upload your college symposium/conference details,function photos,videos in www.technicalsymposium.com

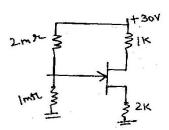
B 2163

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2007.

Third Semester

Electronics and Communication Engineering

EC 234 — ELECTRONIC CIRCUIT — I


Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A
$$-(10 \times 2 = 20 \text{ marks})$$

1. Determine the operating point ' θ ' and locate it on the dc load line for the circuit shown.

- Briefly explain with circuit diagram diode compensation technique for Ico in BJT.
- 3. Derive the input impedance of an emitter follower with equivalent circuit.
- Give the drain current expressions in Triode region and in saturation region of MOSFET.
- 5. With class C power amplifier circuit define class C operation.
- 6. A power device is mounted on a heat sink with $\theta_{c-s}=1^{\circ}$ C/w $\theta_{J-C}=7.5^{\circ}$ C/w and $\theta_{C-A}=5^{\circ}$ C/w. Find the maximum power dissipation of the device when $T_{j_{\max}}=175^{\circ}$ C.
- 7. Why gain drops at low and high frequencies?

upload your college symposium/conference details,function photos,videos in www.technicalsymposium.com

upload your college symposium/conference details,function photos,videos in www.technicalsymposium.com

- 8. Briefly explain dominant pole high frequency compensation method used in amplifiers.
- 9. SMPS has an output of 10 V for input fluctuations of 15 V to 25 V.Find the variation of duty cycle of pulse width modulator of the power supply.
- Draw a simple circuit to control ac signal power using SCR.

PART B
$$-$$
 (5 \times 16 = 80 marks)

11. (a) Determine the stability factor for variations of Ico, h_{fe} and V_{Be} of a self Bias circuit used in BJT amplifiers.

Or

- (b) (i) Explain constant current biasing used in JFET amplifiers. (6)
 - (ii) Design a MOSFET biasing circuit shown with following data. (10)

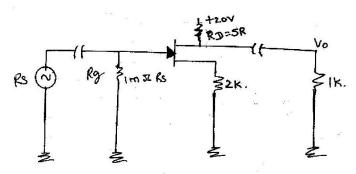
$$I_{D\theta} = .25 \text{ mA}$$

$$V_{DS\theta} = 4 \text{ V}$$

$$V_{RS} = 1 V$$

Current through biasing resistors = 20 $\,\mu\,\mathrm{A}$

$$V_{\rm th} = 1.2 \ \rm V$$


$$W/L = 4$$
 and $K_n' = \mu_n C_{ox} = 80 \mu A/V^2$.

12. (a) Draw a differential amplifier circuit and its small signal equivalent circuit. Derive its differential gain, common mode gain and CMRR. Suggest a method to improve the CMRR.

Or

upload your college symposium/conference details,function photos,videos in www.technicalsymposium.com

(b) (i) Draw the equivalent circuit of the amplifier shown and find its voltage, gain R_{in} and R_{o} . (10)

Assume $r_d = 40 \text{ k}$ and gm = 5 mA/V

- (ii) Draw a Darlington amplifier and its equivalent circuit. Mention its special features. (6)
- 13. (a) (i) Explain the working of class B complementary and symmetry power amplifier. Derive its efficiency. How its cross—over distortion can be removed. (12)
 - (ii) Calculate the efficiency of a class B power amplifier with ac peak to peak voltage at output is 5 V. Assume Vcc = 5 V. (4)

Or

- (b) (i) Describe the function of Class A power amplifier with circuit.

 Derive its efficiency. Also suggest a method to improve its efficiency. (10)
 - (ii) What is thermal runaway? What are design aspects that have to be taken care of while designing power amplifier to have thermal stability? (6)
- 14. (a) Explain FWR with π filter and derive the ripple factor of the FWR with π filter.

Or

(b) Describe the regulation of the output voltage with respect to input voltage and load variations of a linear voltage regulator.