416352

[Q. Booklet Number]

\title{

Aakash Institute
 Premier Institute in India for Medical Entrance Exams.

Aakash IIT-JE

 IIT-JE}(Divisions of Aakash Educational Services Ltd.)
KOLKATA

WB-JEE-2009

MATHEMATICS QUESTIONS \& ANSWERS

1. If C is the reflecton of $A(2,4)$ in x-axis and B is the reflection of C in y-axis, then $|A B|$ is
(A) 20
(B) $2 \sqrt{5}$
(C) $4 \sqrt{5}$
(D) 4

Ans:(C)
Hints: $\mathrm{A} \equiv(2,4) ; \mathrm{C} \equiv(2,-4) ; \mathrm{B} \equiv(-2,-4)$
$|A B|=\sqrt{(2-(-2))^{2}+(4-(-4))^{2}}=\sqrt{4^{2}+8^{2}}$
$=\sqrt{16+64}=\sqrt{80}=\sqrt{16 \times 5}=4 \sqrt{5}$
2. The value of $\cos 15^{\circ} \cos 7 \frac{1}{2}^{\circ} \sin 7 \frac{1^{\circ}}{2}$ is
(A) $\frac{1}{2}$
(B)
$\frac{1}{8}$
(C)
$\frac{1}{4}$
(D) $\frac{1}{16}$

Ans: (B)
Hints: $\cos 15^{\circ} \cos 7 \frac{1}{2}^{0} \sin 7 \frac{1}{2}^{0}=\frac{1}{2}\left(2 \sin 7 \frac{1}{2}^{0} \cos 7 \frac{1}{2}^{0}\right) \cdot\left(\cos 15^{\circ}\right)$
$\frac{1}{2}\left(\sin 15^{\circ}\right)\left(\cos 15^{\circ}\right)=\frac{1}{4}\left(2 \sin 15^{\circ} \cos 15^{\circ}\right)=\frac{1}{4} \times \sin 30^{\circ}=\frac{1}{8}$
3. The value of integral $\int_{-1}^{1} \frac{|x+2|}{x+2} d x$ is
(A) 1
(B) 2
(C) 0
(D) -1

Ans: (B)
Hints : $I=\int_{-1}^{1} \frac{|x+2|}{x+2} d x \quad, x+2=v \Rightarrow d x=d v$
$\therefore \mathrm{I}=\int_{1}^{3} \frac{|v|}{v} d v=\int_{1}^{3} \frac{v}{v} d v=\int_{1}^{3} d v=2$
4. The line $\mathrm{y}=2 \mathrm{t}^{2}$ intersects the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ in real points if
(A) $|t| \leq 1$
(B) $|t|<1$
(C) $|t|>1$
(D) $|t| \geq 1$

Ans:(A)
Hints: $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1 ; \mathrm{y}=2 \mathrm{t}^{2}$
$\frac{x^{2}}{9}+\frac{4 t^{4}}{4}=1 \Rightarrow \frac{x^{2}}{9}+t^{4}=1 \Rightarrow x^{2}=9\left(1-t^{4}\right)$
$x^{2} \geq 0 \Rightarrow 9\left(1-t^{4}\right) \geq 0 \Rightarrow t^{4}-1 \leq 0$
$\Rightarrow\left(t^{2}-1\right)\left(t^{2}+1\right) \leq 0$
$\Rightarrow t^{2}-1 \leq 0\left(\because t^{2}+1>0\right)$
$\Rightarrow|t| \leq 1$
5. General solution of $\sin \mathrm{x}+\cos \mathrm{x}=\min _{a \in I R}\left\{1, a^{2}-4 a+6\right\}$ is
(A). $\frac{n \pi}{2}+(-1)^{n} \frac{\pi}{4}$
(B) $2 n \pi+(-1)^{n} \frac{\pi}{4}$
(C) $n \pi+(-1)^{n+1} \frac{\pi}{4}$
(D) $n \pi+(-1)^{n} \frac{\pi}{4}-\frac{\pi}{4}$

Ans: (D)
Hints : $\sin x+\cos x=\min _{a \in I R}\left\{1, a^{2}-4 a+6\right\}$
$a^{2}-4 a+6=(a-2)^{2}+2 \therefore \min _{a \in I R}\left(a^{2}-4 a+6\right)=2$
$\therefore \min _{a \in I R}\left\{1, a^{2}-4 a+6\right\}=\min \{1,2\}=1$
$\sin x+\cos x=1 \Rightarrow \frac{1}{\sqrt{2}} \sin x+\frac{1}{\sqrt{2}} \cos x=\frac{1}{\sqrt{2}}$
$\Rightarrow \sin \left(x+\frac{\pi}{4}\right)=\sin \frac{\pi}{4}, \Rightarrow x+\frac{\pi}{4}=n \pi+(-1)^{n} \cdot \frac{\pi}{4}$
$\Rightarrow x=n \pi+(-1)^{n} \frac{\pi}{4}-\frac{\pi}{4}$
6. If A and B square matrices of the same order and $A B=3 I$, then A^{-1} is equal to
(A) 3 B
(B) $\frac{1}{3} \mathrm{~B}$
(C) $3 \mathrm{~B}^{-1}$
(D) $\frac{1}{3} \mathrm{~B}^{-1}$

Ans: (B)
Hints : $\mathrm{AB}=3 \mathrm{I}, \mathrm{A}^{-1} \cdot \mathrm{AB}=3 \cdot \mathrm{~A}^{-1} \mathrm{I} \Rightarrow \mathrm{B}=3 \mathrm{~A}^{-1} \Rightarrow A^{-1}=\frac{1}{3} \mathrm{~B}$
(Divisions of Aakash Educational Services Ltd.)
KOLKATA
7. The co-ordinates of the focus of the parabola described parametrically by $x=5 t^{2}+2, y=10 t+4$ are
(A) $(7,4)$
(B) $(3,4)$
(C) $(3,-4)$
(D) $(-7,4)$

Ans: (A)
Hints : $\mathrm{x}=5 \mathrm{t}^{2}+2 ; \mathrm{y}=10 \mathrm{t}+4,\left(\frac{y-4}{10}\right)^{2}=\left(\frac{x-2}{5}\right)$
or, $(\mathrm{y}-4)^{2}=20(\mathrm{x}-2)$
or, $(y-4)^{2}=20(x-2)$

8. For any two sets A and $B, A-(A-B)$ equals
(A) B
(B) $\mathrm{A}-\mathrm{B}$
(C) $\mathrm{A} \cap \mathrm{B}$
(D) $\mathrm{A}^{\mathrm{C}} \cap \mathrm{B}^{\mathrm{C}}$
Ans: (C)

Hints: $A-(A-B)=A-\left(A \cap B^{c}\right)=A \cap\left(A \cap B^{c}\right)^{c}=A \cap\left(A^{c} \cup B\right)=\left(A \cap A^{c}\right) \cup(A \cap B)=A \cap B$
9. If $\mathrm{a}=2 \sqrt{2}, \mathrm{~b}=6, \mathrm{~A}=45^{\circ}$, then
(A) no triangle is possible
(C) two triangle are possible
(B) one triangle is possible
(D) either no triangle or two triangles are possible

Ans: (A)
Hints : $\mathrm{a}=2 \sqrt{2} ; \mathrm{b}=6 ; \mathrm{A}=45^{0}$
$\frac{a}{\sin A}=\frac{b}{\sin B} \Rightarrow \sin B=\frac{b}{a} \sin A$
$\Rightarrow \sin \mathrm{B}=\frac{6}{2 \sqrt{2}} \sin 45^{\circ}=\frac{3}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}=\frac{3}{2} \Rightarrow$ No triangle is possible since $\sin \mathrm{B}$
10. A Mapping from IN to IN is defined as follows :
$\mathrm{f}: \mathrm{IN} \rightarrow \mathrm{IN}$
$\mathrm{f}(\mathrm{n})=(\mathrm{n}+5)^{2}, \mathrm{n} \in \mathrm{IN}$
(IN is the set of natural numbers). Then
(A) f is not one-to-one
(B) f is onto
(C) f is both one-to-one and onto
(D) f is one-to-one but not onto

Ans: (D)
Hints: $\mathrm{f}: \mathrm{IN} \rightarrow \mathrm{IN} ; \mathrm{f}(\mathrm{n})=(\mathrm{n}+5)^{2}$
$\left(\mathrm{n}_{1}+5\right)^{2}=\left(\mathrm{n}_{2}+5\right)^{2}$
$\Rightarrow\left(\mathrm{n}_{1}-\mathrm{n}_{2}\right)\left(\mathrm{n}_{1}+\mathrm{n}_{2}+10\right)=0$
$\Rightarrow \mathrm{n}_{1}=\mathrm{n}_{2} \rightarrow$ one-to-one
There does not exist $\mathrm{n} \in \mathrm{IN}$ such that $(\mathrm{n}+5)^{2}=1$
Hence f is not onto
11. In a triangle $A B C$ if $\sin A \sin B=\frac{a b}{c^{2}}$, then the triangle is
(A) equilateral
(B) isosceles
(C) right angled
(D) obtuse angled

