CHEMISTRY

1. Considering the state of hybridization of carbon atoms, find out the molecule among the following which is linear?
(1) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$
(2) $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}$
(3) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{CH}$
(4) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$

Sol.: $\stackrel{1}{\mathrm{C}} \mathrm{H}_{3}-\stackrel{2}{\mathrm{C}} \equiv \stackrel{3}{\mathrm{C}}-\stackrel{4}{\mathrm{C}} \mathrm{H}_{3}$ is a linear molecule as C_{2} and C_{3} are sp hybridized.
2. In the following reactions,

(b)

the major products (A) and (C) are respectively:
(1)

(2)

(3)

(4)

Sol.:

(A)
major product
(B)
minor product

3. Standard electrode potential of three metals X, Y and Z are $-1.2 \mathrm{~V},+0.5 \mathrm{~V}$ and -3.0 V respectively. The reducing power of these metals will be:
(1) Y $>$ Z $>X$
(2) $\mathrm{Y}>\mathrm{X}>\mathrm{Z}$
(3) $Z>X>Y$
(4) X $>$ Y $>$ Z

Sol.: Reducing power of the metal is inversely proportional to the reduction potential of the metal.

$$
\mathrm{Z}>\mathrm{X}>\mathrm{Y}
$$

\therefore Correct choice : (3)
4. The total number of atomic orbitals in fourth energy level of an atom is:
(1) 8
(2) 16
(3) 32
(4) 4

Sol.: 4th energy level has one s, three p, five d and seven f orbitals.

$$
\text { Total }=1+3+5+7=16
$$

\therefore Correct choice : (2)
5. Which of the following has the minimum bond length?
(1) O_{2}^{+}
(2) O_{2}^{-}
(3) O_{2}^{2-}
(4) O_{2}

Sol.: Minimum length is related to maximum bond order
Specie
O_{2}^{+}
O_{2}^{-}
O_{2}^{2-}
O_{2}

Bond order
O_{2}^{-}
O_{2}^{2-}
O_{2}
6. If x is amount of adsorbate and m is amount of adsorbent, which of the following relations is not related to adsorption process?
(1) $\frac{x}{m}=f(p)$ at constant T
(2) $\frac{x}{m}=f(T)$ at constant p
(3) $p=f(T)$ at constant $\left(\frac{x}{m}\right)$
(4) $\frac{x}{m}=p \times T$

Sol.: $\frac{x}{m}=f(T)$ at constant p is wrongly related.
It must be as $\left(\frac{x}{m}\right)=f\left(\frac{1}{T}\right)$
7. A buffer solution is prepared in which the concentration of NH_{3} is 0.30 M and the concentration of NH_{4}^{+}is 0.20 M . If the equilibrium constant, K_{b} for NH_{3} equals 1.8×10^{-5}, what is the pH of this solution? $(\log 2.7=0.43)$
(1) 9.08
(2) 9.43
(3) 11.72
(4) 8.73

Sol.: $\mathrm{pOH}=\mathrm{pK}_{\mathrm{b}}+\log \frac{[\text { salt }]}{[\text { base }]}$

$$
\begin{aligned}
& =-\log \left(1.8 \times 10^{-5}\right)+\log \left(\frac{0.2}{0.3}\right) \\
& =4.57
\end{aligned}
$$

Hence $\mathrm{pH}=14-4.57=9.43$
8. The electrode potentials for $\mathrm{Cu}_{(\mathrm{aq})}^{2+}+\mathrm{e}^{-} \longrightarrow \mathrm{Cu}_{(\mathrm{aq})}^{+}$and $\mathrm{Cu}_{(\mathrm{aq})}^{+}+\mathrm{e}^{-} \longrightarrow \mathrm{Cu}_{(\mathrm{s})}$ are +0.15 V and +0.50 V respectively. The value of $\mathrm{E}_{\mathrm{Cu}^{2+} / \mathrm{Cu}}^{\mathrm{o}}$ will be:
(1) 0.500 V
(2) 0.325 V
(3) 0.650 V
(4) 0.150 V

Sol.: $\mathrm{Cu}_{(\mathrm{aq})}^{2+}+\mathrm{e}^{-} \rightarrow \mathrm{Cu}_{(\mathrm{aq})}^{+} ; \Delta \mathrm{G}_{1}^{\mathrm{o}}=-\mathbf{1} \times \mathrm{F} \times(+0.15)$
$\underline{\mathrm{Cu}_{(\mathrm{aq})}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Cu}_{(\mathrm{s})} ; \Delta \mathrm{G}_{2}^{\mathrm{o}}=-1 \times \mathrm{F}(+0.50)}$
$\mathrm{Cu}_{(\mathrm{aq})}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}_{(\mathrm{s})} ; \Delta \mathrm{G}_{3}^{\mathrm{o}}=\Delta \mathrm{G}_{1}^{\mathrm{o}}+\Delta \mathrm{G}_{2}^{\mathrm{o}}$
$\Delta \mathrm{G}_{3}^{\mathrm{o}}=-\mathrm{nFE}^{\mathrm{o}}=-2 \mathrm{FE}^{\mathrm{o}}$
Hence $\mathrm{E}^{0}=0.325 \mathrm{~V}$
9. For the four successive transition elements ($\mathrm{Cr}, \mathrm{Mn}, \mathrm{Fe}$ and Co), the stability of +2 oxidation state will be there in which of the following order?
(1) $\mathrm{Mn}>\mathrm{Fe}>\mathrm{Cr}>\mathrm{Co}$
(2) $\mathrm{Fe}>\mathrm{Mn}>\mathrm{Co}>\mathrm{Cr}$
(3) $\mathrm{Co}>\mathrm{Mn}>\mathrm{Fe}>\mathrm{Cr}$
(4) $\mathrm{Cr}>\mathrm{Mn}>\mathrm{Co}>\mathrm{Fe}$
(At. nos. $\mathrm{Cr}=24, \mathrm{Mn}=25, \mathrm{Fe}=26, \mathrm{Co}=27$)
Sol.: Stability of +2 state of the following is $\mathrm{Mn}>\mathrm{Fe}>\mathrm{Cr}>\mathrm{Co}$

\therefore Correct choice :
10. Which one of the following statements for the order of a reaction is incorrect?
(1) Order can be determined only experimentally.
(2) Order is not influenced by stoichiometric coefficient of the reactants.
(3) Order of reaction is sum of power to the concentration terms of reactants to express the rate of reaction
(4) Order of reaction is always whole number.

Sol.: Order of reaction may be whole number, zero or fractional.
\therefore Correct choice : (4)
11. Which one of the following is most reactive towards electrophilic reagent?
(1)

(2)

(3)

(4)

Sol.: For Electrophilic attack, benzene ring must be activated. $-\mathrm{CH}_{3}$ group, $-\mathrm{OCH}_{3}$ group as well as -OH group activate the benzene ring. But $-\mathrm{OCH}_{3}$ group activates more than -OH group.
12. In a set of reactions m-bromobenzoic acid gave a product D. Identify the product D.

(1)

(2)

(3)

(4)

Sol.:

\therefore Correct choice : (3)
13. Which of the two ions from the list given below that have the geometry that is explained by the same hybridization of orbitals, $\mathrm{NO}_{2}^{-}, \mathrm{NO}_{3}^{-}, \mathrm{NH}_{2}^{-}, \mathrm{NH}_{4}^{+}, \mathrm{SCN}^{-}$?
(1) NO_{2}^{-}and NO_{3}^{-}
(2) NH_{4}^{+}and NO_{3}^{-}
(3) SCN^{-}and NH_{2}^{-}
(4) NO_{2}^{-}and NH_{2}^{-}

$$
\begin{array}{lll}
\mathrm{NO}_{2}^{-} & \frac{5+1}{2}=3 & \mathrm{sp}^{2} \\
\mathrm{NO}_{3}^{-} & \frac{5+1}{2}=3 & \mathrm{sp}^{2} \\
\mathrm{NH}_{4}^{+} & \frac{5+4-1}{2}=4 & \mathrm{sp}^{3} \\
\mathrm{NH}_{2}^{-} & \frac{5+2+1}{2}=4 & \mathrm{sp}^{3} \\
\mathrm{SCN}^{-} & : \mathrm{S}=\mathrm{C}=\mathrm{N} \mathbf{5} & \mathrm{sp}
\end{array}
$$

\therefore Correct choice : (1)
14. Which of the following is least likely to behave as Lewis base?
(1) $\mathrm{H}_{2} \mathrm{O}$
(2) NH_{3}
(3) BF_{3}
(4) OH^{-}

Sol.: BF_{3} is an electron deficient species and it is a Lewis acid.
\therefore Correct choice : (3)
15. Which one of the following statements is not true regarding (+) Lactose?
(1) On hydrolysis (+) Lactose gives equal amount of $\mathrm{D}(+)$ glucose and $\mathrm{D}(+)$ galactose
(2) (+) Lactose is a β-glycoside formed by the union of a molecule of $\mathrm{D}(+)$ glucose and a molecule of $\mathrm{D}(+)$ galactose
(3) (+) Lactose is a reducing sugar and does not exhibit mutarotation
(4) (+) Lactose, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ contains $8-\mathrm{OH}$ groups

Sol.: Reducing sugar will show mutarotation.
\therefore Correct choice : (3)
16. The freezing point depression constant for water is $-1.86^{\circ} \mathrm{C} \mathrm{m}^{-1}$. If $5.00 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4}$ is dissolved in $45.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$, the freezing point is changed by $-3.82^{\circ} \mathrm{C}$. Calculate the van't Hoff factor for $\mathrm{Na}_{2} \mathrm{SO}_{4}$.
(1) 2.05
(2) 2.63
(3) 3.11
(4) 0.381

Sol.: $\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \mathrm{K}_{\mathrm{f}} \frac{1000 \mathrm{~W}_{2}}{\mathrm{M}_{2} \mathrm{~W}_{1}}$

$$
\begin{aligned}
\mathrm{i} & =\frac{\Delta \mathrm{T}_{\mathrm{f}} \mathrm{M}_{2} \mathrm{~W}_{1}}{\mathrm{~K}_{\mathrm{f}} 1000 \mathrm{~W}_{2}}=\frac{3.82 \times 142 \times 45}{1.86 \times 1000 \times 5} \\
& =2.6247 \approx 2.63
\end{aligned}
$$

17. Of the following complex ions, which is diamagnetic in nature?
(1) $\left[\mathrm{NiCl}_{4}\right]^{2-}$
(2) $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$
(3) $\left[\mathrm{CuCl}_{4}\right]^{2-}$
(4) $\left[\mathrm{CoF}_{6}\right]^{3-}$

