

Diploma in Civil Engineering Term-End Examination December, 2007

BCE-041: THEORY OF STRUCTURES II

Time: 2 hours Maximum Marks: 70

Note: Attempt Question No. 1 which is **compulsory** and any other **three** questions. Assume suitable data wherever necessary and mention it clearly.

- 1. Choose the most appropriate answer from the given alternatives : $5\times 2=10$
 - (i) Maximum depth of neutral axis (X_{u max}) for RCC flexural member in limit state design method for Fe 415 grade of steel is
 - (a) 0.43 d
 - (b) 0.53 d
 - (c) 0.48 d
 - (d) 0.46 d
 - (ii) Basic values of span to depth (upto span 10 m) to control deflection of RCC flexural members in Limit State Method for the case of simply supported beam is

2. A rectangular beam of clear span of 6 m is simply supported on 300 mm wide supports. This beam has to carry uniformly distributed load of 15 kN/m excluding its self weight. Design the beam using M-20 grade of concrete, Fe 415 grade of steel for both tension and shear reinforcement.

20

3. An RC beam of 4.5 m effective span and section of 300 mm and 500 mm (overall depth) is reinforced with 2 bars of 16 mm ϕ and 1 bar of 12 mm ϕ . Check whether beam is under reinforced or over reinforced assuming permissible stress in steel (σ_{st}) as 230 N/mm² and that in concrete (σ_{cbc}) as 7 N/mm² and effective concrete cover of 50 mm. Also determine the permissible U.D.L. inclusive of its self weight, if beam is simply supported.

20

4. Design longitudinal and transverse reinforcement for a rectangular beam of 300 mm and 450 mm (effective depth). This beam is to resist a factored bending moment of 110 kN-m, factored torsional moment 10 kN-m and factored shear force 110 kN. Adopt M-20 grade of concrete and Fe 415 grade of steel.

20

5. Design the reinforcement for a column of size 400 mm × 600 mm subjected to an axial load of 1800 kN. The column has un-supported length of 3.5 m and its both ends are effectively held in position and restrained against rotation. Adopt M-20 grade of concrete and Fe 415 grade of steel.

20

6. Write short notes on any **four** of the following: $4 \times 5 = 20$

20

- (a) Various types of staircases
- (b) Design of underground circular tank
- (c) Two way shear in RCC footing
- (d) Limit state of serviceability
- (e) Development length
- (f) Effective flange width of 'T' beam
- 7. Determine the permissible U.D.L. inclusive of its self weight for 'T' beam section (Figure 1). This beam has effective span of 7.5 m and is simply supported on both ends. Adopt M-25 grade of concrete and Fe 415 grade of steel.

110 mm

440 mm

6 bars of 25 mm \$\phi\$

50 mm

Figure 1

20

8. Design a slab for a residential floor of clear size $4.5 \text{ m} \times 5.5 \text{ m}$. This slab is simply supported on all sides on masonry walls of 300 mm thickness. Imposed load on the slab is 2 kN/m^2 and the corners are prevented from lifting. Adopt M-20 grade of concrete and Fe 415 grade of steel.

Type of Four ed	Short span coefficients α_x Values of l_y/l_x						Long span coeff. α _y for all values of l _y /l _x		
Positive	1.0	1.1	1.2	1.3	1.4	1.5	1.75	2.0	
moments at mid span	0.056	0.064	0.072	0.079	0.085	0.089	0.100	0.107	0.056

Note: The following design data may be used wherever required.

A. Design Shear Strength of Concrete τ_c , N/mm² (Limit – State Method).

100 A _{st} / bd	Concrete M-20	Concrete M-25
0.15	0.28	0.29
0.25	0.36	0⋅36
0.50	0.48	0.49
0.75	0.56	0.57
1.00	0.62	0.64
1.25	0.67	0.70
1.50	0.72	0.74
1.75	0.75	0.78
2.00	0.79	0.82
2.25	0.81	0.85
2.50	0.82	0.88
2.75	0.82	0.90

B. Design Bond stress $\tau_{bd}^{}$ N/mm² (Limit – State Method) for bars in tension.

	Steel Fe 250	Steel Fe 415		
Concrete M-20	1.20	1.92		
Concrete M-25	1.40	2.24		

C. Design Shear Strength of Concrete $\tau_{c\ max.}\ N/mm^2$ (Limit – State Method)

Concrete M-20 2.8

Concrete M-25 3·1

D. For solid slabs, design shear strength of concrete shall be taken as K τ_c . The values of K are as below :

Overall depth of slab (mm)	К
300 or more	1.00
275	1.05
250	1.10
225	1.15
200	1.20
175	1.25
150 or less	1.30

E. Modification factor K_2 for different percentages of tension reinforcement A_{st} in flexural RCC members for stress in steel at service loads, $f_s = 240 \text{ N/mm}^2$, may be taken as below:

100 A _{st} / bd	К ₂
0.2	1.7
0.4	1.32
0.6	1.15
0.8	1.05
1.0	1.0
1.2	0.95
1.4	0.90
1.6	0.88
1.8	0.86
2.0	0.84
2.2	0.82
2.4	0.88
2.6	0.79
2.8	0.78