Ans: (C)
Hints : $\sin \mathrm{A} \sin \mathrm{B}=\frac{\mathrm{ab}}{\mathrm{c}^{2}}$
$\Rightarrow c^{2}=\frac{a b}{\sin A \sin B}=\left(\frac{a}{\sin A}\right)\left(\frac{b}{\sin B}\right)$
$\Rightarrow \mathrm{c}^{2}=\left(\frac{\mathrm{c}}{\sin \mathrm{C}}\right)^{2} \Rightarrow \sin ^{2} \mathrm{C}=1 \Rightarrow \sin \mathrm{C}=1 \Rightarrow \mathrm{C}=90^{\circ}$
12. $\int \frac{d x}{\sin x+\sqrt{3} \cos x}$ equals
(A) $\frac{1}{2} \ln \left|\tan \left(\frac{x}{2}-\frac{\pi}{6}\right)\right|+c$
(B) $\frac{1}{2} \ln \left|\tan \left(\frac{x}{4}-\frac{\pi}{6}\right)\right|+$
(C) $\frac{1}{2} \ln \left|\tan \left(\frac{x}{2}+\frac{\pi}{6}\right)\right|+c$
(D) $\frac{1}{2} \ln \left|\tan \left(\frac{\mathrm{x}}{4}+\frac{\pi}{3}\right)\right|+\mathrm{c}$
where c is an arbitrary constant
Ans: (C)
Hints : $\int \frac{d x}{\sin x+\sqrt{3} \cos x}=\int \frac{d x}{2\left(\frac{1}{2} \sin x+\frac{\sqrt{3}}{2} \cos x\right)}=\frac{1}{2} \int \frac{d x}{\sin \left(x+\frac{\pi}{3}\right)}$
$=\frac{1}{2} \int \operatorname{cosec}\left(x+\frac{\pi}{3}\right) d x=\frac{1}{2} \log \left|\tan \left(\frac{x}{2}+\frac{\pi}{6}\right)\right|+c$
$=\frac{1}{2} \ln \left|\tan \left(\frac{\mathrm{x}}{2}+\frac{\pi}{6}\right)\right|+\mathrm{c}$
13. The value of $(1+\cos \pi / 6)(1+\cos \pi / 3)(1+\cos 2 \pi / 3)(1+\cos 7 \pi / 6)$ is
(A) $\frac{3}{16}$
(B) $\frac{3}{8}$
(C) $\frac{3}{4}$
(D) $\frac{1}{2}$

Ans: (A)
Hints : $\left(1+\cos \frac{\pi}{6}\right)\left(1+\cos \frac{\pi}{3}\right)\left(1+\cos \frac{2 \pi}{3}\right)\left(1+\cos \frac{7 \pi}{6}\right)$
$=\left(1+\frac{\sqrt{3}}{2}\right)\left(1+\frac{1}{2}\right)\left(1-\frac{1}{2}\right)\left(1-\frac{\sqrt{3}}{2}\right)=\left(1-\frac{3}{4}\right)\left(1-\frac{1}{4}\right)=\frac{1}{4} \times \frac{3}{4}=\frac{3}{16}$
14. If $\mathrm{P}=\frac{1}{2} \sin ^{2} \theta+\frac{1}{3} \cos ^{2} \theta$ then
(A) $\frac{1}{3} \leq \mathrm{P} \leq \frac{1}{2}$
(B) $\mathrm{P} \geq \frac{1}{2}$
(C) $2 \leq \mathrm{P} \leq 3$
(D) $-\frac{\sqrt{13}}{6} \leq \mathrm{P} \leq \frac{\sqrt{13}}{6}$

Ans: (A)
Hints : $P=\frac{1}{2} \sin ^{2} \theta+\frac{1}{3} \cos ^{2} \theta=\frac{1}{2} \sin ^{2} \theta+\frac{1}{3}\left(1-\sin ^{2} \theta\right)=\frac{1}{3}+\frac{1}{6} \sin ^{2} \theta$
$0 \leq \sin ^{2} \theta \leq 1 \Rightarrow \frac{1}{3} \leq \frac{1}{3}+\frac{1}{6} \sin ^{2} \theta \leq \frac{1}{3}+\frac{1}{6}$
$\Rightarrow \frac{1}{3} \leq \mathrm{P} \leq \frac{1}{2}$
15. A positive acute angle is divided into two parts whose tangents are $\frac{1}{2}$ and $\frac{1}{3}$. Then the angle is
(A) $\pi / 4$
(B) $\pi / 5$
(C) $\pi / 3$
(D) $\pi / 6$

Ans: (A)
Hints: Angle $\theta=\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{3}=\tan ^{-1}$
$=\tan ^{-1}\left(\frac{5 / 6}{5 / 6}\right)=\tan ^{-1}(1)=\pi / 4$
16. If $f(x)=f(a-x)$ then $\int_{0}^{a} x f(x) d x$ is equal to
(A) $\int_{0}^{a} f(x) d x$
(B) $\frac{a^{2}}{2} \int_{0}^{a} \mathrm{f}(\mathrm{x}) \mathrm{dx}$
(C) $\frac{a}{2} \int_{0}^{\mathrm{a}} \mathrm{f}(\mathrm{x}) \mathrm{dx}$
(D) $-\frac{a}{2} \int_{0}^{\mathrm{a}} \mathrm{f}(\mathrm{x}) \mathrm{dx}$

Ans: (C)
Hints: $f(x)=f(a-x), I=\int_{0}^{a} x f(x) d x=\int_{0}^{a}(a-x) f(a-x) d x$
$=\int_{0}^{a}(a-x) f(x) d x=a \int_{0}^{a} f(x) d x-I$
$\therefore 2 I=a \int_{0}^{a} f(x) d x \Rightarrow I=\frac{a}{2} \int_{0}^{a} f(x) d x$
17. The value of $\int_{0}^{\infty} \frac{d x}{\left(x^{2}+4\right)\left(x^{2}+9\right)}$ is
(A) $\frac{\pi}{60}$
(B) $\frac{\pi}{20}$
(C) $\frac{\pi}{40}$
(D) $\frac{\pi}{80}$

Ans: (A)
Hints : $\int_{0}^{\infty} \frac{d x}{\left(x^{2}+4\right)\left(x^{2}+9\right)}=\int_{0}^{\pi / 2} \frac{\sec ^{2} \theta}{\left(\tan ^{2} \theta+4\right)\left(\tan ^{2} \theta+9\right)} d \theta \quad($ putting $x=\tan \theta)$
$=\frac{1}{5} \int_{0}^{\pi / 2} \frac{\left\{\left(9+\tan ^{2} \theta\right)-\left(4+\tan ^{2} \theta\right)\right\} \sec ^{2} \theta}{\left(\tan ^{2} \theta+4\right)\left(\tan ^{2} \theta+9\right)} d \theta$
$=\frac{1}{5}\left[\int_{0}^{\pi / 2} \frac{\sec ^{2} \theta}{4+\tan ^{2} \theta} \mathrm{~d} \theta-\int_{0}^{\pi / 2} \frac{\sec ^{2} \theta}{9+\tan ^{2} \theta} \mathrm{~d} \theta\right]$
$=\frac{1}{5}\left[\frac{1}{2} \tan ^{-1}\left(\frac{\tan \theta}{2}\right)| |_{0}^{\pi / 2}-\left.\frac{1}{3} \tan ^{-1}\left(\frac{\tan \theta}{3}\right)\right|_{0} ^{\pi / 2}\right]$
$=\frac{1}{5}\left[\frac{1}{2} \cdot \frac{\pi}{2}-\frac{1}{3} \cdot \frac{\pi}{2}\right]=\left(\frac{\pi}{2}\right)\left(\frac{1}{5}\right)\left(\frac{1}{2}-\frac{1}{3}\right)=\frac{\pi}{2} \cdot \frac{1}{5} \cdot \frac{1}{6}=\frac{\pi}{60}$
18. If $I_{1}=\int_{0}^{\pi / 4} \sin ^{2} x d x$ and $I_{2}=\int_{0}^{\pi / 4} \cos ^{2} x d x$, then,
(A) $\mathrm{I}_{1}=\mathrm{I}_{2}$
(B) $\mathrm{I}_{1}<\mathrm{I}_{2}$
(C)
$\mathrm{I}_{1}>\mathrm{I}_{2}$
(D) $\quad \mathrm{I}_{2}=\mathrm{I}_{1}+\pi / 4$

