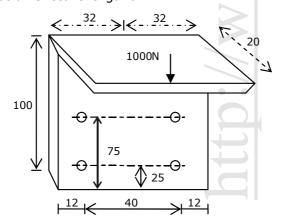
Q. No. 1 – 25 Carry One Mark Each

1.	revolut		√X , I ≤ X	K ≤ Z ISTE	evolved	i arounu	the x-axis. The	volume	or the solid of
	(A)	$\frac{\pi}{4}$	(B)	$\frac{\pi}{2}$		(C)	$\frac{3\pi}{4}$	(D)	$\frac{3\pi}{2}$
2.	The Bla	asius equation,	$\frac{d^3f}{d\eta^3} + \frac{f}{2}\frac{d^3f}{d\eta^3}$	$\frac{d^2f}{d\eta^2} = 0 \text{ is }$	a				
	(A) (B) (C) (D)	Second order no Third order no Third order line Mixed order no	nlinear or ear ordina	dinary dif ary differe	ferentia ntial ed	al equat quation	ion		
3.	The val	lue of the integr	-00						
	(A)	$-\pi$	(B)	$-\frac{\pi}{2}$	20	(C)	$\frac{\pi}{2}$	(D)	π
4.	The mo	odulus of the co	mplex nu	umber $\left(\frac{3}{1}\right)$	$\left(\frac{+4i}{-2i}\right)$ is	5			
	(A)	5	(B)	$\sqrt{5}$		(C)	$\frac{1}{\sqrt{5}}$	(D)	<u>1</u> 5
5.	The fur (A) (B) (C) (D)	is continuous \forall s continuous \forall s continuous \forall s continuous \forall is continuous \forall	$f(x) \in R$ and $f(x) \in R$ and $f(x) \in R$ and $f(x) \in R$ and $f(x) \in R$	d different d different	iable ∀: tiable ∀	$x \in R ex$ $\forall x \in R e$	except at $x = 2/3$		
6.	Mobility (A)	y of a statically i ≤−1	ndetermi (B)	nate struc 0	ture is	(C)	1	(D)	≥2
7.	There a (A) (B) (C) (D)	are two points P should always Can be oriente should always should be alon	be along d along a be perpe	PQ ny direction ndicular to	on o PQ			ty betwe	en the two points
8.		ate of plane-stre um shear stress 111.8	•	_	en by o	$\sigma_{x} = -200$	OMPa, $\sigma_{y} = 100$ N 180.3	MPa and (D)	τ = 100MPa . The 223.6
9.	Which (A)	of the following Grashof's rule s shortest and lo lengths.	statemer states tha ngest lin	nts is INCC at for a pla k lengths	anar cr cannot	T? ank-rock be less	ker four bar med than the sum of	chanism, f the rem	the sum of the naining two link
	(B) (C) (D)	Geneva mecha	nism is a	n intermit	tent m	otion de	different links ovice mechanism to		time.
10.		tural frequency ω_n moon $(g_{moon} = g_n)$	-	-		on earth (C)	is ω_n . The natu $0.204\omega_n$	ral frequ (D)	ency of this system $0.167\omega_{\text{n}}$
11.	Tooth i (A) (B) (C) (D)	nterference in a decreasing cen decreasing mo decreasing pre increasing num	ter distar dule ssure ang	nce betwe gle		-	can be reduced	by	

