Roll No.

May 2007

Total No. of Questions: 09]

[Total No. of Pages: 02

J-6018[S-507/18]

[2957]

B.Tech. (Semester - 3rd)

ELECTRONIC DEVICES AND CIRCUITS (EC - 201)

Time: 03 Hours

ON LAND OF LAND

Maximum Marks: 60

Instruction to Candidates:

- 1) Section A is Compulsory.
- 2) Attempt any Four questions from Section B.
- 3) Attempt any Two questions from Section C.

Section - A

Q1)

 $(10 \times 2 = 20)$

- a) What is the relation between the transition capacitance and reverse bias voltage in a p-n diode?
- b) A BJT with $\beta = 49$ and $I_{CO} = I_{CBO} = 1\mu$ A and $I_{B} = 10\mu$ A. Calculate I_{C} ?
- c) Why CE configuration is preferred for cascaded amplifiers?
- d) What is thermal runaway?
- e) What are the requirements of a good biasing circuit?
- f) What are the advantages of voltage series feedback topology?
- g) Compare the performance of FET with MOSFET.
- h) State the working principle of a photodiode.
- i) Explain harmonic distortion in amplifiers.
- j) Why it is advisable to express amplifier gain in dB.

Section - B

 $(4 \times 5 = 20)$

- Q2) Draw the practical circuit of complementary symmetry push-pull amplifier and explain its working.
- Q3) In the fixed-bias circuit of a transistor, $V_{CC} = 15V$, $R_B = 300 \text{ k}\Omega$, $R_B = 2 \text{ k}\Omega$. If $\beta = 100$, $I_{CO}^{**} = 20 \text{ n}A$ and $V_{BE} = 0.7V$. Find the stability factor of Q-point with respect I_{CO} .
 - 04) Explain how an FETI-is used as a VVR

- Q5) Draw two stages of RC-coupled, direct-coupled and transformer-coupled amplifiers and make a chart showing the comparison of three coupling schemes.
- Q6) The open-loop gain of an amplifier is -200. A voltage series negative feedback is used with a feedback ratio of -0.02. The input and output impedances of the amplifier are $2k\Omega$ and $40k\Omega$ respectively in the absence of feedback. Determine the closed-loop gain, input and output impedances when the feedback circuit is completed.

Section - C

 $(2 \times 10 = 20)$

Q7) In a small-signal amplifier shown below, $h_{fe} = 100$, $h_{ie} = 560 Ω$, $R_{C} = 2 kΩ$, $R_{E} = 1 kΩ$, $R_{B} = 600 kΩ$, h_{re} and h_{oe} are negligible.

- (a) Draw the h-parameter equivalent circuit for the amplifier. Calculate the input and output impedances and the voltage gain.
- (b) Give the DC load line of the circuit and find Q-point.
- Q8) (a) Draw the circuit of Wein bridge oscillator using op-amps. Explain its working principle. What is its frequency of oscillations and β requirement?
 - (b) A certain Colpitt oscillator uses a tank circuit with L = 20 mH, C1 = 200 pF and C2 = 300 pF. Calculate the frequency of oscillations.
- **Q9)** (a) Draw the block diagram of regulated power supply and explain the role. (C) See a place of each block. (A) a common a position in the property of the common party of the common party.
 - (b) Draw the circuit of a Class-A direct-coupled power amplifier. Show that the dissipation in the transistor is maximum under quiescent conditions. Obtain the expression for maximum efficiency of the circuit