Ans: (B)
Ans: (B)
Hints : $I_{1}=\int_{0}^{\pi / 4} \sin ^{2} x d x ; I_{2}=\int_{0}^{\pi / 4} \cos ^{2} x d x$
In $\left(0, \frac{\pi}{4}\right), \cos ^{2} x>\sin ^{2} x \therefore \int_{0}^{\pi / 4} \cos ^{2} x d x>\int_{0}^{\pi / 4} \sin ^{2} x d x$

$\mathrm{I}_{2}>\mathrm{I}_{1}$ i.e. $\mathrm{I}_{1}<\mathrm{I}_{2}$
19. The second order derivative of $a \sin ^{3} t$ with respect to $a \cos ^{3} t$ at $t=\frac{\pi}{4}$ is
(A) 2
(B) $\frac{1}{12 a}$
(C) $\frac{4 \sqrt{2}}{3 a}$
(D) $\frac{3 a}{4 \sqrt{2}}$

Ans: (C)
Hints : $y=a \sin ^{3} t ; x=a \cos ^{3} t$
$\frac{d y}{d t}=3 a \sin ^{2} \mathrm{t} \cos \mathrm{t} ; \quad \frac{\mathrm{dx}}{\mathrm{dt}}=-3 \mathrm{a} \cos ^{2} \mathrm{t} \sin \mathrm{t}$
$\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{3 a \sin ^{2} t \cos t}{-3 a \cos ^{2} t \sin t}=-\frac{\sin t}{\cos t}=-\tan t$
(Divisions of Aakash Educational Services Ltd.)
KOLKATA
$\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d x}(-\tan t)=\frac{d}{d t}(-\tan t) \cdot \frac{d t}{d x}$
$=\left(-\sec ^{2} t\right) \frac{1}{-3 \operatorname{acos}^{2} t \sin t}=\frac{1}{+3 \operatorname{acos}^{4} t \sin t}$
$\left.\frac{d^{2} y}{d x^{2}}\right|_{t=\pi / 4}=\frac{1}{3 a\left(\frac{1}{\sqrt{2}}\right)^{4} \cdot\left(\frac{1}{\sqrt{2}}\right)}=\frac{(\sqrt{2})^{5}}{3 a}=\frac{4 \sqrt{2}}{3 a}$
20. The smallest value of $5 \cos \theta+12$ is
(A) 5
(B) 12
(C)
(D) 17

Ans: (C)
Hints : $5 \cos \theta+12,-1 \leq \cos \theta \leq 1$
$\Rightarrow-5 \leq 5 \cos \theta \leq 5$
$\therefore 5 \cos \theta+12 \geq-5+12 \Rightarrow 5 \cos \theta+12 \geq 7$
21. The general solution of the differential equation $\frac{d y}{d x}=e^{y+x}+e^{y-x}$ is
(A)
(B) $\mathrm{e}^{-y}=\mathrm{e}^{-x}-\mathrm{e}^{\mathrm{x}}+\mathrm{c}$
(C) $\mathrm{e}^{-\mathrm{y}}=\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-\mathrm{x}}+\mathrm{c}$
(D) $\mathrm{e}^{\mathrm{y}}=\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-\mathrm{x}}+\mathrm{c}$
where c is an arbitrary constant
Ans: (B)
Hints : $e^{-y} d y=\left(e^{x}+e^{-x}\right) d x$ Integrate
$-\mathrm{e}^{-\mathrm{y}}=e^{x}-e^{-x}+c, \quad \mathrm{e}^{-\mathrm{y}}=e^{-x}-e^{+x}+c$
22. Product of any r consecutive natural numbers is always divisible by
(A) r !
(B) $(\mathrm{r}+4)$!
(C) $(\mathrm{r}+1)$!
(D) $(r+2)$!

Ans: (A)
Hints: $(\mathrm{n}+1)(\mathrm{n}+2) \ldots \ldots \ldots . .(\mathrm{n}+\mathrm{r})$
$=\frac{(\mathrm{n}+\mathrm{r})!}{\mathrm{n}!}$
$=\frac{(n+r)!}{n!r!} r!=r!{ }^{n+r} C_{n}$
23. The integrating factor of the differential equation $x \log x \frac{d y}{d x}+y=2 \log x$ is given by
(A) e^{x}
(B) $\quad \log x$
(C) $\quad \log (\log x)$
(D) x

Ans: (B)
Hints : $\frac{d y}{d x}+\frac{1}{x \log x} \cdot y=\frac{2}{x}$
If $=e^{\int \frac{1}{x \log x} d x}=e^{\int \frac{1 / x}{\log x} d x}$
$=e^{\log (\log x)}=\log x$
24. If $x^{2}+y^{2}=1$ then
(A) $y y^{\prime \prime}-\left(2 y^{\prime}\right)^{2}+1=0$
(B) $y y^{\prime \prime}+\left(y^{\prime}\right)^{2}+1=0$
(C) $y y^{\prime \prime}-\left(y^{\prime}\right)^{2}-1=0$
(D) $y y^{\prime \prime}+\left(2 y^{\prime}\right)^{2}+1=0$

Ans: (B)
Hints: $2 \mathrm{x}+2 \mathrm{yy} \mathrm{y}^{\prime}=0$
$x+y y^{\prime}=0$
$1+y y^{\prime \prime}+\left(y^{\prime}\right)^{2}=0$
25. If $\mathrm{c}_{0}, \mathrm{c}_{1}, \mathrm{c}_{2}$, \qquad c_{n} denote the co-efficients in the expansion of $(1+\mathrm{x})^{\mathrm{n}}$ then the value of $\mathrm{c}_{1}+2 \mathrm{c}_{2}+3 \mathrm{c}_{3}+\ldots . .+n \mathrm{n}_{\mathrm{n}}$ is
(A) $\mathrm{n} . \mathrm{R}^{\mathrm{n}-1}$
(B) $(\mathrm{n}+1) 2^{\mathrm{n}-1}$
(C) $(\mathrm{n}+1) 2^{\mathrm{n}}$
(D) $(\mathrm{n}+2) 2^{\mathrm{n}-1}$

Ans. (A)
Hints: $(1+x)^{n}=c_{0}+\mathrm{xc}_{1}+\mathrm{x}^{2} \mathrm{c}_{2}+$ $\ldots . . . x^{n} c_{n}$
$\mathrm{n}(1+\mathrm{x})^{\mathrm{n}-1}=\mathrm{c}_{1}+2 \mathrm{xc}_{2}+$ \qquad
Put $\mathrm{x}=1$
$\mathrm{n}(2)^{\mathrm{n}-1}=\mathrm{c}_{1}+2 \mathrm{c}_{2}+3 \mathrm{c}_{2}$ $+\mathrm{nc}_{\mathrm{n}}$
26. A polygon has 44 diagonals. The number of its sides is
(A) 10
(B) 11
(C) 12
(D) 13
Ans: (B)
Hints : ${ }^{n} \mathrm{C}_{2}-n=44$

$$
\begin{aligned}
& \frac{n(n-1)}{2}-n=44 \\
& n\left[\frac{n-1}{2}-1\right]=44 \\
& n(n-3)=88 \\
& n(n-3)=11 \times 8 \\
& n=11
\end{aligned}
$$

27. If α, β be the roots of $x^{2}-a(x-1)+b=0$, then the value of $\frac{1}{\alpha^{2}-a \alpha}+\frac{1}{\beta^{2}-a \beta}+\frac{2}{a+b}$
(A) $\frac{4}{a+b}$
(B) $\frac{1}{a+b}$
(C) 0
(D) -1

Ans: (C)
Hints : $x^{2}-a x=a+3 \quad \alpha \beta=a+b$

$$
\begin{aligned}
& \alpha+\beta=a \\
& \alpha^{2}-a \alpha=-(a+b) \\
& \beta^{2}-a \alpha=-(a+b) \\
& -\frac{1}{a+b}-\frac{1}{a+b}+\frac{2}{a+b}=0
\end{aligned}
$$

28. The angle between the lines joining the foci of an ellipse to one particular extremity of the minor axis is 90°. The eccentricity of the ellipse is
(A) $\frac{1}{8}$
(B) $\frac{1}{\sqrt{3}}$
(C) $\sqrt{\frac{2}{3}}$
(D) $\sqrt{\frac{1}{2}}$
(Divisions of Aakash Educational Services Ltd.)
KOLKATA

Ans: (D) b
Hints : $\frac{b}{a e}=\tan \frac{\pi}{4}$

$$
\begin{aligned}
& b=a e \Rightarrow \frac{b}{a}=e \\
& e^{2}=1-\frac{b^{2}}{a^{2}}
\end{aligned}
$$

$$
e^{2}=1-e^{2}
$$

$$
e^{2}=\frac{1}{2} \Rightarrow e=\frac{1}{\sqrt{2}}
$$

29. The order of the differential equation $\frac{d^{2} y}{d x^{2}}=\sqrt{1-\left(\frac{d y}{d x}\right)^{2}}$ is
(A) 3
(B)
(C) 1
(D) 4