12.	For the TRUE? (A) (B) (C) (D)	Metacentre she Metacentre she Metacentre an Metacentre an Metacentre an	ould be bould be a ould be a d centre	pelow cent above cent of gravity	tre of gra tre of gra must lie	avity avity e on the	e same horizor	ntal line	of the followi	ng is
13.	two fixe	aximum velocity ed parallel plate	s, is 6ms	s ⁻¹ . The m	ean velo	city (in	ms ⁻¹) of the f	low is		etween
	(A)	2	(B)	3		(C)	4	(D)	5	
14.		omenon is mod mensional varial k		ig n dimer n		ariables (C)	s with k prima n-k	ry dimens (D)	ions. The nu	imber of
15.	A turbo (25.9li	o-charged four-s tres) . The eng	stroke dir	ect injecti	on diese	l engin	e has a displa	cement vo	olume of 0.0	
	closest (A)	to 2	(B)	1		(C)	0.2	(D)	0.1	
16.		ogram of water oir. The entropy equal to entro equal to entro equal to zero always positive	change op py chang py chang	of the univie of the re	verse is eservoir	ought i	nto contact wi	th a high	temperature	thermal
17.		aulic turbine dev developed (in k 177		354 o		head ((C)	of 40m. If the 500	head is re	educed to 20 707	m, the
18.	The ma (A) (C)	aterial property fatigue strengt fracture streng	:h	epends onl	y on the	basic (B) (D)	crystal structu work hardeni elastic consta	ing		
19.	In a ga (A) (B) (C) (D)	ting system, the sprue base are pouring basin sprue base are runner area: ir	ea: runne area: ing ea: ingate	er area: inq pate area: e area: cas	gate are runner a sting are	area				
20.	A shaft	has a dimensio	-0.0 n, φ35 ⁰²	009 ²⁵ . The re	espective	e values	s of fundamen	tal deviat	ion and toler	ance are
	(A) (C)	-0.025 , ± 0.0 -0.009 , ± 0.00	80			(B) (D)	-0.025, 0.01 -0.009, 0.01	.6		
21.	In a CN (A) (B) (C) (D)	IC program bloo circular interpo circular interpo circular interpo circular interpo	plation in plation in plation in	countercl countercl clockwise	ockwise ockwise directio	direction direction on and i	on and increm on and absolut ncremental di	ental dime te dimens mension		
22.		mand and fored ening method (431			ficient =					onential
23.	Little's (A) (B) (C) (D)	law is relationsl stock level and waiting time a number of ma uncertainty in	l lead tin nd length chines ar	ne in an in n of the qu nd job due	ueue in a dates ir	queuii n a sche	ng system eduling proble	m		
24.	Vehicle (A) (C)	manufacturing product layout manual layout		y line is ar		le of (B) (D)	process layout	ut		

- 25. Simplex method of solving linear programming problem uses
 - (A) all the points in the feasible region
 - (B) only the corner points of the feasible region
 - (C) intermediate points within the infeasible region
 - (D) only the interior points in the feasible region.

Q. No. 26 - 51 Carry Two Marks Each

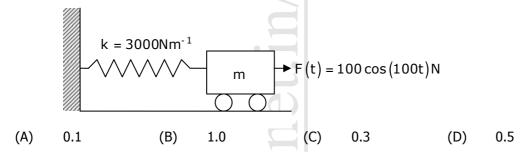

Note: All length dimensions shown in the figures are in mm unless otherwise specified. Figures are not drawn to scale.

26. Torque exerted on a flywheel over a cycle is listed in the table. Flywheel energy (in J per unit cycle) using Simpson's rule is

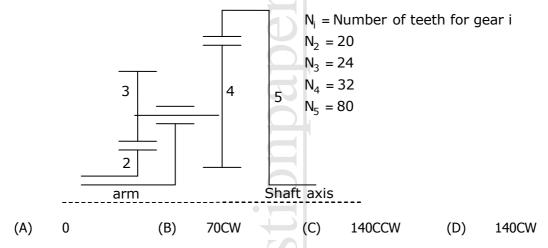
Angle (degree)	0	60	120	180	240	300	360
Torque (Nm)	0	1066	-323	0	323	-355	0

- (A) 542
- (B) 993
- C) 1444
- (D) 1986

- 27. One of the eigen vectors of the matrix $A = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$ is
 - $(A) \qquad \begin{cases} 2 \\ -1 \end{cases}$
- (B) $\begin{cases} 2 \\ 1 \end{cases}$
- C) $\begin{cases} 4 \\ 1 \end{cases}$
- $(D) \qquad \begin{cases} 1 \\ -1 \end{cases}$
- 28. Velocity vector of a flow field is given as $\vec{V} = 2xy\hat{i} x^2z\hat{j}$. the velocity vector at (1,1,1) is
 - (A) $4\hat{i} \hat{j}$
- (B) $4\hat{i}$ –
- $4\hat{i} \hat{k}$ (C) $\hat{i} 4\hat{j}$
- (D) $\hat{i} 4\hat{k}$
- 29. The Laplace Transform of a function $f(t) = \frac{1}{s^2(s+1)}$. The f(t) is
 - (A) $t-1+e^{-t}$
- (B) t + 1 + e
- (C) -1 +
- (D) $2t + e^{t}$
- 30. A box contains 2 washers, 3 nuts and 4 bolts. Items are drawn from the box at random one at a time without replacement. The probability of drawing 2 washers first followed by 3 nuts and subsequently the 4 bolts is
 - (A) 2/315
- (B) 1/630
- (C) 1/1260
- (D) 1/2520
- 31. A band brake having band-width of 80mm, drum diameter of 250mm, coefficient of friction of 0.25 and angle of wrap of 270 degrees is required to exert a friction torque of 1000N-m. The maximum tension (in kN) developed in the band is
 - (A) 1.88
- (B) 3.56
- (C) 6.12
- (D) 11.56
- 32. A bracket (shown in figure) is rigidly mounted on wall using four rivets. Each rivet is 6mm in diameter and has an effective length of 12mm.