Sol.: Ni^{2+} in $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$

4 s

dsp^{2}
No unpaired electrons and hence diamagnetic.
\therefore Correct choice : (2)
18. The correct IUPAC name of the compound

(1) 4-Ethyl-3-propyl hex-1-ene
(2) 3-Ethyl-4-ethenyl heptane
(3) 3-Ethyl-4-propyl hex-5-ene
(4) 3-(1-ethyl propyl) hex-1-ene

Sol.:

4-Ethyl-3-propyl hex-1-ene
19. By what factor does the average velocity of a gaseous molecule increase when the temperature (in Kelvin) is doubled?
(1) 2.0
(2) 2.8
(3) 4.0
(4) 1.4

Sol.: Average velocity $=\sqrt{\frac{8 R T}{\pi M}}$
When temperature is doubled, new velocity is $\sqrt{2}$ times the original velocity i.e., 1.4 times.
\therefore Correct choice : (4)
20. Which one of the following statement is not true?
(1) pH of drinking water should be between $5.5-9.5$
(2) Concentration of DO below 6 ppm is good for the growth of fish
(3) Clean water would have a BOD value of less than 5 ppm
(4) Oxides of sulphur, nitrogen and carbon are the most widespread air pollutant
\therefore Correct choice : (2)
21. Name the type of the structure of silicate in which one oxygen atom of $\left[\mathrm{SiO}_{4}\right]^{4-}$ is shared?
(1) Linear chain silicate
(2) Sheet silicate
(3) Pyrosilicate
(4) Three dimensional

Sol.:

\therefore Correct choice : (3)
22. Two gases A and B having the same volume diffuse through a porous partition in 20 and 10 seconds respectively. The molecular mass of A is 49 u . Molecular mass of B will be:
(1) 50.00 u
(2) 12.25 u
(3) 6.50 u
(4) 25.00 u

Sol.: Volume of diffusion of gases is the same
$\frac{t_{A}}{t_{B}}=\sqrt{\frac{M_{A}}{M_{B}}}$
$\frac{20}{10}=\sqrt{\frac{49}{\mathrm{M}_{\mathrm{B}}}}$ or $\frac{400}{100}=\frac{49}{\mathrm{M}_{\mathrm{B}}}$ or
$\mathrm{M}_{\mathrm{B}}=12.25 \mathrm{u}$
23. In Dumas' method of estimation of nitrogen 0.35 g of an organic compound gave 55 mL of nitrogen collected at 300 K temperature and 715 mm pressure. The percentage composition of nitrogen in the compound would be:
(Aqueous tension at $300 \mathrm{~K}=15 \mathrm{~mm}$)
(1) 15.45
(2) 16.45
(3) 17.45
(4) 14.45

Sol.: $\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{0} \mathrm{~V}_{0}}{\mathrm{~T}_{0}}$
$\frac{(715-15) 55}{300}=\frac{760 \mathrm{~V}_{0}}{273}$
$\mathrm{V}_{0}=\frac{700 \times 55 \times 273}{300 \times 760}$
Mass of Nitrogen $=\frac{700 \times 55 \times 273}{300 \times 760} \times \frac{28}{22,400}=0.05762 \mathrm{~g}$
Percentage of Nitrogen $=\frac{0.05762}{0.35} \times 100=16.45 \%$
\therefore Correct choice : (2)
24. Which one of the following is employed as Antihistamine?
(1) Chloramphenicol
(2) Diphenyl hydramine
(3) Norothindrone
(4) Omeprazole

Sol.: Antihistamine is Diphenyl hydramine
\therefore Correct choice : (2)
25. What is the product obtained in the following reaction:

(1)

(2)

(3)

(4)

Sol.:

26. Standard electrode potential for $\mathrm{Sn}^{4+} / \mathrm{Sn}^{2+}$ couple is +0.15 V and that for the $\mathrm{Cr}^{3+} / \mathrm{Cr}$ couple is -0.74 V . These two couple in their standard state are connected to make cell. The cell potential will be:
(1) +1.19 V
(2) +0.89 V
(3) +0.18 V
(4) +1.83 V

Sol.: $\mathrm{Cr}\left|\mathrm{Cr}_{\mathrm{aq}}^{3+}\right|\left|\mathrm{Sn}^{2+}, \mathrm{Sn}^{4+}\right| \mathrm{Pt}$

$$
\begin{aligned}
\mathrm{E}_{\text {cell }}^{0} & =\mathrm{E}_{\text {RHS }}^{0}-\mathrm{E}_{\text {LHS }}^{0} \\
& =0.15-(-0.74) \\
& =0.89 \mathrm{~V}
\end{aligned}
$$

27. The van't Hoff factor i for a compound which undergoes dissociation in one solvent and association in other solvent is respectively:
(1) less than one and greater than one
(2) less than one and less than one
(3) greater than one and less than one
(4) greater than one and greater than one

Sol.: i>1 for dissociation
i<1 for association
28. The Lassaigne's extract is boiled with conc. HNO_{3} while testing for halogens. By doing so it:
(1) decomposes $\mathrm{Na}_{2} \mathrm{~S}$ and NaCN , if formed
(2) helps in the precipitation of AgCl
(3) increases the solubility product of AgCl
(4) increases the concentration of NO_{3}^{-}ion
\therefore Correct choice : (1)
29. The energies E_{1} and E_{2} of two radiations are 25 eV and 50 eV respectively. The relation between their wavelengths i.e., λ_{1} and λ_{2} will be
(1) $\lambda_{1}=\lambda_{2}$
(2) $\lambda_{1}=2 \lambda_{2}$
(3) $\lambda_{1}=4 \lambda_{2}$
(4) $\lambda_{1}=\frac{1}{2} \lambda_{2}$

$$
\begin{aligned}
& \frac{\mathrm{E}_{1}}{\mathrm{E}_{2}}=\frac{\lambda_{2}}{\lambda_{1}} \\
& \frac{25}{50}=\frac{\lambda_{2}}{\lambda_{1}}=\frac{1}{2} \\
& \lambda_{1}=2 \lambda_{2}
\end{aligned}
$$

30. A gaseous mixture was prepared by taking equal mole of CO and N_{2}. If the total pressure of the mixture was found 1 atmosphere, the partial pressure of the nitrogen $\left(\mathrm{N}_{2}\right)$ in the mixture is :
(1) 0.5 atm
(2) 0.8 atm
(3) 0.9 atm
(4) 1 atm

Sol.: $\mathrm{P}_{\mathrm{N}_{2}}=\chi_{\mathrm{N}_{2}} \mathrm{P}_{\mathrm{T}}=0.5 \times 1$

$$
=0.5 \mathrm{~atm}
$$

\therefore Correct choice : (1)
31. Mole fraction of the solute in a 1.00 molal aqueous solution is :
(1) 0.1770
(2) 0.0177
(3) 0.0344
(4) 1.7700

Sol.: Mole fraction of solute $=\frac{\mathrm{n}_{2}}{\mathrm{n}_{1}+\mathrm{n}_{2}}=\frac{\left(\frac{\mathrm{W}_{2}}{\mathrm{M}_{2}}\right)}{\left(\frac{\mathrm{W}_{1}}{\mathrm{M}_{1}}+\frac{\mathrm{W}_{2}}{\mathrm{M}_{2}}\right)}$

$$
\begin{aligned}
& =\frac{1}{\frac{1000}{18}+1} \\
& =\frac{1}{56.55}=0.0177
\end{aligned}
$$

\therefore Correct choice : (2)
32. Clemmensen reduction of a ketone is carried out in the presence of which of the following?
(1) Glycol with KOH
(2) $\mathrm{Zn}-\mathrm{Hg}$ with HCl
(3) $\mathrm{Li} \mathrm{AlH}_{4}$
(4) H_{2} and Pt as catalyst
33. Acidified $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution turns green when $\mathrm{Na}_{2} \mathrm{SO}_{3}$ is added to it. This is due to the formation of :
(1) $\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
(2) CrO_{4}^{2-}
(3) $\mathrm{Cr}_{2}\left(\mathrm{SO}_{3}\right)_{3}$
(4) CrSO_{4}

Sol.: Reduced product, $\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ is green.
\therefore Correct choice : (1)
34. Which of the following elements is present as the impurity to the maximum extent in the pig iron?
(1) Manganese
(2) Carbon
(3) Silicon
(4) Phosphorus

Sol.: Pig iron contains $2-5 \%$ carbon with traces of Si, Mn and P .
\therefore Correct choice : (2)
35. If the enthalpy change for the transition of liquid water to steam is $30 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at $27^{\circ} \mathrm{C}$, the entropy change for the process would be:
(1) $10 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
(2) $1.0 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
(3) $0.1 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
(4) $100 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$

Sol.: $\Delta \mathrm{S}=\frac{\Delta \mathrm{H}}{\mathrm{T}}=\frac{30 \times 10^{3} \mathrm{~J}}{300 \mathrm{~K}}$ per mole

$$
=100 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}
$$

\therefore Correct choice : (4)
36. Which of the following compounds has the lowest melting point?
(1) CaCl_{2}
(2) CaBr_{2}
(3) CaI_{2}
(4) CaF_{2}

Sol.: CaI_{2} has the lowest melting point.
\therefore Correct choice : (3)
37. The complexes $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]$ and $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Co}(\mathrm{CN})_{6}\right]$ are the examples of which type of isomerism?
(1) Linkage isomerism
(2) Ionization isomerism
(3) Coordination isomerism
(4) Geometrical isomerism
\therefore Correct choice : (3)
38. The complex, $\left[\mathrm{Pt}(\mathrm{Py})\left(\mathrm{NH}_{3}\right) \mathrm{BrCl}\right]$ will have how many geometrical isomers?
(1) 3
(2) 4
(3) 0
(4) 2

Sol.:

39. Enthalpy change for the reaction, $4 \mathrm{H}_{(\mathrm{g})} \longrightarrow 2 \mathrm{H}_{2(\mathrm{~g})}$ is -869.6 kJ . The dissociation energy of $\mathrm{H}-\mathrm{H}$ bond is:
(1) -434.8 kJ
(2) - 869.6 kJ
(3) +434.8 kJ
(4) +217.4 kJ