Ans: (B)
30. The sum of all real roots of the equation $|x-2|^{2}+|x-2|-2=0$
(A) 7
(B) 4
(C) 1
(D) 5

Ans: (B)
Hints: Put $1 x-21=y$

$$
\begin{aligned}
& y^{2}+y-2=0 \\
& (y-1)(y+2)=0 \\
& y=1 \\
& |x-2|=1 \\
& x-2= \pm 1 \\
& x=2 \pm 1 \\
& x=3,1 \\
& \text { Sum }=4
\end{aligned}
$$

31. If $\int_{-1}^{4} f(x) d x=4$ and $\int_{2}^{4}\{3-f(x)\} d x=7$ then the value of $\int_{-1}^{2} \mathrm{f}(\mathrm{x}) \mathrm{dx}$
(A) $\quad-2$
(B) 3
(C) 4
(D) 5

Ans: (D)
Hints: $\int_{-1}^{4} f(x) d x=4$

$$
\begin{aligned}
& 3(4-2)-\int_{2}^{4} f(x) d x=7 \\
& \int_{2}^{4} f(x) d x=-1 \\
& \int_{-1}^{2} f(x) d x=\int_{-1}^{4} f(x) d x+\int_{4}^{2} f(x) d x=4-\int_{2}^{4} f(x) d x=4-(-1)=5
\end{aligned}
$$

(Divisions of Aakash Educational Services Ltd.)
KOLKATA
32. For each $n \in N, 2^{3 n}-1$ is divisible by
(A) 7
(B) 8
(C) 6
(D) 16
where N is a set of natural numbers
Ans: (A)
Hints: $2^{3 n}=(8)^{\mathrm{n}}=(1+7)^{\mathrm{n}}=1+{ }^{\mathrm{n}} \mathrm{C}_{1} 7+{ }^{\mathrm{n}} \mathrm{C}_{2} 7^{2} \ldots+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}} 7^{\mathrm{n}}$

$$
2^{3 n}-1=7\left[{ }^{n} C_{1}+{ }^{n} C_{2} 7+\ldots .\right]
$$

33. The Rolle's theorem is applicable in the interval $-1 \leq x \leq 1$ for the function
(A) $f(x)=x$
(B) $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}$
(C) $f(x)=2 x^{3}+3$
(D) $\quad \mathrm{f}(\mathrm{x})=|\mathrm{x}|$

Ans: (B)
Hints : $f(x)=x^{2} \quad$ and $\mathrm{f}(1)=\mathrm{f}(-1)$ for $\mathrm{f}(\mathrm{x})=|\mathrm{x}|$ but at $\mathrm{x}=0, \mathrm{f}(\mathrm{x})=|\mathrm{x}|$ is not differentiable hence (B) is the correct option. $f(1)=1=f(-1)$
34. The distance covered by a particle in t seconds is given by $x=3+8 t-4 t^{2}$. After 1 second velocity will be
(A) 0 unit/second
(B) 3 units/second
(C) 4 units/second
(D) 7 units/second

Ans: (A)
Hints: $v=\frac{d x}{d t}=8-8 t$

$$
t=1, v=8-8=0
$$

35. If the co-efficients of x^{2} and x^{3} in the expansion of $(3+a x)^{9}$ be same, then the value of ' a ' is
(A) $\frac{3}{7}$
(B) $\frac{7}{3}$
(C) $\frac{7}{9}$
(D) $\frac{9}{7}$

Ans: (D)
Hints: $(3+a x)^{9}={ }^{9} \mathrm{C}_{0} 3^{9}+{ }^{9} \mathrm{C}_{1} 3^{8}(a x)+{ }^{9} \mathrm{C}_{2} 3^{7}(a x)^{2}+{ }^{9} \mathrm{C}_{3} 3^{6}(a x)^{3}$ ${ }^{9} \mathrm{C}_{2} 3^{7} a^{2}={ }^{9} \mathrm{C}_{3} 3^{6} \mathrm{a}^{3}$

$$
\frac{9}{7}=a
$$

36. The value of $\left(\frac{1}{\log _{3} 12}+\frac{1}{\log _{4} 12}\right)$ is
(A) 0
(B) $\frac{1}{2}$
(C) 1
(D) 2

Ans: (C)
Hints : $\log _{12} 3+\log _{12} 4=\log _{12} 12=1$
37. If $\mathrm{x}=\log _{\mathrm{a}} \mathrm{bc}, \mathrm{y}=\log _{\mathrm{b}} \mathrm{ca}, \mathrm{z}=\log _{\mathrm{c}} \mathrm{ab}$, then the value of $\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}$ will be
(A) $x+y+z$
(B) 1
(C) $\mathrm{ab}+\mathrm{bc}+\mathrm{ca}$
(D) abc

Ans: (B)
Hints : $1+\mathrm{x}=\log _{\mathrm{a}} \mathrm{a}+\log _{\mathrm{a}} \mathrm{bc}=\log _{\mathrm{a}} \mathrm{abc}$
$\frac{1}{1+\mathrm{x}}=\log _{\mathrm{abc}} \mathrm{a}$, Similarly $\frac{1}{1+\mathrm{y}}=\log _{\mathrm{abc}} \mathrm{b}$
$\frac{1}{1+\mathrm{z}}=\log _{\text {abc }} \mathrm{c}$, Ans. $=\log _{\text {(abc) }} \mathrm{abc}=1$
(Divisions of Aakash Educational Services Ltd.)
KOLKATA
38. Using binomial theorem, the value of $(0.999)^{3}$ correct to 3 decimal places is
(A) 0.999
(B) 0.998
(C) 0.997
(D) 0.995

Ans: (C)
Hints: ${ }^{3} C_{0}-{ }^{3} C_{1}(.001)+{ }^{3} C_{2}(.001)^{2}-{ }^{3} C_{3}(.001)^{3}$
$=1-.003+3(.000001)-(.000000001)=0.997$
39. If the rate of increase of the radius of a circle is $5 \mathrm{~cm} / \mathrm{sec}$., then the rate of increase of its area, when the radius is 20 cm , will be
(A) 10π
(B) 20π
(C) 200π
(D) 400π

Ans: (C)
Hints : $\mathrm{A}=\pi \mathrm{r}^{2} \quad \frac{d r}{d t}=5$
$\frac{\mathrm{dA}}{\mathrm{dt}}=2 \pi r \frac{\mathrm{dr}}{\mathrm{dt}}=2 \pi 20(5)$
$=200 \pi$
40. The quadratic equation whose roots are three times the roots of $3 a x^{2}+3 b x+c=0$ is
(A) $a x^{2}+3 b x+3 c=0$
(B) $a x^{2}+3 b x+c=0$
(C) $9 a x^{2}+9 b x+c=0$
(D) $a x^{2}+b x+3 c=0$

Ans:(A)
Hints : $3 a \alpha^{2}+3 b \alpha+c=0$
$x=3 \alpha \Rightarrow \alpha=\frac{x}{3}$
$3 a \frac{x^{2}}{9}+3 b \cdot \frac{x}{3}+c=0$
$a x^{2}+3 b x+3 c=0$
41. Angle between $y^{2}=x$ and $x^{2}=y$ at the origin is
(A) $2 \tan ^{-1}\left(\frac{3}{4}\right)$
(B) $\tan ^{-1}\left(\frac{4}{3}\right)$
(C) $\frac{\pi}{2}$
(D) $\frac{\pi}{4}$

Ans: (C)
Hins: Angle between axes (since co-ordinate axes are the tangents for the given curve).
42. In triangle $\mathrm{ABC}, \mathrm{a}=2, \mathrm{~b}=3$ and $\sin \mathrm{A}=\frac{2}{3}$, then B is equal to
(A) 30°
(B) 60°
(C) 90°
(D) 120°

Ans: (C)
Hints : $\frac{a}{\sin A}=\frac{b}{\sin B}$
$\sin B=\frac{b}{a} \cdot \sin A=\frac{3}{2} \cdot \frac{2}{3}=1$
$\mathrm{B}=\frac{\pi}{2}$
43. $\int_{0}^{1000} e^{x-[x]}$ is equal to
(A) $\frac{e^{1000}-1}{e-1}$
(B) $\frac{e^{1000}-1}{1000}$
(C) $\frac{e-1}{1000}$
(D) $1000(\mathrm{e}-1)$

Ans: (D)
Hins: $I=1000 \int_{0}^{1} e^{x-[x]}$
$=1000 \int_{0}^{1} e^{x} d x=1000\left(e^{x}\right)_{0}^{1}=100(e-1)$
Period of function is 1
44. The coefficient of x^{n}, where n is any positive integer, in the expansion of $\left(1+2 x+3 x^{2}+\ldots \ldots . . \infty\right)^{1 / 2}$ is
(A) 1
(B) $\frac{n+1}{2}$
(C) $2 \mathrm{n}+1$
(D) $\mathrm{n}+1$