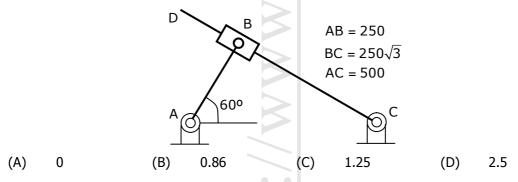

Direct shear stress (in MPa) in the most heavily loaded rivet is

- (A) 4.4
- (B) 8.8
- (C)


17.6

(D) 35.2

33. A mass m attached to a spring is subjected to a harmonic force as shown in figure. The amplitude of the forced motion is observed to be 50mm. the value of



34. For the epicyclic gear arrangement shown in the figure, ω_2 =100rad / s clockwise (CW) and ω_{arm} =80rad / s counter clockwise (CCW). The angular velocity ω_5 (in rad/s)

- 35. A lightly loaded full journal bearing has a journal of 50mm, bush bore of 50.05mm and bush length of 20mm. if rotational speed of journal is 1200rpm and average viscosity of liquid lubricant is 0.03 Pa s, the power loss (in W) will be
 - (A) 37
- (B) 74
- (C) 118
- (D) 237

36. For the configuration shown, the angular velocity of link AB is 10 rad/s counterclockwise. The magnitude of the relative sliding velocity (in ms-1) of slider B with respect to rigid link CD is

- 37. A smooth pipe of diameter 200mm carries water. The pressure in the pipe at section S1 (elevation: 10m) is 50kPa. At Section S2 (elevation: 12m) the pressure is 20kPa and velocity is 2ms⁻¹. Density of water is 1000kgm⁻³ and acceleration due to gravity is 9.8ms⁻². Which of the following is TRUE?
 - (A) flow from S1 to S2 and head loss is 0.53m
 - (B) flow from S2 to S1 and head loss is 0.53m
 - (C) flow from S1 to S2 and head loss is 1.06m
 - (D) flow from S2 to S1 and head loss is 1.06m

38. Match the following

P: Compressible flow	U: Reynolds number
Q: Free surface flow	V: Nusselt number
R: Boundary layer flow	W: Weber number
S: Pipe flow	X: Froude number
T: Heat convection	Y: Mach number
	Z: Skin friction coefficient

(A) P-U; Q-X; R-V; S-Z; T-W (B) P-W; Q-X; R-Z; S-U; T-V

P-Y; Q-W; R-Z; S-U; T-X (C)

P-Y; Q-W; R-Z; S-U; T-V (D)

A mono-atomic ideal gas (γ =1.67, molecular weight = 40) is compressed adiabatically from 0.1MPa, 39. 300K to 0.2MPa. The universal gas constant is 8.314kJkmol⁻¹K⁻¹. The work of compression of the gas (in kJ kg-1) is

(A) 29.7 (B) 19.9 (C) 13.3 (D)

40. Consider the following two processes:

A heat source at 1200K loses 2500kJ of heat to sink at 800K

A heat source at 800K loses 2000kJ of heat to sink at 500K Which of the following statements b. is TRUE?

(A) Process I is more irreversible than Process II

(B) Process II is more irreversible than Process I

(C) Irreversibility associated in both the processes is equal

Both the processes are reversible (D)

A fin has 5mm diameter and 100mm length. The thermal conductivity of fin ⁻¹k⁻¹ material is 400Wm 41. K. One end of the fin is maintained at 130°C and its remaining surface is exposed to ambient air at 30°C. if the convective heat transfer coefficient is 40Wm-2K-1, the heat loss (in W) from the fin is

(A)

