upload your college symposium/conference details,function photos,videos in www.technicalsymposium.com

201/2/06

T 8146

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2006.

Third Semester

Electronics and Communication Engineering

EC 1203 — ELECTRONIC CIRCUITS - I

(Common to B.E. (Part-Time) Second Semester, R 2005)

(Regulation 2004)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A \longrightarrow (10 \times 2 = 20 marks)

- 1. What is thermal runaway in a transistor?
- 2. Explain the use of JFET as a Variable Voltage Resistor.
- 3. Draw the hybrid model for transistor.
- 4. State Millers theorem.
- 5. What is the significance of Octaves and Decades in frequency response?
- 6. The midband gain of an amplifier is 100 and the lower cut off frequency is 1 KHz. Find the gain of the amplifier at a frequency of 20 Hz.
- 7. What is a heat sink? Give its advantages.
- 8. Draw the circuit diagram of transformer coupled class A amplifier.
- 9. Draw the half wave voltage doubler circuit.
- 10. Give the schematic of power control using SCR.

PART B - (5 × 16 = 80 marks)

- 11. (a) (i) Give the guide lines for the analysis of transistor circuit for its small signal behaviour. Explain with an example. (8)
 - (ii) Define CMRR. Explain the methods used to improve CMRR. (8)

Or

upload your college
symposium/conference
details,function photos,videos in
www.technicalsymposium.com

upload your college symposium/conference details,function photos,videos in www.technicalsymposium.com

			With small signal equivalent circuit input impedance, Av and output impedance	nal equivalent circuit of emitter follower, derive its e, Av and output impedance. (10)	
		(ii)	Employ Bootstrapping technique in the derive its input impedance.	ne emitter follower circuit an (6	d 6)
12.	(a)		t is the need for biasing BJT? Exng circuits.	plain the different types of (16	of 3)
Or					
	(b)	(i)	What is DC load line, how will you select the operation point, explain it using common emitter amplifier characteristics as an example. (8)		
		(ii)	Explain the voltage divider bias circuit for n-channel J FET give its DC analysis. (8)		
13.	13. (a) (i) Give the relationship between rise time and upper cut off frequen				
				(4	4)
		(ii)	Give the relationship between bandwidth and rise time. (4)		4)
		(iii)	What do you understand by frequer How is it plotted?	ncy response of an amplifier	r? 8)
\mathbf{Or}					
	(b) Derive the expression for CE short circuit current gain of transisto high frequency.			at 6)	
14.	(a)	trans is 14 volta	loud speaker of 8 Ω is connected to sformer of a class A amplifier circuit. In 0 mA. The turns ratio of the transformage is 10 V. If a.c. power delivered to me ideal transformer, calculate:	The quiescent collector current ner is 3 :1. The collector supp	nt ly
		(i)	Power developed across primary		
		(ii)	RMS value of load voltage	upload your college symposium/conference details,function photos,videos in www.technicalsymposium.com	
		(iii)	RMS value of primary voltage		
		(iv)	RMS value of load current	WWW.commountymposium.com	
		(v)	RMS value of primary current		
		(vi)	The DC power input		
			The efficiency		
.e. k		(viii)	The power dissipation. Or	(1	6)

upload your college symposium/conference details,function photos,videos in www.technicalsymposium.com

- (b) (i) Explain the working class D amplifier. What is its efficiency and state its application. (8)
 - (ii) What is cross over distortion in amplifier, suggest a method to eliminate it? (8)
- 15. (a) (i) What is an SMPS, with a functional block diagram explain its basic working principle. (8)
 - (ii) Design a simple zener regulator to give a DC fixed output of 5 V up to a load current of 50 mA. (8)

O

(b) Explain the working of bridge rectifier. Give the expression for RMS current, PIV, Ripple factor and efficiency. (16)

upload your college symposium/conference details,function photos,videos in www.technicalsymposium.com