\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY

B.E. Sem- $V^{\text {th }}$ Examination December 2010

Subject code: 150605
Date: 20 /12 /2010

Subject Name: Structural Analysis III
Time: $03.00 \mathrm{pm}-05.30 \mathrm{pm}$
Total Marks: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) 1) Define the flexibility coefficient fij and stiffness coefficient sij. 02
2) Differentiate between the mechanical hinge and plastic hinge. 03
(b) Fill in the blanks and rewrite the whole sentence.
3) The final size of the stiffness matrix depends on \qquad indeterminacy while the same of the flexibility matrix depends on indeterminacy.
4) In the plastic method of analysis the shape factor is the ratio of
\qquad to \qquad .
5) Dome is the structure which resists force mainly by \qquad stress and
\qquad stress.
6) In the curved beam the major internal forces are \qquad , and \qquad .
Q. 2 (a) Calculate the shape factor for a square section arranged as diamond shape having size of 100 mm and x axis passing through one of the diagonals.
(b) Derive the formula for M_{P} required for the propped cantilever beam loaded by a collapse udl of $\mathrm{W}_{\mathrm{c}} \mathrm{kN} / \mathrm{m}$.

OR

(b) Calculate the M_{p} required for a fixed beam of span 8 m and loaded by a collapse udl of $20 \mathrm{kN} / \mathrm{m}$ over left half 4 m and a collapse concentrated load of 50 kN at 6 m from left span.
Q. 3 (a) For the structure shown in the figure. 1 calculate the stiffness matrix and load vector.
(b) For the above problem Q. 3 (a), calculate the nodal displacements and hence 07 draw the shear force and bending moment diagrams.

OR

Q. 3 (a) For the structure shown in the figure. 1 calculate the flexibility matrix and displacement vector. Assume all the reaction at support B, C and D as unknown forces.
(b) For the above problem Q. 3 (a), calculate the values of all the unknown reactions and draw the shear force and bending moment diagrams.
Q. 4 (a) For the structure shown in the figure. 2 calculate the stiffness matrix and load vector.
(b) For the above problem Q. 4 (a), calculate the nodal displacements and hence draw the shear force and bending moment diagrams.

OR

Q. 4 (a) For the structure shown in the figure. 2 calculate the flexibility matrix anddisplacement vector. Assume all the reaction at support D as unknown forces.
(b) For the above problem Q. 4 (a), calculate the values of all the unknown reactions and draw the shear force and bending moment diagrams.
Q. 5 (a) A beam circular in plan has radius of 8 m and is supported at equally spaced 8 supports. It is loaded by a udl of $40 \mathrm{kN} / \mathrm{m}$. Calculate the maximum values of bending moment, shear force and torsion moment.
(b) A spherical dome with 20 m span and 6 m central rise has an opening of 4 m horizontal diameter at top. If all inclusive udl of $6 \mathrm{kN} / \mathrm{m}^{2}$ is acting on it, calculate the maximum value of hoop tension/compression in top and bottom ring beams.

OR

Q. 5 (a) A beam is in the form of quarter circle in plan with both the ends fixed. If the radius of the beam is 4 m and is loaded by a udl of $30 \mathrm{kN} / \mathrm{m}$, draw the bending moment, shear force and torsion moment diagrams.
(b) A spherical dome with a span of 15 m and central rise of 3 m has all inclusive load of $10 \mathrm{kN} / \mathrm{m}^{2}$. Calculate all the stresses at the midheight.

Figure. 1

Figure. 2

