AMIETE - ET (OLD SCHEME)

Code: AE15		Subject: COMMUNICATION ENGINEERING						
Time	: 3 Hour	JUNE 2009	Max. Marks: 100					
QuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuant	NOTE: There are 9 Questions in all. • Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.							
Q.1	Choos	se the correct or the best alte	rnative in the following: (2×10)					
a.	Unwan	Unwanted energy, usually of random nature, present in a transmission system, due to any cause is called						
	(A) no (C) int	oise. formation.	(B) random signal.(D) carrier.					
b.	For a re	For a receiver of noise figure F operating at T_0 , K, the equivalent noise temperature is given by						
	(A) F($T_o - 1$).	(B) $(F-1)(T_0-1)$.					
	(C) T ₀	(F – 1)	(D) $\frac{T_o}{F}$.					
C.	Modulat	Modulation index of an AM wave with $E_m = 160 \text{ V}$, $E_c = 200 \text{ V}$ is						
	(A) 40 (C) 12		(B) 80%. (D) 360V.					
d.	If there a	f there are $M = 2^N$ (N an integer) equally likely and independent messages, then information bits in each message is						
	(A) 2 ^h	¹ .	(B) ¹ og 2 ^N .					
	(C) 21	∘g ₂ M .	(D) N.					
e.	The Har	The Hamming distance of an orthogonal code of k information bits is equal to						
	(A) 2 ^k		(B) 2^{k-1} .					
	(C) 2 ^k	:+1.	(D) 2^{-k} .					
f.	If sample	If sampling of 20 Hz bandwidth signals is at Nyquist rate using 3 bits per sample, then the bit rate (bits/s) is						
	(A) 17		(B) $\frac{20}{3}$.					
	(C) 60		(D) 120.					
g.	The nonlinear device with $y = kx^2$ type characteristics used in a square-law AM demodulator is a							
	(A) die		(B) capacitor.					
	(C) res	sistor.	(D) comparator.					
h.	An amp	plitude-modulated signal, carrier	plus double sideband is passed through a filter before transmission to the receiving					

end in the

1/7/12 Code: A-20

	(A) PCM system.(C) SSB system.	(B) VSB system.(D) DSB system.				
i.	The amplitude-to-step-size ratio is 128 in a linear delta modulation for a sinusoid of frequency 800 Hz. To avoid slope overload, the sampling rate f_s must be					
	(A) ≥ 640KHz. (C) =102.4 KHz.	(B) $\geq 6.25 \text{Hz}$. (D) $\leq 102.4 \text{KHz}$.				
j.	In a PCM system, the error between a digit sent and the actual signal at that instant is random and is called					
	(A) distortion.(C) nonlinear noise.	(B) random noise.(D) quantisation noise.				
	Ans	wer any FIVE Questions out of EIC Each question carries 16 ma	-			
Q 2.	a. Determine the noise figure of 1×10^{-13} W.	of a microwave amplifier operating wit	th a bandwidth of 27 MHz and internal noise power (8)			
	b. Obtain a relation amplifier).	ship between the noise figure and ne	oise temperature of a two-port network (like an (8)			
Q 3.	•	e instantaneous value of FM signal volt equency ©c and modulating sign	tage $e_{FM}(t)$ in terms of its amplitude A, modulation hal frequency ω_m . Sketch a typical FM (8)			
			rier unmodulated and 3.735 kW when the carrier is plation index, sideband frequencies, powers and the (8)			
Q 4.	•	variable capacitor is used to frequency stem as an indirect method of frequency				
	deviation is 10 KHz, find	the expressions for instantaneous volta	ave. If the carrier voltage is 4V and the maximum age for frequency modulated and phase-modulated is now changed to 2 KHz, with no other change. (8)			
Q 5.	a. Compare wideband FM ar	nd narrowband FM.	(8)			
	b. Explain the meaning of the following terms:					
	(i) Discriminator. (ii) Frequency division					
	(iii) Suppressed carrie (iv) Power and bandw		(8)			
Q 6.	a. State and explain the	sampling theorem for low-pass sign	nals. How can the original signal be recovered?			

1/7/12 Code: A-20

	b. With the help of a block-diagram, explain the working of a linear delta modulator.	(8)
Q 7.	a. Describe the basic error control coding that detects and corrects errors.	(5)
	b. State Shannon theorem for the capacity of a Gaussian channel. What is its implication used? (6)	n if a non-Gaussian channel is
Q 8.	c. Show that for $n = 3$ type repeated codes the matrix \overline{H} is given by $\begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$. Explain how codewords are formed and represented in	(5)
0.0	(i) Hadamard code (ii) Hamming code (iii) Cyclic code	(6) (5) (5)
Q 9.	a. Write briefly about the following:(i) factors influencing colour transmission(ii) phased-array radar	(8)

b. Calculate the Doppler frequency seen by a stationary CW Doppler radar operating at 5GHz transmit frequency when the target radial velocity is 100Km/h. Will this radar be able to provide audio-range signals for booking speeding motorists by highway police patrol? (8)