(C) 7.0

42. A moist air sample has dry bulb temperature of 30°C and specific humidity of 11.5q water vapour per kg dry air. Assume molecular weight of air as 28.93. If the saturation vapour pressure of water at 30°C is 4.24kPa and the total pressure is 90kPa, then the relative humidity (in %) of air sample is

50.5 (A)

38.5 (B)

56.5 (C)

68.5

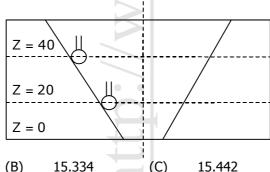
43. Two pipes of inner diameter 100mm and outer diameter 110mm each joined by flash butt welding using 30V power supply. At the interface, 1mm of material melts from each pipe which has a resistance of 42.4Ω . If the unit melt energy is 64.4MJm-3, then time required for welding in seconds is

(A)

(B) 5

20

For tool A, Taylor's tool life exponent (n) is 0.45 and constant (K) is 90. Similarly for tool B, n=0.3 44. and K=60. The cutting speed (in m/min) above which tool A will have a higher tool life than tool B is


(A)

42.5 (B)

(C) 80.7

142.9 (D)

A taper hole is inspected using a CMM, with a probe of 2mm diameter. At a height, Z=10mm from the 45. bottom, 5 points are touched and a diameter of circle (not compensated for probe size) is obtained as 20mm. similarly, a 40mm diameter is obtained at a height Z = 40mm. the smaller diameter (in mm) of hole at Z = 0 is

(A) 13.334 (B)

(C)

(D)

15.542

46. Annual demand for window frames is 10000. Each frame costs Rs. 200 and ordering cost is RS. 300 per order. Inventory holding cost is Rs. 40 per frame per year. The supplier is willing to offer 2% discount if the order quantity is 1000 or more, and 4% if order quantity is 2000 or more. If the total cost is to be minimized, the retailer should

order 200 frames every time (A)

accept 2% discount (B)

accept 4% discount (C)

(D) order Economic Order Quantity 47. The project activities, precedence relationships and durations are described in the table. The critical path of the project is

Activity	Precedence	Duration (in days)
Р	-	3
Q	-	4
R	P	5
S	Q	5
Т	R, S	7
U	R, S	5
V	T	2
W	U	10

(A) P-R-T-V

(B) O-S-T-\

C) P-R-U-W

(D) Q-S-U-W

Common Data Questions: 48 & 49

In a steam power plant operating on the Rankine cycle, steam enters the turbine at 4MPa, 350°C and exits at a pressure of 15kPa. Then it enters the condenser and exits as saturated water. Next, a pump feeds back the water to the boiler. The adiabatic efficiency of the turbine is 90%. The thermodynamic states of water and steam are given in the table.

State	h (kJ	kg-1)	s(kJ kg	⁻¹ K ⁻¹)	v(m³ kg ⁻¹)		
Steam: 4 MPa, 350°C	309	92.5	6.5	821	0.06645		
Water: 15kPa	h _f	h _q	S _f	Sq	V _f	V_{q}	
Water: 15KPa	225.94	2599.1	0.7549	8.0085	0.001014	10.02	

h is specific enthalpy, s is specific entropy and v the specific volume; subscripts f and g denote saturated liquid state and saturated vapour state.

48. The net work output (kJ kg⁻¹) of the cycle is

(A) 498

(B) 775

(C) 860

(D) 957

49. Heat supplied (kJ kg⁻¹) of the cycle is

(A) 2372

(B) 2576

(C) 2863

(D) 3092

Common Data Questions: 50 & 51

Four jobs are to be processed on a machine as per data listed in the table.

Job	Processing time (in days)	Due date
1	4	6
2	7	9
3	2	19
4	8	17

50. If the Earliest Due Date (EDD) rule is used to sequence the jobs, the number of jobs delayed is

(A) 1

(B)

(C) 3

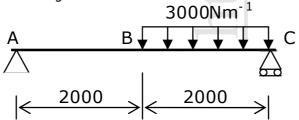
(D) 4

51. Using the Shortest Processing Time (SPT) rule, total tardiness is

(A) 0

(B) 2

2


(C) 3

(D) 4

Linked Answer Questions: Q.52 to Q.55 Carry Two Marks Each

Statement for Linked Answer Questions: 52 & 53

A massless beam has a loading pattern as shown in the figure. The beam is of rectangular cross-section with a width of 30mm and height of 100mm.