Ans: (A)

$$
s=1+2 x+3 x^{2} \ldots \ldots \ldots \ldots \infty
$$

Hints : $\frac{x s=x+2 x^{2}+\ldots \ldots \ldots \ldots \infty}{s(1-x)=1+x+x^{2}+\ldots \ldots \ldots \infty}$
$\mathrm{f}(\mathrm{x})=\frac{1}{1-x}, \mathrm{f}(\mathrm{x})=(1-\mathrm{x})^{-1}=1+\mathrm{x}+\mathrm{x}^{2}+\mathrm{x}^{3}$
45. The circles $x^{2}+y^{2}-10 x+16=0$ and $x^{2}+y^{2}=a^{2}$ intersect at two distinct points if
(A) $\mathrm{a}<2$
(B) $2<\mathrm{a}<8$
(C) $a>8$
(D) $\mathrm{a}=2$

Ans. (B)
Hints : $C_{1}(5,0) \quad r_{1}=\sqrt{25-16}=3$
$\mathrm{C}_{2}(0,0) \quad \mathrm{r}_{2}=\mathrm{a}$
$\mathrm{r}_{1} \& \mathrm{r}_{2}<\mathrm{C}_{1} \mathrm{C}_{2}<\mathrm{r}_{1}+\mathrm{r}_{2}$
$|a-3|<\sqrt{25}<a+3$
$|a-3|<5<a+3$
$-5<a-3<5 \quad 2<a$
$-2<a<8$
$2<\mathrm{a}<8$
46. $\int \frac{\sin ^{-1} x}{\sqrt{1-x^{2}}} d x$ is equal to
(A) $\quad \log \left(\sin ^{-1} \mathrm{x}\right)+\mathrm{c}$
(B) $\frac{1}{2}\left(\sin ^{-1} x\right)^{2}+c$
(C) $\quad \log \left(\sqrt{1-x^{2}}\right)+c$
(D) $\quad \sin \left(\cos ^{-1} \mathrm{x}\right)+\mathrm{c}$
where c is an arbitrary constant
Ans: (B)
Hints: $\mathrm{I}=\int t d t$

$$
\sin ^{-1} x=t
$$

$$
\begin{aligned}
& =\frac{1}{2} t^{2}+c \\
& =\frac{1}{2}\left(\sin ^{-1} x\right)^{2}+c
\end{aligned}
$$

47. The number of points on the line $x+y=4$ which are unit distance apart from the line $2 x+2 y=5$ is
(A) 0
(B) 1
(C) 2
(D) Infinity

Ans: (A)
Hints: $x+y=4$

$$
\begin{aligned}
& x+y=\frac{5}{2} \\
& \mathrm{PQ}=\frac{4-5 / 2}{\sqrt{2}}=\frac{3}{2 \sqrt{2}}=\frac{3 \sqrt{2}}{4}
\end{aligned}
$$

48. Simplest form of $\frac{2}{\sqrt{2+\sqrt{2+\sqrt{2+2 \cos 4 x}}}}$ i
(A) $\sec \frac{x}{2}$
(B) $\sec x$
(C) $\operatorname{cosec} x$
(D) 1
Ans: (A)

Hints : $\frac{2}{\sqrt{2+\sqrt{2+\sqrt{2.2 \cos ^{2} 2 x}}}}=\frac{2}{\sqrt{2+\sqrt{2+2 \cos 2 x}}}=\frac{2}{\sqrt{2+\sqrt{2.2 \cos ^{2} x}}}$

$$
=\frac{2}{\sqrt{2+2 \cos x}}=\frac{2}{2 \cos \frac{x}{2}}=\sec \frac{x}{2}
$$

49. If $y=\tan ^{-1} \sqrt{\frac{1-\sin x}{1+\sin x}}$, then the value of $\frac{d y}{d x}$ at $x=\frac{\pi}{6}$ is
(A) $-\frac{1}{2}$
(B) $\frac{1}{2}$
(C) 1
(D) -1

Ans: (A)

Hints : $y=\tan ^{-1} \sqrt{\frac{1-\cos \left(\frac{\pi}{2}-x\right)}{1+\cos \left(\frac{\pi}{2}-x\right)}}$
$=\tan ^{-1} \sqrt{\frac{2 \sin ^{2}\left(\frac{\pi}{4}-\frac{x}{2}\right)}{2 \cos ^{2}\left(\frac{\pi}{4}-\frac{x}{2}\right)}}=\tan ^{-1}\left|\tan \left(\frac{\pi}{4}-\frac{x}{2}\right)\right|=\left(\frac{\pi}{4}-\frac{x}{2}\right)$

$$
\frac{d y}{d x}=-\frac{1}{2}
$$

50. If three positive real numbers a, b, c are in A.P. and $a b c=4$ then minimum possible value of b is
(A) $2^{3 / 2}$
(B) $2^{2 / 2}$
(C) $2^{1 / 3}$
(D) $2^{5 / 2}$

Ans: (B)
Hints: $(b-d) b(b+d)=4$

$$
\begin{aligned}
& \left(b^{2}-d^{2}\right) b=4 \\
& b^{3}=4+d^{2} b \\
& b^{3} \geq 4 \Rightarrow b \geq(2)^{2 / 3}
\end{aligned}
$$

51. If $5 \cos 2 \theta+2 \cos ^{2} \frac{\theta}{2}+1=0$, when $(0<\theta<\pi)$, then the values of θ are :
(A) $\frac{\pi}{3} \pm \pi$
(B)

(C)

(D) $\frac{\pi}{3}, \pi-\cos ^{-1}\left(\frac{3}{5}\right)$

Ans: (D)
Hints: $5 \cos 2 \theta+1+\cos \theta+1=0$

$$
\begin{aligned}
& 5\left(2 \cos ^{2} \theta-1\right)+\cos \theta+2=0 \\
& 10 \cos ^{2} \theta+\cos \theta-3=0 \\
& (5 \cos \theta+3)(2 \cos \theta-1)=0 \\
& \cos \theta=\frac{1}{2} \\
& \theta=\frac{\pi}{3}
\end{aligned}
$$

$$
\begin{aligned}
& \cos \theta=-\frac{3}{5} \\
& \theta=\cos ^{-1}\left(-\frac{3}{5}\right) \\
& =\pi-\cos ^{-1}\left(\frac{3}{5}\right)
\end{aligned}
$$

52. For any complex number z, the minimum value of $|z|+|z-1|$ is
(A) 0
(B) 1
(C) 2
(D) -1

Ans: (B)
Hints: $1=|z-(z-1)|$

$$
1 \leq|z|+|z-1|
$$

53. For the two circles $x^{2}+y^{2}=16$ and $x^{2}+y^{2}-2 y=0$ there is / are
(A) one pair of common tangents
(B) only one common tangent
(C) three common tangents
(D) no common tangent

Ans: (D)
Hints: $\mathrm{C}_{1}(0,0)$
$r_{1}=4$

$$
\begin{array}{lr}
\mathrm{C}_{2}(0,1) & r_{2}=\sqrt{0+1}=1 \\
\mathrm{C}_{1} \mathrm{C}_{2}=\sqrt{0+1}=1 & \\
r_{1}-r_{2}=3 & \\
\mathrm{C}_{1} \mathrm{C}_{2}<r_{1}-r_{2} &
\end{array}
$$

54. If C is a point on the line segment joining $A(-3,4)$ and $B(2,1)$ such that $A C=2 B C$, then the coordinate of C is
(A) $\left(\frac{1}{3}, 2\right)$
(B)

(C)
$(2,7)$
(D) $(7,2)$

Ans: (A)
Hints :

$$
\begin{aligned}
& C\left(\frac{4-3}{3}, \frac{2+4}{3}\right) \\
& C\left(\frac{1}{3}, 2\right)
\end{aligned}
$$

55. If a, b, c are real, then both the roots of the equation $(x-b)(x-c)+(x-c)(x-a)+(x-a)(x-b)=0$ are always
(A) positive
(B) negative
(C) real
(D) imaginary

Ans: (C)
Hints: $3 x^{2}-2 x(a+b+c)+a b+b c+c a=0$

$$
\begin{aligned}
& \mathrm{D}=4(a+b+c)^{2}-4.3(a b+b c+c a) \\
& =4\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right) \\
& =2\left[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right] \\
& =\left[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right] \\
& \geq 0
\end{aligned}
$$

56. The sum of the infinite series $1+\frac{1}{2!}+\frac{1.3}{4!}+\frac{1.3 .5}{6!}+\ldots \ldots .$. is
(A) e
(B) e^{2}
(C) \sqrt{e}
(D) $\frac{1}{e}$

