DCE (Delhi College of Engineering) DCE Entrance Examination Sample Paper (Physics)

The question paper contains 180 questions. Four choices are given for a question out of which one choice may be correct. Each question carries 4 marks. The total marks of the Entrance Test are 720 (240 for each subject, i.e., Physics, Chemistry, Maths). You will get 4 marks for each correct response. For each incorrect response, one mark will be deducted from the total score. As such for each incorrect response, you will lose 5 marks (4 for wrong respor and one mark as penalty).

1. Following two wave trains are approaching each other.
$\mathbf{y}_{1}=\mathbf{a} \sin 200 \pi t \quad y_{2}=\mathbf{a} \sin 208 \pi t$
The number of beats heard per second is :
A. 8
B. 4
C. 1
D. 0
2. One of the geo-stationary satellites of $\mathrm{In}_{2} \mathrm{Hi}_{\mathrm{ia}}$ is vertically above
A. New Delhi
B. Mumbai
C. Allahabad
D. None of these
3. Light of wavelength $2400 \times 10^{-9}-i^{1}$, air will become light of wavelength in glass ($\mu=$ 1.5) equal to
A. $1600 \times 10^{-10} \mathrm{~m}$
B. $200 \times 10^{-10} \mathrm{~m}$
C. $1080 \times 10^{-10} \mathrm{~m}$
D. none of these
4. The ratio of secondary to primary turns is $4: 5$. If power input is P, what will be the ratio of power output (neglect all losses) to power input?
A. 4:9
B. 9:4
C. 5:4
D. 1:1

5. Lenz's law applies to

A. electrostatics
B. lenses
C. electro-magnetic induction
D. cinema slides
6. If a proton and anti-proton come close to each other and annihilate, how much energy will be released?
A. $1.5 \times 10^{-10} \mathrm{~J}$
B. $3 \times 10^{-10} \mathrm{~J}$
C. $4.5 \times 10^{-10} \mathrm{~J}$
D. none of these
7. If $S n$ is doped with $A s$, what will be the result?
A. n-type semi-
B. p-type semi-
C. intrir ic s.micond 'clu"
8. A charge is placed at the centre of a crube, that is the electric flux passing through one of its faces?
A. $(1 / 6) \times\left(q / \varepsilon_{0}\right)$
B. q / ε_{0}
C. $6 q / \varepsilon_{0}$
D. None of these
9. What is the degree of fre ${ }^{\text {dom }}$ in case of a mono atomic gas?
A. 1
๖.
C. 5
D. None of these
11. Speed of recession of galaxy is proportional to its distance
A. directly
B. inversely
C. exponentially
D. none of these
12. If a substance goes in a magnetic field and is pushed out of it, what is it ?
A. Paramagnetic
B. Ferromagnetic
C. Diamagnetic
D. Antiferromagnetic
13. Which is not a scalar quantity?
A. Work
B. Power
C. Torque
D. Gravitational Constant
14. Minimum energy required to excite an electron in Hydrogen atu $\boldsymbol{\eta}$ in ground state is :
A. -13.6 eV
B. 13.6 eV
C. 10.2 eV
D. 3.4 eV
15. If Gravitational Constant is decreasing in time, wita ${ }^{+}$will remain unchanged in case of a satellite orbiting around earth ?
A. Time period
B. Orbiting radius
C. 1. ngential velocity
D. Angular velocity
16. If a transparent medium of refrac 've : $n d e x \mu=1.5$ and thickness $t=2.5 \times 10^{-5} \mathrm{~m}$ is inserted in front of one of the slits if : ang's Double Slit experiment, how much will be the shift in the interference pattern ? Tred listance between the slits is $5.0 \times 10^{-3} \mathrm{~cm}$ and that between slits and screen is 1^{10}.m.
A. 5 cm
B. 25 cin
C. 0.25 cm
D. 0.1 cm
17. How does light propagate in optical fibres?
A. Total internal reflection
B. Refraction
C. Reflection
D. None of these

18. Dispersion of light is due to

A. wavelength
B. intensity of light
C. density of medium
D. none of these
19. Which of the following conclusions is correct regarding a stationary body?
A. No force is acting on the body
B. Vector sum of forces acing on the body is zero
C. The body is in vacuum
D. The forces acting on the body do not constitute a couple
20. Energy released in stars is due to
A. Fission
B. Fusion
C. Oor hustion
D. Chemical reaction
21. 13 days is the half-life period of a san.le After how many days, the sample will become $\mathbf{1 / 1 6 t h}$ of the original substance?
A. 52
B. 3.8
C. 3
D. none of these

