$$
\text { SEE }(\operatorname{com} P) \operatorname{sen} \pi 11(R)
$$

Con. 5653-09.
N.B. : (1) Question No. 1 is compulsory.
$2 \cdot 30$ to $5 \cdot 30$
(2) Attempt any four questions from the remaining six.
(3) Figures to the right indicate full marks.

1. (a) Prove by Mathematical Induction method -

$$
1^{2}+2^{2}+3^{2}+\ldots \ldots \ldots \ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

(b) If $A=B=C=R$ where R is set of real number and $f: A \rightarrow B, g: B \rightarrow C$ are functions defined by $f(x)=x+1, g(x)=x^{2}+2$, then find $(g \circ f)(x)$ and $(f \circ g)(2)$.
(c) Show that a group $(G, *)$ is abelian if and only if $(a * b)^{2}=a^{2} * b^{2}$.
(d) In a Boolean algebra, prove that $\overline{\mathrm{a} \wedge \bar{b}}=\overline{\mathrm{a}} \vee \overline{\mathrm{b}}$.
2. (a) Show that the relation $R=\{(x, y) \mid x-y$ is divisible by 4 ; where x, y are int egers $\}$ is an equivalence relation. Write the equivalence classes given by R.
(b) Solve the recurrence relation $a_{n+2}-5 a_{n+1}+6 a_{n}=2$ with initial conditions $a_{0}=1, a_{1}=-1$.
(c) Explain Quantifiers. Negate the statement ' $\sqrt{2}$ is not a rational number'.
(d) Draw all Hesse diagrams of posets with three elements.
3. (a) Find the transitive closure of the relation R on set A defined by the given digraph using Warshall's Algorithm

(b) Show that the $(2,5)$ encoding function $\mathrm{e}: \mathrm{B}^{2} \rightarrow \mathrm{~B}^{5}$ defined by

$$
\begin{aligned}
& e(00)=00000 \\
& e(01)=01110 \\
& e(10)=10101 \\
& e(11)=11011
\end{aligned}
$$

is a group code. Find the minimum distance.
(c) Find the lower and upper bounds of the subsets $\{a, b, c\}$ and $\{a, c, d, f\}$ of given poset

(d) Show that if any five integers from 1 to 8 are selected, then the sum of at least two of them will be 9 .
4. (a) Consider the relation R on set of integers defined as $x R y$ iff $y=x^{k} ; k$ is positive 6 integer. Show that R is a partial order relation.
(b) Determine the Eulerian path and Hamiltonian path, if exist, in the following graph.

(c) Check if the set $A=\{2,4,12,16\}$ is a lattice under divisibility.
(d) Find the generating function of the following sequences
(i) $1,0,-1,0,1,0-1,0$,
(ii) $1,1,1,1,1$
5. (a) Let $H=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
(b) Show that the lattices given in the following Hasse diagrams are non distributive 6

(c) Find the number of vertices of the graph having 16 edges if degree of each vertex is 2.
(d) For sets A, B, C prove that $A \times(B \cup C)=(A \times B) \cup(A \times C)$
6. (a) Define isomorphic graphs. Determine whether the given graphs are isomorphic or not

(b) Draw Hasse diagram of $D_{4} \times D_{9}$ where D_{n} is the set of positive divisors of n.
(c) Show that (I, \oplus, \otimes) is a commutative ring with identity where the operations \oplus and \otimes are defined as $a \oplus b=a+b-1$ and $a \otimes b=a+b-a b$.
7. (a) Show that $\{0,1,2,3,4,5\}$ is an abelian group under the operation+6.
(b) Define the following with example
(i) Ring homomorphism
(ii) Field
(iii) Spanning tree.
(c) Show that the function $f: R-\{2\} \rightarrow R-\{0\}$ where R is set of real numbers defined by $f(x)=\frac{1}{x-2}$ is a bijection. Find its inverse.

