\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY

B.E. Sem-V ${ }^{\text {th }}$ Examination December 2010

Subject code: 150303
Date: 16 /12/2010

Subject Name: Signals \& systems
 Time: $03.00 \mathrm{pm}-05.30 \mathrm{pm}$
 Total Marks: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Define signal \& explain its classification with diagrams. 07
(b) Explain any seven properties of Z-transform in brief. 07
Q. 2 (a) $\mathrm{X}(\mathrm{n})=\{2,3,-1,4\}$
plot: (i) $x(n+3)$
(ii) $x(-n-2)$
(iii) $\mathrm{x}(\mathrm{n}+1) \cdot \mathrm{u}(-\mathrm{n}+1)$
(b) Give the classification of system. 07

OR
(b) (i) Determine zero-input response of $\left(D^{2}+4 D+40\right) y(t)=(D+2) x(t)$ with initial 07 condition $\mathrm{y}_{0}(0)=2 \& \mathrm{dy}_{0}(0) / \mathrm{dt}=16.78$.
(ii) solve: $\left(D^{2}+2 D\right) y_{0}(t)=0$. If $y_{0}(0)=1 \& d y_{0}(0) / d t=4$.
Q. 3 (a) Explain the significance of $h(t)$ and determine unit impulse response of 07 $(D+2) y(t)=(3 D+5) x(t)$.
(b) Define convolution integral and discuss its properties. 07

OR
Q. 3 (a) Define even and odd function. Discuss their properties and explain how 07 every signal $\mathrm{x}(\mathrm{t})$ can be expressed as a sum of even and odd component.
(b) Explain sampling theorem with proof.07
Q. 4 (a) Write down the advantages of digital signal processing. $\mathbf{0 7}$
(b) $\mathrm{Y}[\mathrm{n}+2]-0.6 \mathrm{y}[\mathrm{n}+1]-0.16 \mathrm{y}[\mathrm{n}]=5 \mathrm{x}[\mathrm{n}+2]$. Find the total response if initial 07 condition $y[-1]=0, y[-2]=25 / 4 \&$ $\mathrm{x}[\mathrm{n}]=4^{-\mathrm{n}} \mathrm{u}[\mathrm{n}]$.

OR
Q. 4 (a) Find the Z-transform: (i) $\sin \beta n u(n) \quad 07$
(ii) $-\alpha^{n} u(-n-1)$
Q. 4 (b) Describe the properties of DFT. 07
Q. 5 (a) Explain Bilateral Z-transform. 07
(b) Find inverse Z-transform. 07
(i) $\mathrm{X}(\mathrm{z})=\left(1-1 / 2 \mathrm{Z}^{-1}\right) /\left(1+3 / 4 \mathrm{Z}^{-1}+1 / 8 \mathrm{Z}^{-2}\right)$
(ii) $X(z)=10 z /(z-1)(z-2)$

OR
Q. 5 (a) Determine the system response.
(i) $\mathrm{x}(\mathrm{t})=10 \mathrm{e}^{-3 \mathrm{t}} \mathrm{u}(\mathrm{t})$ and $\mathrm{h}(\mathrm{t})=\left(2 \mathrm{e}^{-2 \mathrm{t}}-\mathrm{e}^{-t}\right) \mathrm{u}(\mathrm{t})$
(ii) $x(t)=2 u(t) \& h(t)=6 . e^{-t} u(t)$
(b) Write a short note on AM and FM.