Sol.: $2 \mathrm{H}-\mathrm{H} \longrightarrow 4 \mathrm{H}: \Delta \mathrm{H}=+869.6 \mathrm{~kJ}$
Bond dissociation energy $=\frac{869.6}{2}=434.8 \mathrm{~kJ}$
\therefore Correct choice : (3)
40. The d-electron configurations of $\mathrm{Cr}^{2+}, \mathrm{Mn}^{2+}, \mathrm{Fe}^{2+}$ and Co^{2+} are $\mathrm{d}^{4}, \mathrm{~d}^{5}, \mathrm{~d}^{6}$ and d^{7} respectively. Which one of the following will exhibit minimum paramagnetic behaviour?
(1) $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(2) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}_{6}\right)\right]^{2+}$
(3) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(4) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(At. nos. $\mathrm{Cr}=24, \mathrm{Mn}=25, \mathrm{Fe}=26, \mathrm{Co}=27$)
Sol.: Complex
Unpaired electrons

$$
\begin{aligned}
& {\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}} \\
& {\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}} \\
& {\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}} \\
& {\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}}
\end{aligned}
$$

4
\therefore Correct choice : (3)
41. Which of the following is correct option for free expansion of an ideal gas under adiabatic condition?
(1) $q=0, \Delta T \neq 0, w=0$
(2) $\mathrm{q} \neq 0, \Delta \mathrm{~T}=0, \mathrm{w}=0$
(3) $q=0, \Delta T=0, w=0$
(4) $q=0, \Delta T<0, w \neq 0$

Sol.: For adiabatic free expansion $q=0, \Delta T=0$ and $w=0$
\therefore Correct choice : (3)
42. The value of $\Delta \mathrm{H}$ for the reaction $\mathrm{X}_{2(\mathrm{~g})}+4 \mathrm{Y}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{XY}_{4(\mathrm{~g})}$ is less than zero. Formation of $\mathrm{XY}_{4(\mathrm{~g})}$ will be favoured at :
(1) High temperature and high pressure
(2) Low pressure and low temperature
(3) High temperature and low pressure
(4) High pressure and low temperature

```
Sol.: }\mp@subsup{X}{2(g)}{}+4\mp@subsup{Y}{2(g)}{
                        2XY
```

$\Delta \mathrm{n}=-3$
Formation of XY_{4} is favoured by low temperature and high pressure.
\therefore Correct choice :
43. The correct order of increasing bond length of $\mathrm{C}-\mathrm{H}, \mathrm{C}-\mathrm{O}, \mathrm{C}-\mathrm{C}$ and $\mathrm{C}=\mathrm{C}$ is:
(1) $\mathrm{C}-\mathrm{H}<\mathrm{C}=\mathrm{C}<\mathrm{C}-\mathrm{O}<\mathrm{C}-\mathrm{C}$
(2) $\mathrm{C}-\mathrm{C}<\mathrm{C}=\mathrm{C}<\mathrm{C}-\mathrm{O}<\mathrm{C}-\mathrm{H}$
(3) $\mathrm{C}-\mathrm{O}<\mathrm{C}-\mathrm{H}<\mathrm{C}-\mathrm{C}<\mathrm{C}=\mathrm{C}$
(4) $\mathrm{C}-\mathrm{H}<\mathrm{C}-\mathrm{O}<\mathrm{C}-\mathrm{C}<\mathrm{C}=\mathrm{C}$

Sol.: $\mathrm{C}-\mathrm{H}<\mathrm{C}=\mathrm{C}<\mathrm{C}-\mathrm{O}<\mathrm{C}-\mathrm{C}$
\therefore Correct choice :
44. If the $\mathrm{E}_{\mathrm{cell}}^{0}$ for a given reaction has a negative value, then which of the following gives the correct relationships for the values of ΔG° and $K_{e q}$?
(1) $\Delta G^{\circ}>0 ; K_{e q}>1$
(2) $\Delta G^{\circ}<0 ; \mathrm{K}_{\text {eq }}>1$
(3) $\Delta \mathrm{G}^{\circ}<0 ; \mathrm{K}_{\mathrm{eq}}<1$
(4) $\Delta G^{\circ}>0 ; K_{e q}<1$

Sol.: $\Delta \mathrm{G}^{\circ}=-\mathrm{nFE}^{\mathrm{o}}=2.303 \mathrm{RT} \log \mathrm{K}_{\mathrm{eq}}$
When $\mathrm{E}_{\text {cell }}^{0}$ is - ve
$\Delta \mathrm{G}^{\circ}$ is + ve i.e., non-spontaneous.
$K_{\text {eq }}<1$
45. Which one is a nucleophilic substitution reaction among the following?
(1) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{\mathrm{H}^{+}} \mathrm{CH}_{3}-\underset{\substack{\mathrm{OH}}}{\mathrm{CH}}-\mathrm{CH}_{3}$
(2) $\mathrm{RCHO}+\mathrm{R}^{\prime} \mathrm{MgX} \longrightarrow \underset{\mathrm{OH}}{\mathrm{O}} \underset{\substack{\mathrm{OH}}}{\mathrm{CH}}-\mathrm{R}^{\prime}$

Sol.: In compound (3),
Br is substituted by NH_{2} by $\mathrm{S}_{\mathrm{N}} 2$ reaction.
46. Which of the following pairs of metals is purified by van Arkel method?
(1) Ga and In
(2) Zr and Ti
(3) Ag and Au
(4) Ni and Fe

Sol.: Zr and Ti are purified by van Arkel Method.
\therefore Correct choice : (2)
47. For the reaction $\mathrm{N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NO}_{(\mathrm{g})}$, the equilibrium constant is K_{1}. The equilibrium constant is K_{2} for the reaction $2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NO}_{2(\mathrm{~g})}$. What is K for the reaction $\mathrm{NO}_{2(\mathrm{~g})} \rightleftharpoons \frac{1}{2} \mathrm{~N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}$?
(1) $\frac{1}{\left(2 \mathrm{~K}_{1} \mathrm{~K}_{2}\right)}$
(2) $\frac{1}{\left(4 \mathrm{~K}_{1} \mathrm{~K}_{2}\right)}$
(3) $\left[\frac{1}{\mathrm{~K}_{1} \mathrm{~K}_{2}}\right]^{1 / 2}$
(4) $\frac{1}{\left(\mathrm{~K}_{1} \mathrm{~K}_{2}\right)}$

Sol.: $\quad \mathrm{N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NO}_{(\mathrm{g})} ; \mathrm{K}_{1}$
$2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NO}_{2(\mathrm{~g})} ; \mathrm{K}_{2}$
$\mathrm{N}_{2(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NO}_{2(\mathrm{~g})} ; \mathrm{K}_{1} \mathrm{~K}_{2}$
$\mathrm{NO}_{2(\mathrm{~g})} \rightleftharpoons \frac{1}{2} \mathrm{~N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} ;\left[\frac{1}{\mathrm{~K}_{1} \mathrm{~K}_{2}}\right]^{\frac{1}{2}}$
\therefore Correct choice : (3)
48. Which one of the following is present as an active ingredient in bleaching powder for bleaching action?
(1) CaOCl_{2}
(2) $\mathrm{Ca}(\mathrm{OCl})_{2}$
(3) $\mathrm{CaO}_{2} \mathrm{Cl}$
(4) CaCl_{2}

Sol.:
 bleaching powder.
\therefore Correct choice : (1)
49. Of the following which one is classified as polyester polymer?
(1) Terylene
(2) Bakelite
(3) Melamine
(4) Nylon-66

Sol.: Terylene is a polyester.
\therefore Correct choice : (1)
50. If $\mathrm{n}=6$, the correct sequence for filling of electrons will be:
(1) $\mathrm{ns} \longrightarrow(\mathrm{n}-2) \mathrm{f} \longrightarrow(\mathrm{n}-1) \mathrm{d} \longrightarrow \mathrm{np}$
(2) $\mathrm{ns} \longrightarrow(\mathrm{n}-1) \mathrm{d} \longrightarrow(\mathrm{n}-2) \mathrm{f} \longrightarrow \mathrm{np}$
(3) $\mathrm{ns} \longrightarrow(\mathrm{n}-2) \mathrm{f} \longrightarrow \mathrm{np} \longrightarrow(\mathrm{n}-1) \mathrm{d}$
(4) $\mathrm{ns} \longrightarrow \mathrm{np}(\mathrm{n}-1) \mathrm{d} \longrightarrow(\mathrm{n}-2) \mathrm{f}$

Sol.: $6 \mathrm{~s}<4 \mathrm{f}<5 \mathrm{~d}<6$ p.

BIOLOGY

51. What will you look for to identify the sex of the following?
(1) Female Ascaris - Sharply curved posterior end
(2) Male frog - A copulatory pad on the first digit of the hind limb
(3) Female cockroach - Anal cerci
(4) Male shark - Claspers borne on pelvic fins
\therefore Correct Choice: (4)
52. Filiform apparatus is a characteristic feature of:
(1) Suspensor
(2) Egg
(3) Synergid
(4) Zygote
\therefore Correct Choice: (3)
53. "Jaya" and "Ratna" developed for green revolution in India are the varieties of:
(1) Maize
(2) Rice
(3) Wheat
(4) Bajra
\therefore Correct Choice: (2)
54. A prokaryotic autotrophic nitrogen fixing symbiont is found in:
(1) Alnus
(2) Cycas
(3) Cicer
(4) Pisum
\therefore Correct Choice: (2)
55. One very special feature in the earthworm Pheretima is that:
(1) Fertilisation of eggs occurs inside the body
(2) The typhlosole greatly increases the effective absorption area of the digested food in the intestine
(3) The S-shaped setae embedded in the integument are the defensive weapons used against the enemies
(4) It has a long dorsal tubular heart
\therefore Correct Choice: (2)
56. What type of human population is represented by the following age pyramid?