Ans: (C)
Hints: $\mathrm{T}_{\mathrm{n}}=\frac{1.3 \cdot 5 \ldots \cdot(2 n-1)}{\lfloor 2 n}$

$$
\begin{aligned}
& =\frac{\lfloor 2 n}{\lfloor 2 n(2.4 \ldots 2 n)} \\
& =\frac{\lfloor 2 n}{2^{\mathbf{n}}\lfloor n\lfloor 2 n} \\
& =\frac{x^{\mathbf{n}}}{\lfloor n} \\
& \therefore \frac{x}{\lfloor 1}+\frac{x^{2}}{\lfloor 2}+\ldots=e^{x}-1
\end{aligned}
$$

$$
\exp =1+e^{x}-1=e^{x}=e^{1 / 2}
$$

57. The point $(-4,5)$ is the vertex of a square and one of its diagonals is $7 x-y+8=0$. The equation of the other diagonal is
(A) $7 x-y+23=0$
(B) $7 y+x=30$
(C) $7 y+x=31$
Ans: (C)
Hints: $x+7 y=k$

$$
\begin{align*}
& -4+35=k \tag{1}\\
& 31=k \\
& x+7 y-31=0
\end{align*}
$$

)

(D) $x-7 y=30$
58. The domain of definition of the function $f(x)=\sqrt{1+\log _{\mathbf{e}}(1-x)}$ is
(A)
$-\infty<x \leq 0$
(B)

(D) $x \geq 1-e$

Ans: (B)
Hints: $1-x>0 \Rightarrow x<1$

$$
\begin{aligned}
& 1+\log _{\mathrm{e}}(1-x) \geq 0 \\
& \log _{\mathrm{e}}(1-x) \geq-1 \Rightarrow 1-x \geq e^{-1} \\
& x \leq 1-\frac{1}{e} \\
& x \leq \frac{e-1}{e}
\end{aligned}
$$

59. For what value of $m, \frac{a^{\mathbf{m}+1}+b^{\mathrm{m}+1}}{a^{\mathbf{m}}+b^{\mathrm{m}}}$ is the arithmetic mean of ' a ' and ' b '?
(A) 1
(B) 0
(C) 2
(D) None

Ans: (B)
Hints: $\frac{a^{m+1}+b^{m+1}}{a^{m}+b^{m}}=\frac{a+b}{2}$

$$
\mathrm{m}=0 \text { Satisfy. }
$$

(Divisions of Aakash Educational Services Ltd.)
KOLKATA
60. The value of the limit $\lim _{x \rightarrow 1} \frac{\sin \left(e^{x}-1\right.}{\log x}$ is
(A) 0
(B) e
(C) $\frac{1}{e}$
(D) 1

Ans: (D)
Hints : $\underset{h \rightarrow 0}{\operatorname{Lt} \frac{\sin \left(e^{h}-1\right)}{\log (1+h)} \quad \text { Put } x=1+h}$

$$
\begin{aligned}
& =\operatorname{Lt}_{h \rightarrow 0} \frac{\sin \left(e^{h}-1\right)}{\left(e^{h}-1\right)} \cdot \frac{\left(e^{h}-1\right)}{\log (1+h)} \\
& =\operatorname{Lt}_{h \rightarrow 0} \frac{\sin \left(e^{h}-1\right)}{\left(e^{h}-1\right)} \cdot \frac{\left(e^{h}-1\right)}{h} \cdot \frac{h}{\log (1+h)} \\
& =1.1 .1 \\
& =1
\end{aligned}
$$

61. Let $f(x)=\frac{\sqrt{x+3}}{x+1}$ then the value of $\underset{x \rightarrow-3-0}{\operatorname{Lt}} f(x)$ is
(A) 0
(B) does not exist
(C) $\frac{1}{2}$
(D) $-\frac{1}{2}$

Ans: (B)
Hints : Because on left hand side of 3 function is not defined.
62. $f(x)=x+|x|$ is continuous for
(A) $x \in(-\infty, \infty)$
(B)
(C) only $x>0$
(D) no value of x

Ans: (A)
Hints : $f(x)= \begin{cases}2 x ; & x \geq 0 \\ 0 ; & x<0\end{cases}$
$x \in(-\infty, \infty)-\{0\}$

63. $\tan \left[\frac{\pi}{4}+\frac{1}{2} \cos ^{-1}\left(\frac{a}{b}\right)\right]+\tan \left[\frac{\pi}{4}-\frac{1}{2} \cos ^{-1}\left(\frac{a}{b}\right)\right]$ is equal to
(A) $\frac{2 a}{b}$
(B) $\frac{2 b}{a}$
(C) $\frac{a}{b}$
(D) $\frac{b}{a}$

Ans: (B)
Hints : Let $\frac{1}{2} \cos ^{-1}\left(\frac{a}{b}\right)=\theta$, then $\cos 2 \theta=\frac{a}{b}$
(Divisions of Aakash Educational Services Ltd.)
KOLKATA

$$
\begin{aligned}
& \tan \left[\frac{\pi}{4}+\frac{1}{2} \cos ^{-1}\left(\frac{a}{b}\right)\right]+\tan \left[\frac{\pi}{4}-\frac{1}{2} \cos ^{-1}\left(\frac{a}{b}\right)\right] \\
& =\tan \left(\frac{\pi}{4}+\theta\right)+\tan \left(\frac{\pi}{4}-\theta\right)=2\left(\frac{1+\tan ^{2} \theta}{1-\tan ^{2} \theta}\right)=\frac{2}{\cos 2 \theta}=\frac{2}{a / b}=\frac{2 b}{a}
\end{aligned}
$$

64. If $i=\sqrt{-1}$ and n is a positive integer, then $i^{n}+i^{n+1}+i^{n+2}+i^{n+3}$ is euqal to
(A) 1
(B) i
(C) i^{n}
(D) 0

Ans: (D)
Hints: $i^{n}\left(1+i+i^{2}+i^{3}\right)=i^{n}(1+i-1-i)=0$
65. $\int \frac{d x}{x(x+1)}$ equals
(A)
$\ln \left|\frac{\mathrm{x}+1}{\mathrm{x}}\right|+c$
(B) $\ln \left|\frac{\mathrm{x}}{\mathrm{x}+1}\right|+c$
(C) $\ln \left|\frac{\mathrm{x}-1}{\mathrm{x}}\right|+c$
(D) $\ln \left|\frac{\mathrm{x}-1}{\mathrm{x}+1}\right|+c$
where c is an arbitrary constant.
Ans: (B)
Hints: $\int \frac{d x}{x(x+1)}=\int\left(\frac{1}{x}-\frac{1}{x+1}\right) d x=\int \frac{d x}{x}-\int \frac{d x}{x+1}=\ln |x|-\ln |x+1|+\mathrm{C}=\ln \left|\frac{x}{x+1}\right|+\mathrm{C}$
66. If a, b, c are in G.P. $(a>1, b>1, c>1)$, then for any real number x (with $x>0, x \neq 1), \log _{\mathrm{a}} x, \log _{\mathrm{b}} x, \log _{\mathrm{c}} x$ are in
(A) G.P.
(B) A.P.
(C) H.P.
(D)
G..P. but not in H.P.

Ans: (C)
Hints : a, b, c are in G.P.

$$
\begin{aligned}
& \Rightarrow \log _{x} a, \log _{x} b, \log _{x} c \text { are in A.P. } \\
& \Rightarrow \frac{1}{\log _{x} a}, \frac{1}{\log _{x} b}, \frac{1}{\log _{x} c} \text { are in H.P. } \\
& \Rightarrow \log _{a} x, \log _{b} x, \log _{c} x \text { are in H.P. }
\end{aligned}
$$

67. A line through the point $\mathrm{A}(2,0)$ which makes an angle of 30° with the positive direction of x-axis is rotated about A in clockwise direction through an angle 15°. Then the equation of the straight line in the new position is
(A) $(2-\sqrt{3}) x+y-4+2 \sqrt{3}=0$
(B) $(2-\sqrt{3}) x-y-4+2 \sqrt{3}=0$
(C) $(2-\sqrt{3}) x-y+4+2 \sqrt{3}=0$
(D) $(2-\sqrt{3}) x+y+4+2 \sqrt{3}=0$

Ans: (B)
Hints : Equation of line in new position :
$y-0=\tan 15^{\circ}(x-2)$
$\Rightarrow y=\left(\frac{\sqrt{3}-1}{\sqrt{3}+1}\right)(x-2)$
$\Rightarrow y=\frac{(\sqrt{3}-1)^{2}}{2}(x-2)$
$\Rightarrow 2 y=(4-2 \sqrt{3})(x-2)$
$\Rightarrow y=(2-\sqrt{3})(x-2)$
$\Rightarrow(2-\sqrt{3}) x-y-4+2 \sqrt{3}=0$
68. The equation $\sqrt{3} \sin x+\cos x=4$ has
(A) only one solution
(B) two solutions
(C) infinitely many solutions (D) no solution