22. Absolute zero is the $\quad m$ verature at which

A. water solidifies
B. all gases become liquid
C. motion of molec:les, becomes minimum
D. everything solidifies
23. Motion of liquid in a tube is described by
A. Bernaulli's Theorem B. Poiseuille Equation
C. Stoke's Law
D. Archimedes'
Principle
24. Molecular motion shows itself as
A. Temperature
B. Internal Energy
C. Friction
D. Viscosity
25. Which is this gate?
A. AND
B. NAND
C. OR
D. NOR
26. Energy bands in solids are a consequence of
A. Ohm's Law
B. Pauli E clu, ion Principle
C. Bohr's Theory
D. Hei set. herg's Uncertainty Principle
27. A boy of mass M stands on the floor of a. elevator moving downwards with an acceleration a which is less than g. The f_{l}-ce exerted by the boy on the floor of the elevator is
A. $\mathrm{Mg} x \mathrm{Ma}$
B. $g+a$
C. $\mathrm{Mg}-\mathrm{Ma}$
D. $\mathrm{Mg}+\mathrm{Ma}$
28. A body A of mass $m_{\text {. }}{ }^{-2}$ rts a force on another body B of mass m_{2}. If the acceleration of B be \mathbf{a}_{2}, then the accel ration (in magnitude) of A is
A. $\mathrm{m}_{2} / \mathrm{m}_{1}\left(\mathrm{a}_{2}\right)$
B. $m_{1} m_{2} a_{2}$
C. $\mathrm{m}_{1} / \mathrm{m}_{2}\left(\mathrm{a}_{2}\right)$
D. $\left(m_{1}+m_{2}\right) a_{2}$
29. What does not change when sound enters from one medium to another ?
A. Wavelength
B. Speed
C. Frequency
D. none of these
30. Resolving power of a microscope depends upon
A. wavelength of light used, directly
B. wavelength of light used, inversely
C. frequency of light used
D. focal length of objective
31. An astronaut of weight Mg is in a rocket accelerating upward with an acceleration of 4 g . The apparent weight of the astronaut will be
A. 5 Kg
B. 4 Kg
C. Mg
I). «~ro
32. One proton beam enters a magnetic field of $10^{-4} \mathrm{~m} / \mathrm{s}$ normaty, sp. charge $=10^{11} \mathrm{C} / \mathrm{kg}$, velocity $=10^{9} \mathrm{~m} / \mathrm{s}$. What is the radius of the circle descril e by it ?
A. 0.1 m
B. 100 m
C. 10 m
D. none of these
33. If a black body radiates 20 calories pet ennd at $227^{\circ} \mathrm{C}$, it will radiate at $727^{\circ} \mathrm{C}$
A. 10 calories per second
B. 80 calories per second
C. 320 calories per second
34. If a carnot engine is wor: ${ }^{\circ} \cdot$. with source temperature equal to $227^{\circ} \mathrm{C}$ and its sink temperature is at $27^{\circ} \mathrm{C}$, its ofticiency will be
A. 20%
之. 0%
C. 67%
D. 50%
35. If the frequency of an oscillating particle is n, then the frequency of oscillation of its potential energy is
A. n
B. 2 n
C. $\mathrm{n} / 2$
D. 4 n
36. If an electron oscillates at a frequency of $\mathbf{1 ~ G H z}$, it gives:
A. X-rays
B. Micro-waves
C. Infra-red rays
D. None of these
37. Earth's atmosphere is richest in
A. Ultra-violet rays
B. Infra-red rays
C. X-rays
1). $1^{\text {I }}$ icro-waves
38. Cathode rays consist of
A. Photons
B. Electrons
C. Prote is
D. α-particles
39. A body of mass m_{1} is moving with a velocity V. t collides with another stationary body of mass m_{2}. They get embedded. At the pon + f nollision, the velocity of the system
A. increases
B. decreases but does not become zero
C. remains same
D. becomes zero
40. One projectile moving w^{+4} elocity V in space, gets burst into 2 parts of masses in the ratio 1:2. The smaller par، becumes stationary. What is the velocity of the other part ?
A. 4 V
? 1
C. $4 \mathrm{~V} / 3$
D. $2 \mathrm{~V} / 3$
41. A thief steals a bo vi weight W \& jumps from the third floor of a building. During jump, he experiences a weight of
A. W
B. 3 W
C. 1.5 W
D. zero
42. Two electron beams are moving parallel in space but in opposite directions; then
A. they will attract each other
B. they will repel each other
C. no interaction will take place
D. none of these
43. Two wires with resistances R and $3 R$ are connected in parallel, the ratio of heat generated in $2 R$ and R is
A. $1: 3$
B. $2: 1$
C. 1:4
I). $\therefore \cdot 1$
44. A wire is drawn such that its radius changes from r to $2 r$, the new resistance is
A. 2 times
B. 4 times
C. 8 tim s
D. 1/16 times
45. In solids, inter-atomic forces are
A. totally repulsive
R totally attractive
C. combination of (a) and (b)
D. none of these
46. When horse starts running $\mathrm{al}^{\imath} \mathfrak{f}_{\mathbf{d}}$ udden, the rider on the horse back falls backward because
A. he is taken aback
B. he is afraid
C. due to inertia of res ue upper part of his body remains at rest
D. due to inertia of motion, the lower part of his body comes in motion
47. What should be the minimum velocity at the highest point of a body tied to a string, so that the string just does not slack?
A. $\sqrt{ }(\mathrm{Rg})$
B. $\sqrt{ }(5 \mathrm{Rg})$
C. $(\mathrm{R} / \mathrm{g})^{3 / 2}$
D. $\sqrt{ }(2 \mathrm{Rg})$
48. If a person standing on a rotating disc stretches out his hands, the speed will:
A. increase
B. decrease
C. remain same
D. none of these
49. EMF is most closely related to
A. mechanical force
B. potential difference
C. electric field
D. magnetic field
50. Planetary system in the solar system describe:
A. conservation of energy
B. cu servation of linear momentum
C. conservation of angular momentum
n none of these