(1) Vanishing population
(2) Stable population
(3) Declining population
(4) Expanding population
57. Mass of living matter at a trophic level in an area at any time is called:
(1) Standing crop
(2) Detritus
(3) Humus
(4) Standing state
\therefore Correct Choice: (1)
58. Given below is a sample of a portion of DNA strand giving the base sequence on the opposite strands. What is so special shown in it?
5^{\prime} \qquad GAATTC \qquad 3^{\prime}
3^{\prime} \qquad CTTAAG \qquad 5^{\prime}
(1) Replication completed
(2) Deletion mutation
(3) Start codon at the 5 ' end
(4) Palindromic sequence of base pairs
\therefore Correct Choice: (4)
59. The most common substrate used in distilleries for the production of ethanol is:
(1) Corn meal
(2) Soya meal
(3) Ground gram
(4) Molasses
\therefore Correct Choice: (1)
Because of its abundance corn meal is commonly used in distilleries for ethanol production.
60. Ground tissue includes:
(1) All tissues external to endodermis
(2) All tissues except epidermis and vascular bundles
(3) Epidermis and cortex
(4) All tissues internal to endodermis
\therefore Correct Choice: (2)
61. Eutrophication is often seen in:
(1) Deserts
(2) Fresh water lakes
(3) Ocean
(4) Mountains
\therefore Correct Choice: (2)
62. Which one of the following elements in plants is not remobilized?
(1) Phosphorus
(2) Calcium
(3) Potassium
(4) Sulphur
\therefore Correct Choice: (2)
63. Where will you look for the sporozoites of the malarial parasite?
(1) Saliva of infected female Anopheles mosquito
(2) Red blood corpuscles of humans suffering from malaria
(3) Spleen of infected humans
(4) Salivary glands of freshly moulted female Anopheles mosquito
64. 'Himgiri’ developed by hybridization and selection for disease resistance against rust pathogens is a variety of:
(1) Chilli
(2) Maize
(3) Sugarcane
(4) Wheat
\therefore Correct Choice: (4)
65. Of the total incident solar radiation the proportion of PAR is:
(1) About 70%
(2) About 60\%
(3) Less than 50%
(4) More than 80%
\therefore Correct Choice: (3)
The visible light or photosynthetically active radiation consists of $400-700 \mathrm{~nm}$ wavelength of light and forms $45.1-46.7 \%$ of total solar radiation.
66. Which one of the following is not a part of a renal pyramid?
(1) Peritubular capillaries
(2) Convoluted tubules
(3) Collecting ducts
(4) Loops of Henle
\therefore Correct Choice: (1)
67. Which one of the following expanded forms of the following acronyms is correct?
(1) IPCC = International Panel for Climate Change
(2) UNEP = United Nations Environmental Policy
(3) EPA = Environmental Pollution Agency
(4) IUCN = International Union for Conservation of Nature and Natural Resources
\therefore Correct Choice: (4)
68. Which one of the following pairs of gases are the major cause of "Greenhouse effect"?
(1) CO_{2} and O_{3}
(2) CO_{2} and CO
(3) CFCs and SO_{2}
(4) CO_{2} and $\mathrm{N}_{2} \mathrm{O}$
\therefore Correct Choice: (4)
69. Which one of the following conditions correctly describes the manner of determining the sex in the given example?
(1) Homozygous sex chromosomes (ZZ) determine female sex in Birds.
(2) XO type of sex chromosomes determine male sex in grasshopper
(3) XO condition in humans as found in Turner Syndrome, determines female sex
(4) Homozygous sex chromosomes (XX) produce male in Drosophila
\therefore Correct Choice: (2)
70. Nucellar polyembryony is reported in species of:
(1) Citrus
(2) Gossypium
(3) Triticum
(4) Brassica
\therefore Correct Choice: (1)
71. Important site for formation of glycoproteins and glycolipids is:
(1) Vacuole
(2) Golgi apparatus
(3) Plastid
(4) Lysosome
72. Which one of the following is not a biofertilizer?
(1) Agrobacterium
(2) Rhizobium
(3) Nostoc
(4) Mycorrhiza
\therefore Correct Choice: (4)
73. Secondary sewage treatment is mainly a:
(1) Physical process
(2) Mechanical process
(3) Chemical process
(4) Biological process
\therefore Correct Choice: (4)
74. At which stage of HIV infection does one usually show symptoms of AIDS?
(1) When the infecting retrovirus enters host cells
(2) When viral DNA is produced by reverse transcriptase
(3) When HIV replicates rapidly in helper T-lymphocytes and damages large number of these
(4) Within 15 days of sexual contact with an infected person
\therefore Correct Choice: (3)
75. In which one of the following pollination is autogamous?
(1) Geitonogamy
(2) Xenogamy
(3) Chasmogamy
(4) Cleistogamy
\therefore Correct Choice: (4)
76. The figure given below shows a small part of human lung where exchange of gases takes place. In which one of the options given below, the one part A, B, C or D is correctly identified along with its function?

Options:

(1) C: arterial capillary - passes oxygen to tissues
(2) A: alveolar cavity - main site of exchange of respiratory gases
(3) D: Capillary wall - exchange of O_{2} and CO_{2} takes place here
(4) B: red blood cell - transport of CO_{2} mainly
84. Which one of the following groups of animals is correctly matched with its one characteristic feature without even a single exception?
(1) Reptilia: possess 3-chambered heart with one incompletely divided ventricle
(2) Chordata: possess a mouth provided with an upper and a lower jaw
(3) Chondrichthyes: possess cartilaginous endoskeleton
(4) Mammalia: give birth to young ones
\therefore Correct Choice: (3)
85. Large Woody Vines are more commonly found in:
(1) Temperate forests
(2) Mangroves
(3) Tropical rainforests
(4) Alpine forests
\therefore Correct Choice: (3)
86. An organism used as a biofertilizer for raising soyabean crop is:
(1) Azotobacter
(2) Azospirillum
(3) Rhizobium
(4) Nostoc
\therefore Correct Choice: (3)
87. Which one of the following plasma proteins is involved in the coagulation of blood?
(1) An albumin
(2) Serum amylase
(3) A globulin
(4) Fibrinogen
\therefore Correct Choice: (4)
88. Ethanol is commercially produced through a particular species of:
(1) Saccharomyces
(2) Clostridium
(3) Trichoderma
(4) Aspergillus
\therefore Correct Choice: (1)
89. Which one of the following structural formulae of two organic compounds is correctly identified along with its related function?

B
(1) B: Adenine - a nucleotide that makes up nucleic acids
(2) A: Triglyceride - major source of energy
(3) B: Uracil - a component of DNA
(4) A: Lecithin - a component of cell membrane
90. Which one of the following organisms is not an example of eukaryotic cells?
(1) Paramecium caudatum
(2) Escherichia coli
(3) Euglena viridis
(4) Amoeba proteus
\therefore Correct Choice: (2)
91. Given below is an incomplete table about certain hormones, their source glands and one major effect of each on the body in humans. Identify the correct option for the three blanks A, B and C.

GLAND	SECRETION	EFFECT ON BODY
A	Oestrogen	Maintenance of secondary sexual characters
Alpha cells of Islets of Langerhans	B	Raises blood sugar level
Anterior pituitary	C	Over secretion leads to gigantism

Options:

A

B

C

(1) Ovary

Glucagon
Growth hormone
(2) Placenta

Insulin
Vasopressin
(3) Ovary

Insulin
Calcitonin
(4) Placenta

Glucagon
Calcitonin
\therefore Correct Choice: (1)
92. What are those structures that appear as 'beads-on-string' in the chromosomes when viewed under electron microscope?
(1) Genes
(2) Nucleotides
(3) Nucleosomes
(4) Base pairs
\therefore Correct Choice: (3)
93. Nitrifying bacteria:
(1) oxidize ammonia to nitrates
(2) convert free nitrogen to nitrogen compounds
(3) convert proteins into ammonia
(4) reduce nitrates to free nitrogen
\therefore Correct Choice: (1)
94. Archegoniophore is present in:
(1) Marchantia
(2) Chara
(3) Adiantum
(4) Funaria
95. There is a restriction endonuclease called EcoRI. What does "co" part in it stand for?
(1) colon
(2) coelom
(3) coenzyme
(4) coli
\therefore Correct Choice: (4)
96. A large proportion of oxygen is left unused in the human blood even after its uptake by the body tissues. This O_{2} :
(1) acts as a reserve during muscular exercise
(2) raises the pCO_{2} of blood to 75 mm of Hg
(3) is enough to keep oxyhaemoglobin saturation at 96%
(4) helps in releasing more O_{2} to the epithelial tissues
\therefore Correct Choice: (4)
97. In land plants, the guard cells differ from other epidermal cells in having:
(1) Cytoskeleton
(2) Mitochondria
(3) Endoplasmic reticulum
(4) Chloroplasts
\therefore Correct Choice: (4)
98. Which one of the following is the most widely accepted method of contraception in India, as at present?
(1) Cervical caps
(2) Tubectomy
(3) Diaphragms
(4) IUDs' (Intra uterine devices)
\therefore Correct Choice: (4)
99. The ciliated columnar epithelial cells in humans are known to occur in:
(1) Eustachian tube and stomach lining
(2) Bronchioles and Fallopian tubes
(3) Bile duct and oesophagus
(4) Fallopian tubes and urethra
\therefore Correct Choice: (2)
100. Two friends are eating together on a dining table. One of them suddenly starts coughing while swallowing some food. This coughing would have been due to improper movement of:
(1) Epiglottis
(2) Diaphragm
(3) Neck
(4) Tongue
101. What would be the number of chromosomes of the aleurone cells of a plant with 42 chromosomes in its root tip cells?
(1) 42
(2) 63
(3) 84
(4) 21
\therefore Correct Choice:
(2)
102. Consider the following four conditions ($a-d$) and select the correct pair of them as adaptation to environment in desert lizards.

The conditions:

(a) burrowing in soil to escape high temperature
(b) losing heat rapidly from the body during high temperature
(c) bask in sun when temperature is low
(d) insulating body due to thick fatty dermis

Options:

