Diplete – Et / CS (OLD SCHEME)

Code: DE01 / DC01 Time: 3 Hours

DECEMBER 2010

Subject: MATHEMATICS - I Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after half an hour of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

(2x10)

a. The equation whose roots are double the roots of $x^2 - bx + c = 0$ is

$(A) 4x^2 - 2bx + c = 0$	$(B) x^2 - 2bx + 4c = 0$
(C) $x^2 - 2bx + 2c = 0$	(D) $x^2 - 4bx + 2c = 0$

b. $\lim_{x \to 0} \frac{\tan x - \sin x}{x^3}$ is

(A) 0	(B) 1
(C) $\frac{1}{2}$	(D) $\frac{1}{4}$

c. If A(2, 1), B(4, 5) and C(K, -1) lie on a straight line, then value of k is

(A) 1	(B) 2
(C) 3	(D) 0

d. The equation of the straight line with slope 3 and x-intercept 2 is

(A)
$$y=3x+2$$
 (B) $y=3x-2$
(C) $y=3x+6$ (D) $y=3x-6$

e. If $y = \log(\sec x + \tan x)$, the value of $\frac{dy}{dx}$ is

(A) $\frac{1}{\sec x + \tan x}$	(B) $\sec x + \tan x$
(C) sec x	(D) tan x

f. The value of $\int_0^{\frac{\pi}{2}} \frac{dx}{1+\tan x}$ is

(A) 0 (B)
$$\pi$$

(C) $\frac{\pi}{2}$ (D) $\frac{\pi}{4}$

g. The area bounded by $y = \sin x$, the x – axis between x = 0 and $x = \pi$ is

(A) 1	(B) 2
(C) 3	(D) 4

h. The solution of the differential equation $\frac{dy}{dx} + \frac{y}{x} = 0$ is

$(\mathbf{A}) \mathbf{x} + \mathbf{y} = \mathbf{c}$	$(\mathbf{B}) \ \mathbf{x}^2 + \mathbf{y}^2 = \mathbf{c}$
$(\mathbf{C}) \mathbf{x} \mathbf{y} = \mathbf{c}$	(D) $\frac{\mathbf{x}}{\mathbf{v}} = \mathbf{c}$

i. The value of $\tan^{-1}\left[\sqrt{\frac{1-\cos x}{1+\cos x}}\right]$ is

(A) x (B)
$$\frac{x}{2}$$

(C)
$$\frac{x}{4}$$
 (D) 0

The value of $\frac{\sin 5A - \sin 3A}{\cos 5A + \cos 3A}$ is j. (A) tan 5A **(B)** tan 3A (C) tan 2A (D) tan A

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- a. The sum of an infinite number of terms of a G.P. is 9 and sum of the Q.2 squares of these terms is $\frac{81}{5}$. Find the G.P. (8)
 - If the rth term to the expansion of $(1 + x)^{20}$ has its coefficient equal to that b. of $(r+4)^{\text{th}}$ term. Find r. (8)
- If $A + B + C = \pi$, show that $\tan 2A + \tan 2B + \tan 2C = \tan 2A$.tan 2B.tan **Q.3** a. 2C(8)

2

- b. If a, b, c be the sides opposite to the angles A, B, C for a triangle ABC, show that $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$. (8)
- Q.4 a. Find the equation of a straight line when the length of perpendicular on it from the origin is given as 'p' and the inclination of this perpendicular to x-axis is given as α . (8)

b. Find the angle between the straight lines
$$y - \sqrt{3x - 5} = 0$$
 and $\sqrt{3}y - x + 6 = 0$. (8)

- **Q.5** a. Find the equation of the circle circumscribing the triangle formed by the lines x + y = 2, x y = 0 and 3x 4y = 6. (8)
 - b. Find the focus, vertex, latus rectum and directrix of the parabola $(y+3)^2 = 2(x+2)$ $(4 \times 2 = 8)$

Q.6 a. If
$$\sin y = x \sin (a+y)$$
, show that $\frac{dy}{dx} = \frac{\sin^2(a+y)}{\sin a}$ (8)

- b. Show that the sum of the intercepts on axes of any tangent to the curve $\sqrt{x} + \sqrt{y} = \sqrt{a}$ is constant. (8)
- Q.7 a. Find the local maximum and minimum values of the function f(x) = (x-1) (x-2) (x-3) (4+4)

b. Evaluate
$$\int \sqrt{\left(\frac{2+x}{2-x}\right)} dx$$
 (8)

Q.8 a. Find the area bounded by the axis of x and the curve $y = 1 - x^2$ (8)

b. Evaluate
$$\int_{0}^{\pi/4} \log(1 + \tan x) dx$$
 (8)

Q.9 Solve any <u>TWO</u> of the following differential equations:-

(i)
$$\sec^2 x \tan y dx + \sec^2 y \tan x dy = 0$$

(ii) $x \frac{dy}{dx} + y = \log x$
(iii) $x dy - y dx = \sqrt{x^2 + y^2} dx$ (8+8)