Ans: (D)
Hints: $\sqrt{3} \sin x+\cos x=2 \sin \left(x+\frac{\pi}{6}\right) \leq 2$. Therefore

$$
\sqrt{3} \sin x+\cos x=4 \quad \text { cannot have a solution }
$$

69. The slope at any point of a curve $y=f(x)$ is given by $\frac{d y}{d x}=3 x^{2}$ and it passes through $(-1,1)$. The equation of the curve is
(A) $y=x^{3}+2$
(B) $y=-x^{3}-2$
(C) $y=3 x^{3}+4$
(D) $y=-x^{3}+2$

Ans: (A)
Hints: $\frac{d y}{d x}=3 x^{2} \Rightarrow \int d y=\int 3 x^{2} d x \Rightarrow y=x^{3}+\mathrm{C}$
Curve passes through $(-1,1)$. Hence $1=-1+\mathrm{C} \Rightarrow \mathrm{C}=2$
$\therefore y=x^{3}+2$
70. The modulus of $\frac{1-i}{3+i}+\frac{4 i}{5}$ is
(A) $\sqrt{5}$ unit
(B)
$\frac{\sqrt{11}}{5}$ unit
(C) $\frac{\sqrt{5}}{5}$ unit
(D) $\frac{\sqrt{12}}{5}$ unit

Ans: (C)

Hints : $\frac{1-i}{3+i}+\frac{4 i}{5}=\frac{5-5 i+4 i(3+i)}{5(3+i)}=\frac{5-5 i+12 i-4}{5(3+i)}=\frac{1+7 i}{5(3+i)}=\frac{(1+7 i)(3-i)}{5(9+1)}$

$$
=\frac{3+21 i-i+7}{5 \times 10}=\frac{10+20 i}{5 \times 10}=\frac{1+2 i}{5}
$$

\therefore Modulus $=\sqrt{\left(\frac{1}{5}\right)^{2}+\left(\frac{2}{5}\right)^{2}}=\sqrt{\frac{1}{25}+\frac{4}{25}}=\sqrt{\frac{1}{5}}=\frac{\sqrt{5}}{5}$ unit
71. The equation of the tangent to the conic $x^{2}-y^{2}-8 x+2 y+11=0$ at $(2,1)$ is
(A) $x+2=0$
(B) $2 x+1=0$
(C) $x+y+1=0$
(D) $x-2=0$

Ans: (D)
Hints : Equation of tangent at $\left(x_{1}, y_{1}\right)$ is
$x x_{1}-y y_{1}-4\left(x+x_{1}\right)+\left(y+y_{1}\right)+11=0$
$x_{1}=2 ; y=1$
\therefore Equation of tangent is

$$
2 x-y-4(x+2)+(y+1)+11=0
$$

or $\quad-2 x-8+12=0$
(Divisions of Aakash Educational Services Ltd.)
KOLKATA

or	$-2 x+4=0$
or	$2 x=4$
or	$x=2$
or	$x-2=0$

72. A and B are two independent events such that $P\left(A \cup B^{\prime}\right)=0.8$ and $P(A)=0.3$. The $P(B)$ is
(A) $\frac{2}{7}$
(B) $\frac{2}{3}$
(C) $\frac{3}{8}$
(D) $\frac{1}{8}$

Ans: (A)
Hints: $\operatorname{Let} \mathrm{P}(\mathrm{B})=x$

$$
\mathrm{P}\left(\mathrm{~A} \cup \mathrm{~B}^{\prime}\right)=\mathrm{P}(\mathrm{~A})+\mathrm{P}\left(\mathrm{~B}^{\prime}\right)-\mathrm{P}\left(\mathrm{~A} \cap \mathrm{~B}^{\prime}\right)=0.3+(1-x)-0.3(1-x)
$$

or $0.8=1-x+0.3 x$
or $\quad 1-0.7 x=0.8$
or $\quad 0.7 x=0.2$
or $\quad x=\frac{2}{7}$
73. The total number of tangents through the point $(3,5)$ that can be drawn to the ellipses $3 x^{2}+5 y^{2}=32$ and $25 x^{2}+9 y^{2}=450$ is
(A) 0
(B) 2
(C) 3
(D) 4

Ans: (C)
Hints : $(3,5)$ lies outside the ellipse $3 x^{2}+5 y^{2}=32$ and on the ellipse $25 x^{2}+9 y^{2}=450$. Therefore there will be 2 tangents for the first ellipse and one tangent for the second ellipse.
74. The value of $\lim _{n \rightarrow \infty}\left[\frac{n}{n^{2}+1^{2}}+\frac{n}{n^{2}+2^{2}}+\ldots \ldots . . \frac{n}{n^{2}+n^{2}}\right]$
(A) $\frac{\pi}{4}$
(B)

(C) zero
(D) 1

Ans: (A)
Hints : $\lim _{n \rightarrow \infty}\left[\frac{n}{n^{2}+1^{2}}+\frac{n}{n^{2}+2^{2}}+\ldots+\frac{n}{n^{2}+n^{2}}\right]$

$$
=\lim _{n \rightarrow \infty} \sum_{r=1}^{n} \frac{n}{n^{2}+r^{2}}=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{r=1}^{n} \frac{1}{1+\left(\frac{r}{n}\right)^{2}}=\int_{0}^{1} \frac{d x}{1+x^{2}}=\left[\tan ^{-1} x\right]_{0}^{1}=\frac{\pi}{4}
$$

75. A particle is moving in a straight line. At time t, the distance between the particle from its starting point is given by $x=t-6 t^{2}+t^{3}$. Its acceleration will be zero at
(A) $t=1$ unit time
(B) $t=2$ unit time
(C) $t=3$ unit time
(D) $t=4$ unit time

Ans: (B)
Hints : $x=t-6 t^{2}+t^{3}$

$$
\begin{aligned}
& \frac{d x}{d t}=1-12 t+3 t^{2} \\
& \frac{d^{2} x}{d t^{2}}=-12+6 t
\end{aligned}
$$

Acceleration $=\frac{d^{2} x}{d t^{2}}$
\therefore Acceleration $=0 \Rightarrow 6 t-12=0 \Rightarrow t=2$
(Divisions of Aakash Educational Services Ltd.)
KOLKATA
76. Three numbers are chosen at random from 1 to 20 . The probability that they are consecutive is
(A) $\frac{1}{190}$
(B) $\frac{1}{120}$
(C) $\frac{3}{190}$
(D) $\frac{5}{190}$

Ans: (C)
Hints : Total number of cases; ${ }^{20} \mathrm{C}_{3}=\frac{20 \times 19 \times 18}{2 \times 3}=20 \times 19 \times 3=1140$
Total number of favourable cases $=18$
\therefore Required probability $=\frac{18}{1140}=\frac{3}{190}$
77. The co-ordinates of the foot of the perpendicular from $(0,0)$ upon the line $x+y=2$ are
(A) $(2,-1)$
(B)
(C) $(1,1)$
(D) $(1,2)$

Ans: (C)
Hints : Let P be the foot of the perpendicular. P lies on a line perpendicular to $x+y=2$.
\therefore Equation of the line on which P lies is of the form : $x-y+k=0$
But this line passes through $(0,0)$.
$\therefore k=0$
Hence, co-ordinates of P may be obtained by solying $x+y=2$ and $y=x$
$\therefore x=1, y=1$
Hence, $\mathrm{P} \equiv(1,1)$
78. If A is a square matrix then,
(A) $\mathrm{A}+\mathrm{A}^{\mathrm{T}}$ is symmetric
(B) AA^{T} is skew - symmetric
(C) $\mathrm{A}^{\mathrm{T}}+\mathrm{A}$ is skew-symmetric(D)
(0,2)

Ans: (A)
Hints: $\left(A+A^{T}\right)^{T}=A^{T}+\left(A^{T}\right)^{T}=A^{T}+A=A+A^{T}$
79. The equation of the chord of the circle $x^{2}+y^{2}-4 x=0$ whose mid point is $(1,0)$ is
(A) $y=2$
(B) $y=1$
(C) $x=2$
(D) $x=1$

Ans: (D)

Hints :

Chord with mid-point $(1,0)$

Equation : $x=1$
80. If $\mathrm{A}^{2}-\mathrm{A}+\mathrm{I}=0$, then the inverse of the matrix A is
(A) $\mathrm{A}-\mathrm{I}$
(B) $\mathrm{I}-\mathrm{A}$
(C) $\mathrm{A}+\mathrm{I}$
(D) A