(1) (c), (d)
(2) (a), (c)
(3) (b), (d)
(4) (a), (b)
\therefore Correct Choice: (2)
103. Maximum number of existing transgenic animals is of:
(1) Fish
(2) Mice
(3) Cow
(4) Pig
\therefore Correct Choice:
104. Which one of the following statements is correct for secondary succession?
(1) It begins on a bare rock.
(2) It occurs on a deforested site.
(3) It follows primary succession.
(4) It is similar to primary succession except that it has a relatively fast pace.
\therefore Correct Choice: (2)
105. In eubacteria, a cellular component that resembles eukaryotic cell is:
(1) Plasma membrane
(2) Nucleus
(3) Ribosomes
(4) Cell wall
\therefore Correct Choice: (3)
106. A collection of plants and seeds having diverse alleles of all the genes of a crop is called:
(1) Herbarium
(2) Germplasm
(3) Gene library
(4) Genome
\therefore Correct Choice: (2)
Germ plasm is the sum total of all the alleles of gene present in a crop and its related species that include old local or desi varieties, improved varieties that may not be in cultivation.
107. If for some reason, the vasa efferentia in the human reproductive system get blocked, the gametes will not be transported from:
(1) testes to epididymis
(2) epididymis to vas deferens
(3) ovary to uterus
(4) vagina to uterus
\therefore Correct Choice: (1)
108. Which one of the following correctly explains the function of a specific part of a human nephron?
(1) Podocytes: Create minute spaces (slit pores) for the filtration of blood into the Bowman's capsule.
(2) Henle's loop: most reabsorption of the major substances from the glomerular filtrate.
(3) Distal convoluted tubule: reabsorption of K^{+}ions into the surrounding blood capillaries
(4) Afferent arteriole: carries the blood away from the glomerulus towards renal vein.
\therefore Correct Choice: (1)
109. The correct floral formula of chilli is:
(1) $\oplus \not \mathbb{T}^{7} \mathrm{~K}_{(5)} \mathrm{C}_{5} \mathrm{~A}_{5} \mathrm{G}_{\underline{(2)}}$
(2) $\oplus \mathscr{q}^{7} \mathrm{~K}_{(5)} \check{\mathrm{C}}_{(5)} \mathrm{A}_{5} \mathrm{G}_{\underline{(2)}}$
(3) $\oplus C^{7} \mathrm{~K}_{(5)} \mathrm{C}_{(5)} \mathrm{A}_{(5)} \mathrm{G}_{\underline{2}}$
(4) $\oplus \overbrace{}^{7} \mathrm{~K}_{5} \stackrel{\curvearrowleft}{\mathrm{C}_{5} \mathrm{~A}_{(5)}} \mathrm{G}_{\underline{2}}$
\therefore Correct Choice: (2)
110. Arteries are best defined as the vessels which:
(1) supply oxygenated blood to the different organs
(2) carry blood away from the heart to different organs
(3) break up into capillaries which reunite to form a vein
(4) carry blood from one visceral organ to another visceral organ
111. Which one of the following is categorised as a parasite in true sense?
(1) The female Anopheles bites and sucks blood from humans.
(2) Human foetus developing inside the uterus draws nourishment from the mother.
(3) Head louse living on the human scalp as well as laying eggs on human hair.
(4) The cuckoo (koel) lays its eggs in crow's nest
\therefore Correct Choice: (2)
112. The testes in humans are situated outside the abdominal cavity inside a pouch called scrotum. The purpose served is for:
(1) maintaining the scrotal temperature lower than the internal body temperature
(2) escaping any possible compression by the visceral organs
(3) providing more space for the growth of epididymis
(4) providing a secondary sexual feature for exhibiting the male sex
\therefore Correct Choice: (1)
113. Which one of the following statements is correct with respect to kidney function regulation?
(1) When someone drinks lot of water, ADH release is suppressed.
(2) Exposure to cold temperature stimulates ADH release.
(3) An increase in glomerular blood flow stimulates formation of Angiotensin II.
(4) During summer when body loses lot of water by evaporation, the release of ADH is suppressed.
\therefore Correct Choice: (1)
Following drinking of water there is decrease in the osmolarity of blood. This decreases secretion of ADH by feedback inhibition.
114. Agarose extracted from sea weeds finds use in:
(1) Spectrophotometry
(2) Tissue Culture
(3) PCR
(4) Gel electrophoresis

Agarose is linear polymer of d-galactose and 3, 6-anhydro-L-galactose extracted from sea weeds
\therefore Correct Choice: (4)
115. Which of the following is correctly stated as it happens in the common cockroach?
(1) Malpighian tubules are excretory organs projecting out from the colon.
(2) Oxygen is transported by haemoglobin in blood.
(3) Nitrogenous excretory product is urea.
(4) The food is ground by mandibles and gizzard
116. Which one of the following also acts as a catalyst in a bacterial cell?
(1) 5 sr RNA
(2) sn RNA
(3) hn RNA
(4) 23 sr RNA
\therefore Correct Choice: (4)
117. Which one of the following acts as a physiological barrier to the entry of microorganisms in human body?
(1) Epithelium of Urogenital tract
(2) Tears
(3) Monocytes
(4) Skin
\therefore Correct Choice: (2)
118. The function of leghaemoglobin in the root nodules of legumes is:
(1) inhibition of nitrogenase activity
(2) oxygen removal
(3) nodule differentiation
(4) expression of nif gene
\therefore Correct Choice: (2)
119. The process of RNA interference has been used in the development of plants resistant to:
(1) Nematodes
(2) Fungi
(3) Viruses
(4) Insects
\therefore Correct Choice: (1)
120. Compared with the gametophytes of the bryophytes, the gametophytes of vascular plants tend to be:
(1) smaller but to have larger sex organs
(2) larger but to have smaller sex organs
(3) larger and to have larger sex organs
(4) smaller and to have smaller sex organs
\therefore Correct Choice: (4)
121. The gametophyte is not an independent, free-living generation in:
(1) Polytrichum
(2) Adiantum
(3) Marchantia
(4) Pinus
\therefore Correct Choice: (4)
122. The cork cambium, cork and secondary cortex are collectively called:
(1) Phelloderm
(2) Phellogen
(3) Periderm
(4) Phellem
123. Which one of the following statements for pyramid of energy is incorrect, whereas the remaining three are correct?
(1) Its base is broad
(2) It shows energy content of different trophic level organisms
(3) It is inverted in shape
(4) It is upright in shape
\therefore Correct Choice: (3)
124. Select the correct option with respect to mitosis.
(1) Chromatids separate but remain in the centre of the cell in anaphase.
(2) Chromatids start moving towards opposite poles in telophase.
(3) Golgi complex and endoplasmic reticulum are still visible at the end of prophase.
(4) Chromosomes move to the spindle equator and get aligned along equatorial plate in metaphase
\therefore Correct Choice: (4)
125. Uricotelic mode of passing out nitrogenous wastes is found in:
(1) Reptiles and Birds
(3) Amphibians and Reptiles
(2) Birds and Annelids
(4) Insects and Amphibians
\therefore Correct Choice: (1)
126. Flowers are Zygomorphic in:
(1) Mustard
(2) Gulmohur
(3) Tomato
(4) Datura
\therefore Correct Choice: (2)
127. Which one of the following statements is correct regarding blood pressure:
(1) $130 / 90 \mathrm{mmHg}$ is considered high and requires treatment
(2) $100 / 55 \mathrm{mmHg}$ is considered an ideal blood pressure
(3) $105 / 50 \mathrm{mmHg}$ makes one very active
(4) $190 / 110 \mathrm{mmHg}$ may harm vital organs like brain and kidney
\therefore Correct Choice: (4)
128. Medical Termination of Pregnancy (MTP) is considered safe up to how many weeks of pregnancy?
(1) Eight weeks
(2) Twelve weeks
(3) Eighteen weeks
(4) Six weeks
129. The ovary is half inferior in flowers of:
(1) Peach
(2) Cucumber
(3) Cotton
(4) Guava
\therefore Correct Choice: (1)
130. When two unrelated individuals or lines are crossed, the performance of F_{1} hybrid is often superior to both its parents. This phenomenon is called:
(1) Heterosis
(2) Transformation
(3) Splicing
(4) Metamorphosis
\therefore Correct Choice: (1)
131. Mutations can be induced with:
(1) Infra Red radiations
(2) IAA
(3) Ethylene
(4) Gamma radiations
\therefore Correct Choice: (4)
132. Which one of the following helps in absorption of phosphorus from soil by plants?
(1) Glomus
(2) Rhizobium
(3) Frankia
(4) Anabaena
\therefore Correct Choice: (1)
133. When a neuron is in resting state i.e., not conducting any impulse, the axonal membrane is:
(1) Comparatively more permeable to Na^{+}ions and nearly impermeable to K^{+}ions
(2) Equally permeable to both Na^{+}and K^{+}ions
(3) Impermeable to both Na^{+}and K^{+}ions
(4) Comparatively more permeable to K^{+}ions and nearly impermeable to Na^{+}ions
\therefore Correct Choice: (4)
134. A certain patient is suspected to be suffering from Acquired Immuno Deficiency Syndrome. Which diagnostic technique will you recommend for its detection?
(1) ELISA
(2) MRI
(3) Ultra sound
(4) WIDAL
\therefore Correct Choice: (1)
135. Continuous addition of sugars in 'fed batch' fermentation is done to:
(1) produce methane
(2) obtain antibiotics
(3) purify enzymes
(4) degrade sewage
136. The purplish red pigment rhodopsin contained in the rods type of photoreceptor cells of the human eye, is a derivative of:
(1) Vitamin B_{1}
(2) Vitamin C
(3) Vitamin D
(4) Vitamin A
\therefore Correct Choice: (4)
137. Wind pollination is common in:
(1) Legumes
(2) Lilies
(3) Grasses
(4) Orchids
\therefore Correct Choice: (3)
138. Which one of the following is wrongly matched?
(1) Root pressure - Guttation
(2) Puccinia - Smut
(3) Root - Exarch protoxylem
(4) Cassia - Imbricate aestivation
\therefore Correct Choice: (2)
139. A drupe develops in:
(1) Mango
(2) Wheat
(3) Pea
(4) Tomato
\therefore Correct Choice: (1)
140. Which one of the following enzymes carries out the initial step in the digestion of milk in humans?
(1) Pepsin
(2) Rennin
(3) Lipase
(4) Trypsin
\therefore Correct Choice:
(2)
141. CAM helps the plants in:
(1) Conserving water
(2) Secondary growth
(3) Disease resistance
(4) Reproduction
\therefore Correct Choice: (1)
142. Which one of the following animals is correctly matched with its particular named taxonomic category?
(1) Tiger - tigris, the species
(2) Cuttlefish - Mollusca, a class
(3) Humans - Primata, the family
(4) Housefly - Musca, an order
\therefore Correct Choice: (1)
143. Organisms called Methanogens are most abundant in a:
(1) Sulphur rock
(2) Cattle yard
(3) Polluted stream
(4) Hot spring
144. What was the most significant trend in the evolution of modern man (Homo sapiens) from his ancestors?
(1) Upright posture
(2) Shortening of jaws
(3) Binocular vision
(4) Increasing brain capacity
\therefore Correct Choice: (4)
145. In which one of the following the genus name, its two characters and its class/phylum are correctly matched?

	Genus name	Two characters		
Class/Phylum				
(1)	Ascaris	(a)	Body segmented	Annelida
		Males and females distinct		
(2)	Salamandra	(a)	A tympanum represents ear	Amphibia
		Fertilization is external		
(3)	Pteropus	(a)	Skin possesses hair	Mammalia
	(b)	Oviparous		
(4)	Aurelia	(a)	Cnidoblasts	Coelenterata
		(b)	Organ level of organization	

\therefore Correct Choice: (2)
146. Which one of the following statements is wrong in case of Bhopal tragedy?
(1) Methyl Isocyanate gas leakage took place.
(2) Thousands of human beings died.
(3) Radioactive fall out engulfed Bhopal
(4) It took place in the night of December 2/3, 1984.
\therefore Correct Choice: (3)
147. Which one of the following shows maximum genetic diversity in India?
(1) Groundnut
(2) Rice
(3) Maize
(4) Mango reproductive system of humans. Which one set of three parts out of I - IV have been correctly identified?

