BE5-R3: PARALLEL COMPUTING

NOTE:

- 1. Answer question 1 and any FOUR questions from 2 to 7.
- 2. Parts of the same question should be answered together and in the same sequence.

Time: 3 Hours Total Marks: 100

1.

- a) What is pipelined architecture? Distinguish between Parallelism and Pipelining.
- b) Why is there no use in increasing the number of processors beyond a certain point in a multiprocessor system?
- c) What is cache coherence issue in multiprocessor?
- d) What is loop interchange? How does that help in parallel programming?
- e) Explain what is a race condition in the message passing parallel programs?
- f) What is the latency for wormhole routing?
- g) Explain the salient features of CISC scalar processor.

(7x4)

2.

- a) Explain, steady state analysis of pipeline?
- b) What do you mean by optimization of memory hierarchy, explain the addressing schemes for main memory?
- c) What is Flynn's classification scheme? Does Flynn's classification scheme fail for pipelined computers?

(6+6+6)

3.

- a) Illustrate the routing algorithm for the 8*8 Benes network with the permutation $P = [1 \ 3 \ 5 \ 7 \ 6 \ 8 \ 9 \ 0 \ 4 \ 2 \ 11 \ 10]?$
- b) What are permutations? Explain elementary permutations used in Interconnection networks.
- c) How many steps shall be required for routing a data item from one node to another in a cube connected network?

(6+6+6)

4.

- a) Explain the following terms associated with message passing programming of multi computers?
 - i) Synchronous versus asynchronous message passing schemes.
 - ii) Un-coupling between sender and receiver using buffers or mailboxes.
- b) Consider the following loop nest: -

S1
$$A(I) = B(I)$$

S2
$$C(I) = A(I) + B(I)$$

S3
$$E(I) = C(I + 1)$$

End Do

- i) Determine the dependence relations among the three statements.
- ii) Show how to vectorize the code with Fortran 90 statements.

(9+9)

- 5.
- a) Explain interleaved memory configuration?
- b) Explain the following terms related to shared variable programming on multi processors:
 - i) Multiprogramming
 - ii) Multitasking
 - iii) Multithreading
 - iv) Program partitioning
- c) Elaborate salient features of parallel language and compilers with respect to control of parallelism and data parallelism.

(4+8+6)

6.

- a) State Amadahl's law. Suppose a program runs in 100 seconds on a machine with multiple operations responsible for 80% of the time. How much is it necessary to improve the speed of multiplication of the program is to be made to run 5 times faster.
- b) Explain the applicability and the restrictions involved in using Amadahl's law, Gustafson's law and Sun and Ni's law to estimate the speedup performance of an n-processor system compared with that of a single processor system?

(10+8)

7.

- a) What is system deadlock problem? Explain deadlock detection and recovery.
- b) What is synchronized and asynchronous parallel algorithm?
- c) Explain the following:
 - i) Matrix multiplication
 - ii) Searching algorithms

(5+5+8)