Ans: (B)
Hints : $\mathrm{A}^{2}-\mathrm{A}+\mathrm{I}=0 \Rightarrow \mathrm{~A}^{2}=\mathrm{A}-\mathrm{I} \Rightarrow \mathrm{A}^{2} \cdot \mathrm{~A}^{-1}=\mathrm{A} \cdot \mathrm{A}^{-1}-\mathrm{A}^{-1} \Rightarrow \mathrm{~A}=\mathrm{I}-\mathrm{A}^{-1} \Rightarrow \mathrm{~A}^{-1}=\mathrm{I}-\mathrm{A}$
(Divisions of Aakash Educational Services Ltd.)
KOLKATA

MATHEMATICS

SECTION-II

1. A train moving with constant acceleration takes t seconds to pass a certain fixed point and the front and back end of the train pass the fixed point with velocities u and v respectively. Show that the length of the trai is $\frac{1}{2}(u+v) t$.
A. $v=u+a t$
$a=\frac{v-u}{t}$

$$
\begin{aligned}
& v^{2}=u^{2}+2 a \mathrm{~S} \\
& \frac{v^{2}-u^{2}}{2 a}=\mathrm{S} \Rightarrow \mathrm{~S}=\frac{(v+u)(v-u)}{2 a}=\frac{a t(v+u)}{2 a}=\frac{u+v}{2} t
\end{aligned}
$$

2. Show that

$$
\frac{\sin \theta}{\cos 3 \theta}+\frac{\sin 3 \theta}{\cos 9 \theta}+\frac{\sin 9 \theta}{\cos 27 \theta}=\frac{1}{2}(\tan 27 \theta-\tan \theta)
$$

A. $\mathrm{T}_{1}=\frac{2 \sin \theta}{2 \cos 3 \theta} \cdot \frac{\cos \theta}{\cos \theta}=\frac{\sin 2 \theta}{2 \cdot \cos 3 \theta \cdot \cos \theta}$

$$
=\frac{1}{2} \cdot \frac{\sin (3 \theta-\theta)}{\cos 3 \theta \cdot \cos \theta}
$$

$$
\mathrm{T}_{1}=\frac{1}{2}(\tan 3 \theta-\tan \theta)
$$

$$
\mathrm{T}_{2}=\frac{1}{2}(\tan 9 \theta-\tan 3 \theta)
$$

$$
\mathrm{T}_{3}=\frac{1}{2}(\tan 27 \theta-\tan 9 \theta)
$$

$\mathrm{T}_{1}+\mathrm{T}_{2}+\mathrm{T}_{3}=\frac{1}{2}(\tan 27 \theta-\tan \theta)$
3. If $x=\sin t, y=\sin 2 t$, prove that
$\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+4 y=0$
A. $y=\sin \left(2 \sin ^{-1} x\right)$
$\frac{d y}{d x}=\cos \left(2 \sin ^{-1} x\right) \cdot \frac{2}{\sqrt{1-x^{2}}}$
$\sqrt{1-x^{2}} \frac{d y}{d x}=2 \cos \left(2 \sin ^{-1} x\right)$
(Divisions of Aakash Educational Services Ltd.)
KOLKATA
$\left(1-x^{2}\right)\left(\frac{d y}{d x}\right)^{2}=4 \cdot \cos ^{2}\left(2 \sin ^{-1} x\right)=4\left[1-\sin ^{2}\left(2 \sin ^{-1} x\right)\right]$
$\left(1-x^{2}\right)\left(\frac{d y}{d x}\right)^{2}=4\left[1-y^{2}\right]$
Again differentiate
$\left(1-x^{2}\right) 2 \cdot \frac{d y}{d x} \cdot \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}(-2 x)=-8 y \frac{d y}{d x}$
Divide by $2 \frac{d y}{d x}$
$\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+4 y=0$
4. Show that, for a positive integer n , the coefficient of $\mathrm{x}^{\mathrm{k}}(0 \leq \mathrm{K} \leq \mathrm{n})$ in the expansion of $1+(1+x)+(1+x)^{2}+\ldots \ldots . .+(1+x)^{n}$ is ${ }^{n+1} C_{n-k}$.
A. $\mathrm{S}=\frac{1-(1+x)^{n+1}}{1-(1+x)}=\frac{(1+x)^{n+1}-1}{x}$

Coefficient of $x^{\boldsymbol{k}}$ in $\frac{(1+x)^{n+1}}{x}-\frac{1}{x}=$ Coefficient of x^{k+1} in $(1+x)^{n+1}={ }^{n+1} \mathrm{C}_{\boldsymbol{k}+\mathbf{1}}={ }^{n+1} \mathrm{C}_{n-\boldsymbol{k}}$
5. If m, n be integers, then find the value of $\int(\cos m x-\sin n x)^{2} d x$
A. $\mathrm{I}=\int_{-\pi}^{\pi}\left(\cos ^{2} m x+\sin ^{2} n x-2 \sin n x \cdot \cos m x\right) d x$

$$
=\int_{-\pi}^{\pi} \cos ^{2} m x \cdot d x+\int_{-\pi}^{\pi} \sin ^{2} n x \cdot d x-2 \int_{-\pi}^{\pi} \sin n x \cdot \cos m x \cdot d x
$$

$=2 \int_{0}^{\pi} \cos ^{2} m x \cdot d x+2 \int_{0}^{\pi} \sin ^{2} n x \cdot d x-0$
(Odd)
$=2 \int_{0}^{\pi}(1+\cos 2 m x) d x+\int_{0}^{\pi}(1-\cos 2 n x) d x$
$=\pi+\frac{1}{2 m}(\sin 2 m x)_{0}^{\pi}+\pi-\frac{1}{2 n}(\sin 2 n x)_{0}^{\pi}$
$=\pi+\pi+\frac{1}{2 m}(0-0)-\frac{1}{2 n}(0-0)$
$=2 \pi$
6. Find the angle subtended by the double ordinate of length $2 a$ of the parabola $y^{2}=a x$ at its vertex.
A. $y^{2}=a x, a^{2}=a x, a=x \quad[$ put $y=a]$
$\mathrm{A}(\mathrm{a}, \mathrm{a}), \mathrm{B}(\mathrm{a},-\mathrm{a})$
Slope OA $=\frac{a}{a}=1$
Slope of $\mathrm{OB}=\frac{-\mathrm{a}}{\mathrm{a}}=-1$

Ans. $=\frac{\pi}{2}$
7. If f is differentiable at $x=a$, find the value of
$\operatorname{Lt}_{x \rightarrow a} \frac{x^{2} f(a)-a^{2} f(x)}{x-a}$.
A. $\quad \operatorname{Lt} \frac{x^{2} f(a)-a^{2} f(x)}{x-a}, \frac{0}{0}$ form by LH
$=\operatorname{Lt} \frac{2 x f(a)-a^{2} f^{1}(x)}{1}$
$=2 a f(a)-a^{2} f^{1}(a)$
8. Find the values of ' a ' for which the expression $x^{2}-(3 a-1) x+2 a^{2}+2 a-11$ is always positve.
A. $x^{2}-(3 a-1) x+2 a^{2}+2 a-11>0$

D <0
$(3 a-1)^{2}-4\left(2 a^{2}+2 a-11\right)<0$
$9 a^{2}-6 a+1-8 a^{2}-8 a+44<0$
$a^{2}-14 a+45<0$
$(a-9)(a-5)<0$
$5<a<9$
9. Find the sum of the first n terms of the series $0.2+0.22+0.222+$
A. $S=\frac{2}{9}[0.9+0.99+0.999+$ \qquad
$=\frac{2}{9}[(1-0.1)+(1-0.01)+(1-0.001) \ldots \ldots$.
$=\frac{2}{9}[n-(0.1+0.01 \ldots \ldots \ldots .+n$ terms $)]$
$=\frac{2}{9} n-\frac{2}{9} \frac{(0.1)\left[1-(0.1)^{n}\right]}{[1-(0.1)]}$
$\frac{2}{9} n-\frac{2}{9} \frac{(0.1)}{(0.9)}\left[1-(0.1)^{\mathrm{n}}\right]$
$\frac{2}{9} n-\frac{2}{81}+\frac{2}{81}(0.1)^{n}$
10. The equation to the pairs of opposite sides of a parallelogram are $x^{2}-5 x+6=0$ and $y^{2}-6 y+5$. Find the equations of its diagonals.
A. $x=2$......(i)
$x=3$.
$y=1 \ldots$.... (iii)
$y=5$
(iv)
$\mathrm{A}(2,1), \mathrm{B}(3,1), \mathrm{C}(3,5), \mathrm{D}(2,5)$
Equation of AC
$\frac{x-2}{3-2}=\frac{y-1}{5-1}, x-2=\frac{y-1}{4}$
$4 x-8=y-1,4 x-y-7=0$

Equation of $\mathrm{BD} \quad \frac{x-3}{2-3}=\frac{y-1}{5-1}$
$\frac{x-3}{-1}=\frac{y-1}{4},-4 x+12=y-1$
$4 x+y-13=0$