(1) (II) Endometrium, (III) Infundibulum, (IV) Fimbriae
(2) (III) Infundibulum, (IV) Fimbriae (V) Cervix
(3) (IV) Oviducal funnel, (V) Uterus, (VI) Cervix
(4) (I) Perimetrium, (II) Myometrium, (III) Fallopian tube
\therefore Correct Choice: (2)
149. A person with unknown blood group under ABO system, has suffered much blood loss in an accident and needs immediate blood transfusion. His one friend who has a valid certificate of his own blood type, offers for blood donation without delay. What would have been the type of blood group of the donor friend?
(1) Type B
(2) Type $A B$
(3) Type O
(4) Type A
\therefore Correct Choice: (3)
150. The curve given below shows enzymatic activity with relation to three conditions (pH , temperature and substrate concentration)

What do the two axises (x and y) represent?
x -axis
(1) enzymatic activity,
(2) temperature,
(3) substrate concentration,
(4) enzymatic activity,
y-axis
pH
enzyme activity
enzymatic activity
temperature

151. Photoelectric emission occurs only when the incident light has more than a certain minimum:
(1) Power
(2) Wavelength
(3) Intensity
(4) Frequency

Sol.: Max. K.E. $=h \nu-\phi, v>v_{0}\left(=\frac{\phi}{h}\right)$
\therefore Correct choice : (4)
152. A current carrying closed loop in the form of a right angle isosceles triangle $A B C$ is placed in a uniform magnetic field acting along $A B$. If the magnetic force on the $\operatorname{arm} \mathrm{BC}$ is $\overrightarrow{\mathrm{F}}$, the force on the arm AC is:

(1) $-\sqrt{2} \overrightarrow{\mathrm{~F}}$
(2) $-\vec{F}$
(3) $\overrightarrow{\mathrm{F}}$
(4) $\sqrt{2} \overrightarrow{\mathrm{~F}}$

Sol.:

$$
\begin{aligned}
\overrightarrow{\mathrm{F}}=\mathrm{I}\left(\overrightarrow{\mathrm{BC}} \times \overrightarrow{\mathrm{B}}_{0}\right)=\mathrm{I} \overrightarrow{\mathrm{BC}} \overrightarrow{\mathrm{~B}}_{0} \\
\begin{aligned}
\overrightarrow{\mathrm{F}}_{\mathrm{AC}}=\mathrm{I}\left(\overrightarrow{\mathrm{AC}} \times \overrightarrow{\mathrm{B}}_{0}\right) & =\mathrm{I} \overrightarrow{\mathrm{AC}} \overrightarrow{\mathrm{~B}}_{0} \times \frac{1}{\sqrt{2}} \\
& =\mathrm{I}(\sqrt{2}) \overrightarrow{\mathrm{BC}} \times \frac{\overrightarrow{\mathrm{B}}_{0}}{\sqrt{2}} \\
& =\overrightarrow{\mathrm{F}}
\end{aligned}
\end{aligned}
$$

153. A particle moves in a circle of radius 5 cm with constant speed and time period $0.2 \pi \mathrm{~s}$. The acceleration of the particle is:
(1) $15 \mathrm{~m} / \mathrm{s}^{2}$
(2) $25 \mathrm{~m} / \mathrm{s}^{2}$
(3) $36 \mathrm{~m} / \mathrm{s}^{2}$
(4) $5 \mathrm{~m} / \mathrm{s}^{2}$

Sol.: Acceleration $=\mathrm{r} \omega^{2}=5 \times 10^{-2} \times\left(\frac{2 \pi}{0.2 \pi}\right)^{2}=5 \times 10^{-2} \times 100=5 \mathrm{~ms}^{-2}$
154. Which of the following is not due to total internal reflection?
(1) Working of optical fibre.
(2) Difference between apparent and real depth of a pond.
(3) Mirage on hot summer days.
(4) Brilliance of diamond.
\therefore Correct choice : (2)
155. A missile is fired for maximum range with an initial velocity of $20 \mathrm{~m} / \mathrm{s}$. If $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$, the range of the missile is:
(1) 40 m
(2) 50 m
(3) 60 m
(4) 20 m

Sol.: $R_{\max }=\frac{u^{2}}{g}=\frac{20 \times 20}{10}=40 \mathrm{~m}$
\therefore Correct choice : (1)
156. The wavelength of the first line of Lyman series for hydrogen atom is equal to that of the second line of Balmer series for a hydrogen like ion. The atomic number Z of hydrogen like ion is:
(1) 3
(2) 4
(3) 1
(4) 2

Sol.: $\frac{1}{\lambda_{\mathrm{L}}}=\mathrm{R}_{\mathrm{H}}\left[\frac{1}{1^{2}}-\frac{1}{2^{2}}\right], \frac{1}{\lambda_{\mathrm{B}}}=\mathrm{R}_{\mathrm{H}} \mathrm{Z}^{2}\left(\frac{1}{2^{2}}-\frac{1}{4^{2}}\right)$
$\lambda_{\mathrm{L}}=\lambda_{\mathrm{B}} \Rightarrow \frac{3}{4} \mathrm{R}_{\mathrm{H}}=\frac{3 \mathrm{R}_{\mathrm{H}} \mathrm{Z}^{2}}{16}$
$\therefore Z^{2}=4$ or $Z=2$
\therefore Correct choice : (4)
157. The half life of a radioactive isotope ' X ' is 50 years. It decays to another element ' Y ' which is stable. The two elements ' X ' and ' Y ' were found to be in the ratio of $1: 15$ in a sample of a given rock. The age of the rock was estimated to be:
(1) 150 years
(2) 200 years
(3) 250 years
(4) 100 years

Sol.: Ratio $1: 15 \Rightarrow N=\frac{1}{16}=\frac{1}{2^{\mathrm{n}}}$

$$
\Rightarrow \mathrm{n}=4 \therefore \mathrm{t}=4 \mathrm{~T}=200 \text { years }
$$

\therefore Correct choice : (2)
158. The potential energy of a system increases if work is done:
(1) upon the system by a nonconservative force.
(2) by the system against a conservative force.
(3) by the system against a nonconservative force.
(4) upon the system by a conservative force.

Sol.: (W.D) by conservative $=-\Delta U$. For $\Delta U>0,(W . D)<0$
$\therefore \mathrm{U}$ increases if W.D. against conservative force.
159. A charge Q is enclosed by a Gaussian spherical surface of radius R. If the radius is doubled, then the outward electric flux will:
(1) increase four times
(2) be reduced to half
(3) remain the same
(4) be doubled
\therefore Correct choice : (3)
160. The power obtained in a reactor using U^{235} disintegration is 1000 kW . The mass decay of U^{235} per hour is:
(1) 10 microgram
(2) 20 microgram
(3) 40 microgram
(4) 1 microgram

Sol.: Power $=1000 \mathrm{~kW} \longrightarrow$ Energy per hour $=10^{6} \times 60 \times 60 \mathrm{~J}$
Mass $\mathrm{M}=\frac{10^{8} \times 36}{9 \times 10^{16}}=\frac{36}{9} \times 10^{-8}=4 \times 10^{-8} \mathrm{~kg}$
[Take $\mathrm{P}=1000 \mathrm{MW}, \mathrm{M}=40 \times 10^{-6} \mathrm{~kg}=40$ microgram]
\therefore Correct choice : (3)
161. A radioactive nucleus of mass M emits a photon of frequency v and the nucleus recoils. The recoil energy will be:
(1) $\mathrm{Mc}^{2}-\mathrm{h} v$
(2) $\mathrm{h}^{2} v^{2} / 2 \mathrm{Mc}^{2}$
(3) zero
(4) hv

Sol.: Initial energy $=\mathbf{M c}{ }^{2}$, Recoil energy $=\mathrm{Mc}^{2}-\mathbf{h} v$
162. The electric and the magnetic field, associated with an e.m. wave, propagating along the $+z$-axis, can be represented by:
(1) $\left[\overrightarrow{\mathrm{E}}=\mathrm{E}_{\mathrm{o}} \hat{\mathbf{i}}, \overrightarrow{\mathrm{B}}=\mathrm{B}_{\mathrm{o}} \hat{\mathbf{j}}\right]$
(2) $\left[\overrightarrow{\mathrm{E}}=\mathrm{E}_{\mathrm{o}} \widehat{\mathrm{k}}, \overrightarrow{\mathrm{B}}=\mathrm{B}_{\mathrm{o}} \hat{\mathbf{i}}\right]$
(3) $\left[\overrightarrow{\mathrm{E}}=\mathrm{E}_{\mathrm{o}} \hat{\mathrm{j}}, \overrightarrow{\mathrm{B}}=\mathrm{B}_{\mathrm{o}} \hat{\mathrm{i}}\right]$
(4) $\left[\overrightarrow{\mathrm{E}}=\mathrm{E}_{\mathrm{o}} \hat{\mathrm{j}}, \overrightarrow{\mathrm{B}}=\mathrm{B}_{\mathrm{o}} \widehat{\mathrm{k}}\right]$

Sol.: $\vec{S}=(\vec{E} \times \vec{B}) K \quad \vec{S} \longrightarrow \hat{k}(z-a x i s)$

163. During an isothermal expansion, a confined ideal gas does - 150 J of work against its surroundings. This implies that:
(1) 150 J of heat has been removed from the gas
(2) 300 J of heat has been added to the gas
(3) no heat is transferred because the process is isothermal
(4) 150 J of heat has been added to the gas

Sol.: $Q=\Delta U+W$
For isothermal, $\Delta \mathrm{U}=0$
If $\mathrm{W}=-150 \mathrm{~J}, \mathrm{Q}=-150 \mathrm{~J}$
$\therefore 150 \mathrm{~J}$ of heat has been removed
\therefore Correct choice : (1)
164. Two waves are represented by the equations $\mathrm{y}_{1}=\mathrm{a} \sin (\omega \mathrm{t}+\mathrm{kx}+0.57) \mathrm{m}$ and $y_{2}=a \cos (\omega t+k x) m$, where x is in meter and t in sec. The phase difference between them is:
(1) 1.0 radian
(2) 1.25 radian
(3) 1.57 radian
(4) 0.57 radian

