AMIETE - ET (OLD SCHEME) | Code: AE15 | | Subject: COMMUNICATION ENGINEERING | | | | | | | |--|--|--|--|--|--|--|--|--| | Time | : 3 Hour | JUNE 2009 | Max. Marks: 100 | | | | | | | QuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuantitiesQuant | NOTE: There are 9 Questions in all. • Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else. | | | | | | | | | Q.1 | Choos | se the correct or the best alte | rnative in the following: (2×10) | | | | | | | a. | Unwan | Unwanted energy, usually of random nature, present in a transmission system, due to any cause is called | | | | | | | | | (A) no (C) int | oise.
formation. | (B) random signal.(D) carrier. | | | | | | | b. | For a re | For a receiver of noise figure F operating at T_0 , K, the equivalent noise temperature is given by | | | | | | | | | (A) F(| $T_o - 1$). | (B) $(F-1)(T_0-1)$. | | | | | | | | (C) T ₀ | (F – 1) | (D) $\frac{T_o}{F}$. | | | | | | | C. | Modulat | Modulation index of an AM wave with $E_m = 160 \text{ V}$, $E_c = 200 \text{ V}$ is | | | | | | | | | (A) 40
(C) 12 | | (B) 80%.
(D) 360V. | | | | | | | d. | If there a | f there are $M = 2^N$ (N an integer) equally likely and independent messages, then information bits in each message is | | | | | | | | | (A) 2 ^h | ¹ . | (B) ¹ og 2 ^N . | | | | | | | | (C) 21 | ∘g ₂ M . | (D) N. | | | | | | | e. | The Har | The Hamming distance of an orthogonal code of k information bits is equal to | | | | | | | | | (A) 2 ^k | | (B) 2^{k-1} . | | | | | | | | (C) 2 ^k | :+1. | (D) 2^{-k} . | | | | | | | f. | If sample | If sampling of 20 Hz bandwidth signals is at Nyquist rate using 3 bits per sample, then the bit rate (bits/s) is | | | | | | | | | (A) 17 | | (B) $\frac{20}{3}$. | | | | | | | | (C) 60 | | (D) 120. | | | | | | | g. | The nonlinear device with $y = kx^2$ type characteristics used in a square-law AM demodulator is a | | | | | | | | | | (A) die | | (B) capacitor. | | | | | | | | (C) res | sistor. | (D) comparator. | | | | | | | h. | An amp | plitude-modulated signal, carrier | plus double sideband is passed through a filter before transmission to the receiving | | | | | | end in the 1/7/12 Code: A-20 | | (A) PCM system.(C) SSB system. | (B) VSB system.(D) DSB system. | | | | | |------|---|---|---|--|--|--| | i. | The amplitude-to-step-size ratio is 128 in a linear delta modulation for a sinusoid of frequency 800 Hz. To avoid slope overload, the sampling rate f_s must be | | | | | | | | (A) ≥ 640KHz.
(C) =102.4 KHz. | (B) $\geq 6.25 \text{Hz}$.
(D) $\leq 102.4 \text{KHz}$. | | | | | | j. | In a PCM system, the error between a digit sent and the actual signal at that instant is random and is called | | | | | | | | (A) distortion.(C) nonlinear noise. | (B) random noise.(D) quantisation noise. | | | | | | | Ans | wer any FIVE Questions out of EIC
Each question carries 16 ma | - | | | | | Q 2. | a. Determine the noise figure of 1×10^{-13} W. | of a microwave amplifier operating wit | th a bandwidth of 27 MHz and internal noise power (8) | | | | | | b. Obtain a relation amplifier). | ship between the noise figure and ne | oise temperature of a two-port network (like an (8) | | | | | Q 3. | • | e instantaneous value of FM signal volt equency ©c and modulating sign | tage $e_{FM}(t)$ in terms of its amplitude A, modulation hal frequency ω_m . Sketch a typical FM (8) | | | | | | | | rier unmodulated and 3.735 kW when the carrier is plation index, sideband frequencies, powers and the (8) | | | | | Q 4. | • | variable capacitor is used to frequency stem as an indirect method of frequency | | | | | | | deviation is 10 KHz, find | the expressions for instantaneous volta | ave. If the carrier voltage is 4V and the maximum age for frequency modulated and phase-modulated is now changed to 2 KHz, with no other change. (8) | | | | | Q 5. | a. Compare wideband FM ar | nd narrowband FM. | (8) | | | | | | b. Explain the meaning of the following terms: | | | | | | | | (i) Discriminator. (ii) Frequency division | | | | | | | | (iii) Suppressed carrie
(iv) Power and bandw | | (8) | | | | | Q 6. | a. State and explain the | sampling theorem for low-pass sign | nals. How can the original signal be recovered? | | | | 1/7/12 Code: A-20 | | b. With the help of a block-diagram, explain the working of a linear delta modulator. | (8) | |------|---|--------------------------------| | Q 7. | a. Describe the basic error control coding that detects and corrects errors. | (5) | | | b. State Shannon theorem for the capacity of a Gaussian channel. What is its implication used? (6) | n if a non-Gaussian channel is | | Q 8. | c. Show that for $n = 3$ type repeated codes the matrix \overline{H} is given by $\begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$. Explain how codewords are formed and represented in | (5) | | 0.0 | (i) Hadamard code (ii) Hamming code (iii) Cyclic code | (6)
(5)
(5) | | Q 9. | a. Write briefly about the following:(i) factors influencing colour transmission(ii) phased-array radar | (8) | b. Calculate the Doppler frequency seen by a stationary CW Doppler radar operating at 5GHz transmit frequency when the target radial velocity is 100Km/h. Will this radar be able to provide audio-range signals for booking speeding motorists by highway police patrol? (8)