52.		ximum bending	moment	occurs a	t				
	(A)	Location B	right of	^					
	(B) (C)	2675mm to the 2500mm to the							
	(D)	3225mm to the							
	(-)	J							
53.	The ma	ximum magnitu	de of be	nding stre	ess (in M	1Pa) is g	given by		
	(A)	60.0	(B)	67.5	+	(C)	200.0	(D)	225.0
		Ct -		6 1 ! ! .	(1)				
		Sta	tement	TOT LINK	ea Ansi	wer Qu	estions: 54 & !	55	
400mm	long an		=0) is pr	ovided or	the ed	ge. The	ultimate shear s		The cutting blade is of the sheet is
			400)					
		4		, 					
		<u> </u>				<u>[</u> i			
					a10				
				_		┦ ─			
						√ ∧ √S			
54.	Λεειιmii	na force ve dienl	acement	curve to	he rect	angular	, the work done	(in 1) ic	
JT.	(A)	100	(B)	200	DE TECC	arigular, (C)	250	(D)	300
	()		(-)					(-)	
55.							de. Assuming fo	rce vs di	splacement curve to
		ezoidal, the max		•	V) exerte	\	20	(D)	40
	(A)	5	(B)	10	(1)	(C)	20	(D)	40
			Q. No.	56 – 60	Carry	One Ma	ırk Each		
56.									10 of them play both
							g neither hockey		
57.							13		3 e following sentence:
57.							ve would leave a		
	children			_ our riace	ardi 1650	urces, v	ve would leave t	i better	planet for our
	(A)	uphold	(B)	restrain		(C)	cherish	(D)	conserve
F0									
58.	that be	estion below cor st expresses the bloyed: Worke	relation				ollowed by four p	oairs of v	vords. Select the pair
	(A)	fallow: land				(B)	unaware: sleep		
	(C)	wit: jester		1		(D)	renovated: hou	se	
59.	Which t	he following ont	ions is tl	ne closest	t in mea	nina to	the word below:	•	
55.	Circuit		.10115 15 (1	ic closes	c in med	illing to	the word below.	1	
	(A)	cyclic	(B)	indirect		(C)	confusing	(D)	crooked
		·			+		_		
60.			priate w	ord from	the opti	ons give	en below to the o	complete	the following
	sentend	e: er casual remar	ks on no	litics		hic lac	k of seriousness	ahout ti	ne subject
	(A)	masked	(B)	belied		_ fils lac (C)	k of seriousness betrayed	(D)	suppressed
	(1)	masica	(5)	Delica		(=)	Deliayea	(5)	оаррі сооси

Q. No. 61 - 65 Carry Two Marks Each

- 61. Hari (H), Gita (G), Irfan (I) and Saira (S) are siblings (i.e. brothers and sisters). All were born on 1st January. The age difference between any two successive siblings (that is born one after another) is less than 3 years. Given the following facts:
 - i. Hari's age + Gita's age > Irfan's age + Saira's age
 - ii. The age difference between Gita and Saira is 1 year. However, Gita is not the oldest and Saira is not the youngest.
 - iii. There are no twins. In what order were they born (oldest first)?
 - (A) HSIG
- (B) SGHI
- (C) IGSH
- (D) IHSG
- 5 skilled workers can build a wall in 20days; 8 semi-skilled workers can build a wall in 25 days; 10 unskilled workers can build a wall in 30days. If a team has 2 skilled, 6 semi-skilled and 5 unskilled workers, how long will it take to build the wall?
 - (A) 20 days
- (B) 18 days
- (C) 16 days
- (D) 15 days
- 63. Modern warfare has changed from large scale clashes of armies to suppression of civilian populations. Chemical agents that do their work silently appear to be suited to such warfare; and regretfully, there exist people in military establishments who think that chemical agents are useful tools for their cause. Which of the following statements best sums up the meaning of the above passage:
 - (A) Modern warfare has resulted in civil strife.
 - (B) Chemical agents are useful in modern warfare.
 - (C) Use of chemical agents in warfare would be undesirable
 - (D) People in military establishments like to use chemical agents in war.
- 64. Given digits 2,2,3,3,4,4,4,4 how many distinct 4 digit numbers greater than 3000 can be formed?
 - (A) 50
- (B) 51
- (C) 52
- (D) 54

- 65. If 137 = 276 = 435 how much is 731 + 672?
 - (A) 534
- (B) 1403
- (C) 1623
- (D) 1513

End of question papers

D.WWW/