Sol.: $\mathrm{y}_{1}=\mathrm{a} \sin (\omega \mathrm{t}+\mathrm{kx}+0.57) \mathrm{m}$
$\mathrm{y}_{2}=\mathrm{a} \cos (\omega \mathrm{t}+\mathrm{kx}) \mathrm{m}$
$=a \sin \left(\omega t+k x+\frac{\pi}{2}\right) m$
\therefore phase difference $=\frac{\pi}{2}-0.57=\frac{3.14}{2}-0.57=1.57-0.57=1 \mathrm{rad}$
\therefore Correct choice : (1)
165. The instantaneous angular position of a point on a rotating wheel is given by the equation $\theta(t)=2 t^{3}-6 t^{2}$

The torque on the wheel becomes zero at:
(1) $\mathrm{t}=1 \mathrm{~s}$
(2) $\mathrm{t}=0.5 \mathrm{~s}$
(3) $\mathrm{t}=0.25 \mathrm{~s}$
(4) $t=2 \mathrm{~s}$

Sol.: $\theta(\mathrm{t})=2 \mathrm{t}^{3}-6 \mathrm{t}^{2}$

$$
\dot{\theta}=6 t^{2}-12 t, \ddot{\theta}=12 t-12=0(\text { when } t=1 \mathrm{~s})
$$

166. A boy standing at the top of a tower of 20 m height drops a stone. Assuming $\mathrm{g}=10 \mathrm{~ms}^{-2}$, the velocity with which it hits the ground is:
(1) $10.0 \mathrm{~m} / \mathrm{s}$
(2) $20.0 \mathrm{~m} / \mathrm{s}$
(3) $40.0 \mathrm{~m} / \mathrm{s}$
(4) $5.0 \mathrm{~m} / \mathrm{s}$

Sol.: $\mathrm{v}=\sqrt{2 \mathrm{gh}}=\sqrt{2 \times 10 \times 20}=\sqrt{400}=20 \mathrm{~ms}^{-1}$

 length is:
(1) $\mathrm{I}_{\mathbf{o}}+\mathrm{ML}^{2} / 2$

Sol.: Parallel axis theorem $\Rightarrow I_{o}+M \frac{L^{2}}{4}$

(1) ${ }_{n-4}^{m-6} Z$

Sol.: ${ }_{\mathrm{n}}^{\mathrm{m}} \mathrm{X} \longrightarrow{ }_{\mathrm{n}}^{\mathrm{m}} \mathrm{C}$

(1) $E^{2} A d / \varepsilon_{o}$

 points respectively, then the ratio $\frac{\mathrm{v}_{1}}{\mathrm{v}_{2}}$ is:
(1) $\left(\frac{r_{1}}{r_{2}}\right)^{2}$
(2) $\frac{r_{2}}{r_{1}}$
(3) $\left(\frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}\right)^{2}$
(4) $\frac{r_{1}}{r_{2}}$

\mid

$$
\begin{aligned}
& \text { is } \\
& \text { of } \\
& \text { ts } \\
& \text { s: } \\
& \text { 2) } \\
& \text { se } \\
& \text { 4) } \\
& \text { 3) } \\
& \text { en } \\
& 2 \\
& \hline
\end{aligned}
$$

$\mathrm{mv}_{1} \mathrm{r}_{1}=\mathrm{mv}_{2} \mathrm{r}_{2}$
$\therefore \frac{\mathrm{v}_{1}}{\mathrm{v}_{2}}=\frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}$
\therefore Correct choice :
171. A body is moving with velocity $30 \mathrm{~m} / \mathrm{s}$ towards east. After 10 seconds its velocity becomes $40 \mathrm{~m} / \mathrm{s}$ towards north. The average acceleration of the body is:
(1) $1 \mathrm{~m} / \mathrm{s}^{2}$
(2) $7 \mathrm{~m} / \mathrm{s}^{2}$
(3) $\sqrt{7} \mathrm{~m} / \mathrm{s}^{2}$
(4) $5 \mathrm{~m} / \mathrm{s}^{2}$

Sol.:

Change in velocity $=v \hat{j}-u \hat{i}$

$$
\begin{aligned}
\mid \text { Change in velocity } \mid & =\sqrt{40^{2}+30^{2}} \\
& =\sqrt{1600+900} \\
& =50 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

\therefore acceleration $=\frac{50}{10}=5 \mathrm{~m} / \mathrm{s}^{2}$
\therefore Correct choice : (4)
172. Fusion reaction takes place at high temperature because:
(1) nuclei break up at high temperature
(2) atoms get ionised at high temperature
(3) kinetic energy is high enough to overcome the coulomb repulsion between nuclei
(4) molecules break up at high temperature
\therefore Correct choice : (3)
173. A body projected vertically from the earth reaches a height equal to earth's radius before returning to the earth. The power exerted by the gravitational force is greatest:
(1) at the highest position of the body.
(2) at the instant just before the body hits the earth.
(3) it remains constant all through.
(4) at the instant just after the body is projected.
174. The dimensions of $\left(\mu_{0} \varepsilon_{0}\right)^{-\frac{1}{2}}$ are:
(1) $\left[\mathrm{L}^{\frac{1}{2}} \mathrm{~T}^{-\frac{1}{2}}\right]$
(2) $\left[\mathrm{L}^{-1} \mathrm{~T}\right]$
(3) $\left[\mathrm{L}^{-\mathbf{1}}\right]$
(4) $\left[\mathrm{L}^{-\frac{1}{2}} \mathrm{~T}^{\frac{1}{2}}\right]$

Sol.: $\left(\mu_{0} \varepsilon_{0}\right)^{-\frac{1}{2}}=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}} \Rightarrow\left[\mathrm{LT}^{-1}\right]$

\therefore Correct choice : (3)

175. An ac voltage is applied to a resistance R and an inductor L in series. If R and the inductive reactance are both equal to 3Ω, the phase difference between the applied voltage and the current in the circuit is:
(1) $\frac{\pi}{6}$
(2) $\frac{\pi}{4}$
(3) $\frac{\pi}{2}$
(4) zero

Sol.: Phase difference $\phi=\tan ^{-1}\left(\frac{\omega \mathrm{~L}}{\mathrm{R}}\right)=\tan ^{-1}\left(\frac{3}{3}\right)$

$$
=45^{\circ}=\frac{\pi}{4}
$$

176. A transistor is operated in common emitter configuration at $V_{C}=2 \mathrm{~V}$ such that a change in the base current from $100 \mu \mathrm{~A}$ to $300 \mu \mathrm{~A}$ produces a change in the collector current from 10 mA to 20 mA . The current gain is:
(1) 50
(2) 75
(3) 100
(4) 25

Sol.: Current gain $=\left|\frac{\Delta \mathrm{I}_{\mathrm{C}}}{\Delta \mathrm{I}_{\mathrm{E}}}\right|_{V} \Rightarrow \frac{20-10}{(300-100) \times 10^{-3}}=\frac{10 \times 10^{3}}{200}$

$$
\begin{equation*}
=50 \tag{1}
\end{equation*}
$$

\therefore Correct choice :
177. In forward biasing of the p-n junction:
(1) the positive terminal of the battery is connected to p-side and the depletion region becomes thick.
(2) the positive terminal of the battery is connected to n-side and the depletion region becomes thin.
(3) the positive terminal of the battery is connected to n-side and the depletion region becomes thick.
(4) the positive terminal of the battery is connected to p-side and the depletion region becomes thin.
178. There are four light-weight-rod samples A, B, C, D separately suspended by threads. A bar magnet is slowly brought near each sample and the following observations are noted:
(i) A is feebly repelled
(ii) B is feebly attracted
(iii) C is strongly attracted
(iv) D remains unaffected

Which one of the following is true ?
(1) B is of a paramagnetic material
(2) C is of a diamagnetic material
(3) D is of a ferromagnetic material
(4) A is of a non-magnetic material

Sol.: B is of a paramagnetic material. Because it is feebly attracted.
179. A person of mass 60 kg is inside a lift of mass 940 kg and presses the button on control panel. The lift starts moving upwards with an acceleration $1.0 \mathrm{~m} / \mathrm{s}^{2}$. If $\mathrm{g}=10 \mathrm{~ms}^{-2}$, the tension in the supporting cable is:
(1) 8600 N
(2) 9680 N
(3) 11000 N
(4) 1200 N

Sol.: F.B.D.

$$
\begin{aligned}
& \mathrm{w}=940+60=(1000 \mathrm{~kg} \times 10) \\
& \mathrm{T}-\mathrm{w}=\mathrm{ma} \\
& \begin{aligned}
\therefore \mathrm{T} & =\mathrm{w}+1000 \times 1 \\
\quad & =10000+1000=11000 \mathrm{~N}
\end{aligned}
\end{aligned}
$$

180. Symbolic representation of four logic gates are shown as:
(i)

(ii)

(iii)

Pick out which ones are for AND, NAND and NOT gates, respectively:
(1) (ii), (iii) and (iv)
(2) (iii), (ii) and (i)
(3) (iii), (ii) and (iv)
(4) (ii), (iv) and (iii)
181. In an ac circuit an alternating voltage $e=200 \sqrt{2} \sin 100 t$ volts is connected to a capacitor of capacity $1 \mu \mathrm{~F}$. The r.m.s. value of the current in the circuit is:
(1) 10 mA
(2) 100 mA
(3) 200 mA
(4) 20 mA

Sol.: The rms value of current in the a.c. circuit is

$$
\begin{aligned}
& =\frac{\left(\frac{200 \sqrt{2}}{\sqrt{2}}\right)}{\frac{1}{100 \times 1 \times 10^{-6}}} \\
& =200 \times 100 \times 10^{-6} \\
& =2 \times 10^{-2} \mathrm{~A} \\
& =20 \mathrm{~mA}
\end{aligned}
$$

182. A current of 2 A flows through a 2Ω resistor when connected across a battery. The same battery supplies a current of 0.5 A when connected across a 9Ω resistor. The internal resistance of the battery is:
(1) 0.5Ω
(2) $1 / 3 \Omega$
(3) $1 / 4 \Omega$
(4) 1Ω

Sol.:

2Ω

$$
\begin{aligned}
& \frac{\mathrm{E}}{\mathrm{r}+2}=2 \\
& \text { Also } \frac{\mathrm{E}}{\mathrm{r}+9}=\frac{1}{2} \\
& \therefore 2(\mathrm{r}+2)=\frac{(\mathrm{r}+9)}{2} \\
& \therefore 4(\mathrm{r}+2)=\mathrm{r}+9 \\
& 4 \mathrm{r}+8 \\
& =\mathrm{r}+9 \\
& 3 \mathrm{r}
\end{aligned} \mathrm{=}, \begin{aligned}
& 1 \\
& \therefore \mathrm{r}=\frac{1}{3} \Omega
\end{aligned}
$$

183. A particle of mass m is released from rest and follows a parabolic path as shown. Assuming that the displacement of the mass from the origin is small, which graph correctly depicts the position of the particle as a function of time?