51. Lenz's law is based upon

A. energy
B. momentu:-
C. angular momentum
D. inertia
52. Faraday's second 1 'w suates that mass deposited on the electrode is directly proportional to
A. atomic mass
B. atomic mass x velocity
C. atomic mass/valency D. valency
53. Unit of power is
A. kilowatt hour
B. kilowatt per hour
C. kilowatt
D. erg
54. Power can be expressed as
A. F.v
B. $1 / 2\left(\mathrm{Fv}^{2}\right)$
C. F.t
D. $\mathrm{Fxv}_{\mathrm{v}}$
55. Units of coefficient of viscosity are
A. Nms^{-1}
B. $\mathrm{Nm}^{2} \mathrm{~s}^{-1}$
C. $\mathrm{Nm}^{-2} \mathrm{~s}$
D. Nms^{-2}
56. Dimensions of torque are
A. MLT^{-2}
B. $\mathrm{ML}^{2} \mathrm{~T}^{-2}$
C. $v^{12} L^{\prime} T^{-2}$
D. $\mathrm{ML}^{-2} \mathrm{~T}^{-2}$
57. A body of weight $m g$ is hanging on : st: $\because \mathrm{g}$, which extends its length by l. The work done in extending the string is
A. $m g l$
B. $m g l / 2$
C. $2 m g l$
D. none of these
58. The water droplets in i e fall are spherical due to
A. gravity
L. viscosity
C. surface tension
D. inter-molecular attraction
59. A ball of mass 1 Kg is accelerating at a rate of $1 \mathrm{~ms}^{-2}$. The rate of change of momentum is
A. $1 \mathrm{Kg} \mathrm{ms}^{-2}$
B. $2 \mathrm{Kg} \mathrm{ms}^{-2}$
C. $3 \mathrm{Kg} \mathrm{ms}^{-2}$
D. $4 \mathrm{Kg} \mathrm{ms}^{-2}$
60. A body orbitting around earth at a mean radius which is two times as great as the parking orbit of a satellite. The period of the body is
A. 4 days
B. $2 \sqrt{ } 2$ days
C. 16 days
D. 64 days

61. Gamma rays are

A. high energy electrons
B. low ener 'y e ectrons
C. high energy electro-magnetic waves
D. high energy positrons

PHYSICS

1	2	3	4	5	6	7	8	9	10
A	B	B	D	C	C	-	C	B	C
11	12	13	14	15	\cdots	17	18	19	20
C	A	D	C	C	A	B	C	B	A
21	22	23	24	$\angle 5$	26	27	28	29	30
A	B	C	B	A	A	D	A	C	A
31	32	33	34	35	36	37	38	39	40
D	A	B	C	C	A	C	A	A	A
41	42	43	44	45	46	47	48	49	50
A	A	B	A	B	B	A	C	A	C

$\begin{array}{llllllllll}51 & 52 & 53 & 54 & 55 & 56 & 57 & 58 & 59 & 60\end{array}$
$\begin{array}{llllllllll}B & A & B & A & A & A & B & B & B & A\end{array}$

