DECEMBER 2008

Code: DE05

Subject: ELECTRICAL ENGINEERING

Time: 3 Hours Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1	Choose the correct or be	est alternative in the
	following:	(2x10)

- a. If V represent voltage, R represent resistance, I represent current, W represent power then which of the following relation is incorrect
 - (A) $I = \sqrt{W/R}$

(B) $V = \sqrt{WR}$

(C) $W = V^2/R$

- (**D**) None of the above
- b. Ohms law is not applicable to
 - (A) Electronic resistors
- (B) High voltage
- (C) High current densities
- (D) Vacuum diode

- c. An induction motor is
 - (A) Self starting with zero torque.
 - (B) Self starting with very high torque.
 - (C) Self starting with smaller torque.
 - **(D)** None of the above.
- d. In an a.c circuit the ratio kW/kVA is known as
 - (A) Form factor.

(B) Peak factor.

(C) Power factor.

- (D) Load factor.
- e. Which motor would you be select as a drive for an electric clock?
 - (A) D.C series motor.

(B) Universal motor.

	f. For three phase star conne	ected circuit				
	(A) Line voltage = phase v	oltage.				
	(B) Line current = phase constant \mathbf{B}					
	(C) Line current = $\sqrt{3}$ pha	se current.				
	(D) None of the above.					
	g. Iron losses in a DC machine take place in					
	(A) Yoke.	(B) Commutator.				
	(C) Main body.	(D) Armature.				
	h. The efficiency of a Transformer is maximum when					
	(A) it runs at half of full Load.					
	(B) it runs at full Load.(C) its Copper Loss equal to Iron Loss.					
	(D) it runs at overload.	10 HON 2000.				
	i. A three phase 440 V, 50 Hz induction motor has a speed of 950 rpm machine has 6 poles, the % slip would be					
	(A) 10%	(B) 5%				
	(C) 1%	(D) 0.5%				
	j. Starting torque of a single phase induction motor is					
	(A) Uniform	(B) High				
	(C) Low	(D) Zero				
Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.						
Q.2	a. State and explain Kirchot with example.	ff's Current Law and Kirchoff's Voltage Law (8)				
	b. Determine the current flor Fig.1 (8)	owing in each branch of the circuit shown in				

(D) Squirrel cage induction motor.

(C) Synchronous motor.

- **Q.3** a. Define the following A.C quantities
 - (i) R.M.S value of alternating current.
 - (ii) Instantaneous value of alternating current.
 - (iii) Average value or mean value of alternating current.
 - (iv) Amplitude.

(8)

- b. The equation of an alternating current is $i = 42.42 \sin 628t$. Calculate
 - (i) its maximum value
 - (ii) its frequency
 - (iii) its R.M.S value
 - (iv) its average

value

(8)

Q.4 a. What are the different methods of speed control of D.C motors. Explain in brief. (8)

	flux 400rj curre	per pole i pm. If th ent which t	s 0.02wb e shunt the genera	, the armati resistance in ator can deli	are resistance is 220ohm, iver to an ex-	00 conductors e 0.4 ohm an calculate the ternal load if	d the speed maximum the terminal
	volta 440V (8	7.	is	not	to	fall	below
.5		at are the the load?	different	losses in a (6)	transformer.	How these le	osses varies
	560V		loss of 5	600W.Calcu		ull load a copiency at 50% (10)	. •
Q.6	a. E	-	he princ	ciple of (8)	operation	of 3-phase	Induction
		pm. Detern Synchi Slip	mine conous sp	eed.	or has 8 poles of starting.	es. It runs at	a speed of
	(iv)	Rotor speed.	f	frequency	at	the (8)	given
.7	-	plain the to Diversity f	-	eacity factor (8)	, Maximum	load, Annual	load factor

- - b. What factors are considered for the selection of motor for specific engineering application? **(8)**
- **Q.8** Renewable Energy Give Brief the various note on (10)Resources.
 - b. If a generating station has a maximum load of 20MW for the year and the maximum load on the substations were 7.5MW, 6.0MW, 5.5MW, & 4.5MW. Calculate the diversity factor. **(6)**
- **Q.9** Write short notes on

Q.5

Q.7

(i) Energy storage. (8)
(ii) E.M.F equation of transformer. (8)