S-E ($\operatorname{comp}) \operatorname{sem}$ III (R)

 Draft Theory VR-3330 (REVISED COURSE)(3 Hours)
N.B. (1) Question No. 1 is compulsory.
(2) Attempt any four questions out of remaining six questions.
(3) Assumptions made should be clearly stated.
(4) Figures to the right indicate full marks.

1. (a) Prove that $A \times(B \cap C)=(A \times B) \cap(A \times C)$.
(b) Prove there is no rational number p / q whose square is 2 .
(c) Show that $n^{3}+2 n$ is divisible by 3 for all $n \geq 1$.
(d) Among the integers 1 and 300,
(i) How many of them are divisible by 3,5 or 7 and are not divisible by 3 nor by 5 nor by 7 ?
(ii) How many of them are divisible by 3 but not by 5 nor by 7 ?
2. (a) Prove that if any 14 integers from 1 to 25 are chosen, then one of them is a multiple 4 of another.
(b) Solve the recurrence relation $d_{n}=2 d_{n-1}-d_{n-2}$ with initial conditions $d_{1}=1.5$ and 4 $d_{2}=3$.
(c) Let $A=Z$, the set of integers and let R be the relation less than. Is R Transitive ? 6
(d) Negate the statement.

For all real numbers x, if $x>3$ then $x^{2}>9$.
3. (a) Let $A=\{a, b, c, d, e\}$ and

$$
R=\{(a, a),(a, b),(b, c),(c, e),(c, d),(d, e)\}
$$

Compute (i) R^{2} and R^{∞}.
(b) Let $A=\{1,2,3,4\}$ and let $R=\{(1,2),(2,3),(3,4),(2,1)\}$

Find Transitive Closure of R using Warshall's algorithms.
(c) Explain the Equivalence Class with an Example.
(d) Explain with an Example dual of the poset.
4. (a) Show that in a bounded distributive lattice, if a complement exists, it is unique.
(b) Determine whether the following posets are Boolean algebras. Just your answers
(i) $\mathrm{A}=\{1,2,3,6\}$ with divisibility.
(ii) D_{20} : divisors of 20 with "divisibility".
(c) Explain Primitive Recursive Function. Every primitive recursive function is a total function, Justify.
(d) (i) Is Every Eulerian graph a Hamiltonian?
(ii) Is every Hamiltonian graph a Eulerian ? Justify with the necessary graph.
5. (a) Show that if set A has 3 elements, then we can find 8 relations on A that all have the same symmetric closure.
(b) Draw the Hasse diagram of the poset $A=\{2,3,6,12,24,36,72\}$

Under the relation of divisibility.
Is this Poset a lattice ? Justify.
(c) Let $A=\{0,-1,1\}$ and $B=\{0,1\}$, Let $f: A \rightarrow B$ where $f(a)=\mid$ a \mid. Is f onto?
(d) State and prove right or left cancellation property for a group.

Con. 2739-VR-3330-09.

6. (a) Prove that every field is an integral domain.
(b) Consider the chains of divisors of 4 and 9 i. e. , $L_{1}=\{1,2,4\}$

And $L_{2}=\{1,3,9\}$.
Find partial ordering relation of division on L_{1} and L_{2}.
Draw lattice of $L_{1} \times L_{2}$.
(c) Explain the linear recurrence relations with constant co-efficeints.
(d) Explain the types of generating function with an example.
7. (a) Consider the $(3,5)$ group encoding function $\mathrm{e}: \mathrm{B}^{3} \rightarrow \mathrm{~B}^{5}$ defined by-

$$
\begin{array}{ll}
e(000)=00000 & e(100)=10011 \\
e(001)=00110 & e(101)=10101 \\
e(010)=01001 & e(110)=11010 \\
e(011)=01111 & e(111)=11100
\end{array}
$$

Decode the following words relative to a maximum likelihood decoding function-
(i) 11001
(ii) 01010
(iii) 00111
(b) Let G be the set of all nonzero real numbers and let
$a^{*} b=a b / 2$. Show that $\left(G,{ }^{*}\right)$ is an Abelian group.
(c) Let $\mathrm{m}=2, \mathrm{n}=5$ and

$$
H=\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}
$$

Determine the group code $\mathrm{e}_{\mathrm{H}}: \mathrm{B}^{2} \rightarrow \mathrm{~B}^{5}$
(d) Explain congruence relation with an example.