(1)

(2)

(3)

(4)

Sol.: $F=-\frac{d V}{d x}$
Force is zero at the origin. Since the mass is released from rest displacement is zero at $t=0$. From (4) we find $x(t)$ is zero at $t=0 \Rightarrow S H M$ about origin.
\therefore Correct choice : (4)
184. If power dissipated in the 9Ω resistor in the circuit shown is 36 W , the potential difference across the 2Ω resistor is:

(1) 4 V
(2) 8 V
(3) 10 V
(4) 2 V

Sol.: $I^{2} R=36 \mathrm{~W}$
i.e., $\mathrm{I}^{2} \times 9=36$

$$
\therefore \mathrm{I}=2 \mathrm{~A}
$$

Current through $6 \Omega=\frac{18}{6}=3 \mathrm{~A}$
\therefore total current $=5 \mathrm{~A}$
Potential difference across $2 \Omega=10 \mathrm{~V}$
185. A biconvex lens has a radius of curvature of magnitude 20 cm . Which one of the following options describe best the image formed of an object of height 2 cm placed 30 cm from the lens?
(1) Virtual, upright, height $=1 \mathrm{~cm}$
(2) Virtual, upright, height $=0.5 \mathrm{~cm}$
(3) Real, inverted, height $=4 \mathrm{~cm}$
(4) Real, inverted, height $=1 \mathrm{~cm}$

Sol.: $|\mathrm{m}|=\frac{\mathrm{v}}{\mathrm{u}}$
$\frac{1}{\mathrm{v}}-\frac{1}{\mathrm{u}}=\frac{1}{\mathrm{f}}$
$\frac{1}{\mathrm{f}}=(\mu-1)\left(\frac{1}{\mathrm{R}_{1}}-\frac{1}{\mathrm{R}_{2}}\right),\left(\mu=\frac{3}{2}\right)$

$$
\begin{aligned}
& \frac{1}{\mathrm{f}}=\frac{1}{2} \cdot \frac{2}{\mathrm{R}}=\frac{1}{\mathrm{R}} \\
& \mathrm{f}
\end{aligned}=20 \mathrm{~cm}, \begin{aligned}
\frac{1}{\mathrm{v}} & =\frac{1}{\mathrm{f}}+\frac{1}{\mathrm{u}} \\
& =\frac{1}{20}-\frac{1}{30} \\
& =\frac{1}{60} \\
\therefore \mathrm{v} & =60 \mathrm{~cm} \\
\therefore \mathrm{~m} & =\frac{60}{30} \\
& =2
\end{aligned}
$$

186. In the Davisson and Germer experiment, the velocity of electrons emitted from the electron gun can be increased by:
(1) increasing the potential difference between the anode and filament
(2) increasing the filament current
(3) decreasing the filament current
(4) decreasing the potential difference between the anode and filament
187. The decreasing order of wavelength of infrared, microwave, ultraviolet and gamma rays is:
(1) microwave, infrared, ultraviolet, gamma rays
(2) gamma rays, ultraviolet, infrared, microwave
(3) microwave, gamma rays, infrared, ultraviolet
(4) infrared, microwave, ultraviolet, gamma rays
188. Four electric charge $+q,+q,-q$ and $-q$ are placed at the corners of a square of side 2 L (see figure). The electric potential at point A, midway between the two charge $+q$ and $+q$ is:

(1) $\frac{1}{4 \pi \varepsilon_{0}} \frac{2 q}{L}(1+\sqrt{5})$
(2) $\frac{1}{4 \pi \varepsilon_{o}} \frac{2 \mathrm{q}}{\mathrm{L}}\left(1+\frac{1}{\sqrt{5}}\right)$
(3) $\frac{1}{4 \pi \varepsilon_{\mathrm{o}}} \frac{2 \mathrm{q}}{\mathrm{L}}\left(1-\frac{1}{\sqrt{5}}\right)$
(4) Zero

Sol.: $V=\frac{q}{4 \pi \varepsilon_{o}}\left[\frac{1}{\mathrm{~L}}+\frac{1}{\mathrm{~L}}-\frac{1}{\sqrt{5} \mathrm{~L}}-\frac{1}{\sqrt{5} \mathrm{~L}}\right]$

$$
=\frac{2 \mathrm{q}}{4 \pi \varepsilon_{\mathrm{o}} \mathrm{~L}}\left[1-\frac{1}{\sqrt{5}}\right]
$$

\therefore Correct choice : (3)
189. When 1 kg of ice at $0^{\circ} \mathrm{C}$ melts to water at $0^{\circ} \mathrm{C}$, the resulting change in its entropy, taking latent heat of ice to be $80 \mathrm{cal} /{ }^{\circ} \mathrm{C}$ is :
(1) $273 \mathrm{cal} / \mathrm{K}$
(2) $8 \times 10^{4} \mathrm{cal} / \mathrm{K}$
(3) $80 \mathrm{cal} / \mathrm{K}$
(4) $293 \mathrm{cal} / \mathrm{K}$

Sol.: $\Delta \mathrm{S}=\frac{\Delta \mathrm{Q}}{\mathrm{T}}=\frac{80 \times 1000}{273}=293 \mathrm{cal} / \mathrm{K}$
190. A uniform electric field and a uniform magnetic field are acting along the same direction in a certain region. If an electron is projected in the region such that its velocity is pointed along the direction of fields, then the electron:
(1) will turn towards right of direction of motion
(2) speed will decrease
(3) speed will increase
(4) will turn towards left of direction of motion The wavelength of a 700 Hz acoustic wave as it enters brass from warm air:
(1) decreases by a factor 10
(2) increases by a factor 20
(3) increases by a factor 10
(4) decreases by a factor 20

Sol.: $\frac{\mathrm{v}_{\mathbf{1}}}{\mathrm{v}_{2}}=\frac{\lambda_{1}}{\lambda_{2}}$
$\therefore \lambda_{2}=\lambda_{1} \cdot \frac{\mathrm{v}_{2}}{\mathrm{v}_{1}}=\lambda_{1} \times 10$
192. Light of two different frequencies whose photons have energies 1 eV and 2.5 eV respectively illuminate a metallic surface whose work function is 0.5 eV successively. Ratio of maximum speeds of emitted electrons will be:
(1) $1: 4$
(2) $1: 2$
(3) $1: 1$
(4) $1: 5$

Sol.: $\frac{\mathrm{v}_{1}^{2}}{\mathrm{v}_{2}^{2}}=\frac{\mathrm{K}_{1}}{\mathrm{~K}_{2}}=\frac{0.5}{2.0}=\frac{1}{4}$
$\therefore \frac{\mathrm{v}_{1}}{\mathrm{v}_{2}}=\frac{1}{2}$
\therefore Correct choice : (2)
193. A body of mass M hits normally a rigid wall with velocity V and bounces back with the same velocity. The impulse experienced by the body is:
(1) MV
(2) 1.5 MV
(3) 2 MV
(4) Zero

Sol.: Impulse $=$ MV $-(-\mathrm{MV})=2 \mathrm{MV}$
\therefore Correct choice : (3)
194. Electrons used in an electron microscope are accelerated by a voltage of 25 kV . If the voltage is increased to 100 kV then the de Broglie wavelength associated with the electrons would:
(1) increase by 2 times
(2) decrease by 2 times
(3) decrease by 4 times
(4) increase by 4 times

Sol.: $\frac{\lambda_{1}}{\lambda_{2}}=\sqrt{\frac{\mathrm{v}_{2}}{\mathrm{v}_{1}}}=2 \quad \therefore \lambda_{2}=\frac{\lambda_{1}}{2}$
195. Out of the following functions representing motion of a particle which represents SHM:
(A) $y=\sin \omega t-\cos \omega t$
(B) $y=\sin ^{3} \omega t$
(C) $y=5 \cos \left(\frac{3 \pi}{4}-3 \omega t\right)$
(D) $y=1+\omega t+\omega^{2} t^{2}$
(1) Only (A)
(2) Only (D) does not represent SHM
(3) Only (A) and (C)
(4) Only (A) and (B)

Sol.: (D) is algebraic function and (B) is not harmonic being the product of $\sin \omega t$ (thrice). But (A) and (C) are simple harmonic functions. Hence (A) and (C) represent SHM.
196. In photoelectric emission process from a metal of work function 1.8 eV , the kinetic energy of most energetic electrons is 0.5 eV . The corresponding stopping potential is:
(1) 1.8 V
(2) 1.3 V
(3) 0.5 V
(4) 2.3 V

Sol.: K.E. $=0.5 \mathrm{eV}$
Hence stopping potential $=0.5 \mathrm{~V}$

\therefore Correct choice : (3)

197. The rate of increase of thermo-e.m.f. with temperature at the neutral temperature of a thermocouple:
(1) is positive
(2) is zero
(3) depends upon the choice of the two materials of the thermocouple
(4) is negative

Sol.: At the neutral temperature $\frac{d \mathrm{E}}{\mathrm{dT}}=0$
\therefore Correct choice : (2)
198. Force F on a particle moving in a straight line varies with distance d as shown in the figure. The work done on the particle during its displacement of 12 m is:

Sol.: Work done $=0+4 \times 2+\frac{1}{2} \times 5 \times 2$

$$
=8+5=13 \mathrm{~J}
$$

\therefore Correct choice : (4)
199. The current i in a coil varies with time as shown in the figure. The variation of induced emf with time would be:

(1)

(2)

(3)

(4)

Sol.: 0 to $\frac{\mathrm{T}}{4} \longrightarrow \mathrm{emf}$ is $-\frac{\mathrm{di}}{\mathrm{dt}}=-$ (constant factor $)$
$\frac{\mathrm{T}}{4}$ to $\frac{\mathrm{T}}{2} \longrightarrow \operatorname{emf}$ is $0, \frac{\mathrm{di}}{\mathrm{dt}}=0$
$\frac{\mathrm{T}}{2}$ to $\frac{3 \mathrm{~T}}{4} \longrightarrow$ emf is $-\left(-\frac{\mathrm{di}}{\mathrm{dt}}\right)=+$ (constant factor)
$\frac{3 \mathrm{~T}}{4}$ to $\mathrm{T} \longrightarrow \frac{\mathrm{di}}{\mathrm{dt}}=0$

\therefore Correct choice : (1)

200. If a small amount of antimony is added to germanium crystal:
(1) it becomes a p-type semiconductor
(2) the antimony becomes an acceptor atom
(3) there will be more free electrons than holes in the semiconductor
(4) its resistance is increased
