.

Q. 2 a. Find three numbers in G.P. whose sum is 13 and the sum of whose squares is 91 .
b. If x is numerically so small that x^{2} and higher power of x may be neglected then prove that $\frac{(1-2 x)^{2 / 3}(4+5 x)^{3 / 2}}{\sqrt{1-x}} \simeq 8+\frac{25 x}{3}$
Q. 3 a. Prove that:

$$
\begin{equation*}
\frac{\sin A-\sin 3 A+\sin 5 A-\sin 7 A}{\cos A-\cos 3 A-\cos 5 A+\cos 7 A}=\cot 2 A \tag{8}
\end{equation*}
$$

b. In any triangle ABC , prove that:
$(b-c) \cot \frac{A}{2}+(c-a) \cot \frac{B}{2}+(a-b) \cot \frac{C}{2}=0$
Q. 4 a. Prove by the principle of mathematical induction that for all $n \in N$:
$1+4+7+\ldots \ldots \ldots \ldots \ldots+(3 n-2)=\frac{1}{2} n(3 n-1)$
b. If p be the length of perpendicular from the origin to the line whose intercepts on the axes are $\mathrm{a} \& \mathrm{~b}$ respectively then show that $\frac{1}{\mathrm{p}^{2}}=\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}$
Q. 5 a. Find the equation of circle which passes through the points $(5,-8),(2,-9)$ \& (2,1). Find also the co-ordinates of its centre \& radius.
b. Find the equation of the parabola whose focus is $(1,-1)$ and whose vertex is $(2,1)$. Also find its axis.
Q. 6 a. Differentiate $y=a^{x}$ w.r.t. ' x ' from first principle.
b. If $y=\log \sqrt{\frac{a+b \sin x}{a-b \sin x}}$, then find 'dy' $\frac{d x}{}$
Q. 7 a. Find all the points of maxima minima and the corresponding maximum and minimum values of the function:

$$
\begin{equation*}
f(x)=-x^{3}+12 x^{2}-5 \tag{8}
\end{equation*}
$$

b. Evaluate $\int \frac{\log x}{x^{2}} d x$
Q. 8 a. Evaluate $\int_{0}^{\pi / 4} \log (1+\tan x) d x$
b. Evaluate $\int \frac{\mathrm{x}-1}{\mathrm{x}^{3}+1} \mathrm{dx}$
Q. 9 a. Find the area of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a>b$
b. Solve the differential equation

$$
\begin{equation*}
(x+y+1) \frac{d y}{d x}=1 \tag{8}
\end{equation*}
$$

