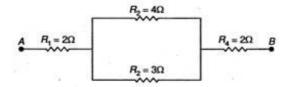
### **AIIMS - 1999**

## **Full Paper**


#### **Physics**

- 1. Sky appears to be blue in clear atmosphere due to light's:
  - 1) scattering
  - 2) polarization
  - 3) diffraction
  - 4) dispersion
- 2. The number of electrons for one coulomb of charge are :
  - 1) 6.25 x 10<sup>24</sup>
  - 2) 6.25 x 10<sup>22</sup>
  - 3) 6.25 x 10<sup>18</sup>
  - 4) 6.25 x 10<sup>20</sup>
- 3. The dimensional formula of the constant a in van der Waal's gas equation (P + (a/V²)) (V
  - b) = RT is:
  - 1)  $[ML^4T^{-1}]$
  - 2)  $[ML^3T^{-2}]$
  - 3)  $[ML^5T^{-2}]$
  - 4) [ML<sup>5</sup>T<sup>-2</sup>]
- 4. The angle between  $\vec{P} + \vec{Q}$  and  $\vec{P} \vec{Q}$  will be :
  - 1) 90° only
  - 2) between 0° and 180°
  - 3) 180° only
  - 4) none of the above
- 5. A horizontal platform with an object placed on it is executing simple harmonic motion in the vertical direction. The amplitude of oscillation is  $3.92 \times 10^{-3}$  m. What should be the least period of these oscillations, so that the object is not detached from the platform?
  - 1) 0.1256 s
  - 2) 1.256 s
  - 3) 125.6 s
  - 4) 1256 s

- 6. Energy is not carried by which of the following wave ?
  - 1) Progressive
  - 2) Electromagnetic
  - 3) Transverse
  - 4) Stationary
- 7. Which one of the following affects the elasticity of a substance?
  - 1) Change in temperature
  - 2) Hammering and annealing
  - 3) Impurity in substance
  - 4) All of the above
- 8. In arrangement given in figure, if the block of mass *m* is displaced, the frequency is given by :



- 1)  $n = (1/2\pi) \sqrt{((k_1 + k_2)/m)}$
- 2)  $n = (1/2\pi) \sqrt{(m/(k_1 + k_2))}$
- 3)  $n = (1/2\pi) \sqrt{(m/(k_1 k_2))}$
- 4)  $n = (1/2\pi) \sqrt{((k_1 k_2)/m)}$
- 9. In the given figure, the equivalent resistance between two points A and B will be:



- 1) 12 Ω
- 2) 10  $\Omega$
- 3) 8 Ω
- 4) 6 Ω
- 10. Interference occurs in which of the following waves?
  - 1) Transverse
  - 2) Electromagnetic
  - 3) Longitudinal
  - 4) All of these
- 11. If a cyclist moving with a speed of 4.9 m/s on levelled road can take a sharp circular turn of radius 4 m, then the coefficient of friction between cycle tyre and road will be:
  - 1) 0.91
  - 2) 0.71

| kinetic energy a            | 0,                                                    | iolecule at 27°C is 6  | .21 x 10 <sup>21</sup> J, then its average                    |
|-----------------------------|-------------------------------------------------------|------------------------|---------------------------------------------------------------|
| 1) 10.35 x 10 <sup>-2</sup> | 21 յ                                                  |                        |                                                               |
| 2) 12.35 x 10 <sup>-2</sup> | <sup>21</sup> J                                       |                        |                                                               |
| 3) 14.2 x 10 <sup>-21</sup> | J                                                     |                        |                                                               |
| 4) 16.2 x 10 <sup>-21</sup> | _                                                     |                        |                                                               |
| 13. Which one of th         | e following statement is                              | not correct for a part | ticle executing SHM ?                                         |
| 1) Acceleration             | n of the particle is maxim                            | num at the mean pos    | ition                                                         |
| 2) Restoring for            | orce is always directed to                            | owards a fixed point   |                                                               |
| 3) Total energy             | y of the particle always i                            | remains the same       |                                                               |
| 4) Restoring fo             | orce is maximum at the e                              | extreme position       |                                                               |
|                             | ating with frequency und<br>uspended then the new     |                        | s cut into two equal pieces and                               |
| 1) n√2                      | 2) n/√2                                               | 3) n/2                 | 4) n                                                          |
| Hz. Ignoring en             | air column of length 40<br>d correction, the velocity |                        | a tuning fork of frequency 450                                |
| 1) 1024 m/s                 |                                                       |                        |                                                               |
| 2) 720 m/s                  |                                                       |                        |                                                               |
| 3) 624 m/s                  |                                                       |                        |                                                               |
| 4) 824 m/s                  |                                                       |                        |                                                               |
| 16. SONAR emits w           | hich of the following wa                              | ves ?                  |                                                               |
| 1) Ultra sonic v            | waves                                                 |                        |                                                               |
| 2) Radio wave               | S                                                     |                        |                                                               |
| 3) Electromagi              | netic waves                                           |                        |                                                               |
| 4) Light waves              |                                                       |                        |                                                               |
|                             | coil. The magnetic field                              | ·                      | magnetic field acting normal to 0.10 T to 0.35 T in 2 ms, the |
| 1) 170 V                    |                                                       |                        |                                                               |
| 2) 1.70 V                   |                                                       |                        |                                                               |
| 3) 0.17 V                   |                                                       |                        |                                                               |
| 4) 17.7 V                   |                                                       |                        |                                                               |
| 18. The moment of           | inertia of a regular circ                             | cular disc of mass 0.  | 4 kg and radius 100 cm about                                  |

3/31

med.edooni.com

3) 0.654) 0.61

|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | 4/31                                                                                                           | med.edooni.com                                                               |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
|             | 2) rectifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |                                                                                                                |                                                                              |
| <b>-</b> 7. | 1) modulator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |                                                                                                                |                                                                              |
| 24          | Diode is used as a/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | an ·                          |                                                                                                                |                                                                              |
|             | 4) 10√3 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |                                                                                                                |                                                                              |
|             | 3) 50√3 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |                                                                                                                |                                                                              |
|             | 2) Zero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                                                                                                                |                                                                              |
|             | 1) 20√3 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |                                                                                                                |                                                                              |
| 23.         | A 1 kg particle strik wall in 0.1 s, then the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               | ocity 1 m/s at an ang                                                                                          | le 30° and reflects at the same                                              |
|             | 4) 36 x 10 <sup>-7</sup> Nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |                                                                                                                |                                                                              |
|             | 3) 24 x 10 <sup>-7</sup> Nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |                                                                                                                |                                                                              |
|             | 2) <sub>12 x 10<sup>-7</sup> Nm</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                                                                                                                |                                                                              |
|             | 1) 32 x 10 <sup>-7</sup> Nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |                                                                                                                |                                                                              |
| 22.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The horizontal co             | -                                                                                                              | deflected through 30° from the duction is 0.32 x 10 <sup>-4</sup> T then the |
|             | 4) a circle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |                                                                                                                |                                                                              |
|             | 3) a straight line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                                                                                                                |                                                                              |
|             | 2) helical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                                                                                                                |                                                                              |
|             | 1) circle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |                                                                                                                |                                                                              |
| 21.         | A charged particle ewith H. Then, the particle particle with H. Then, the particle with H. Then, the particle particle with H. Then, the particle particle with H. Then, the particle particle particle with H. Then, the particle p | _                             |                                                                                                                | velocity making an angle of 45°                                              |
|             | 4) 22.4 km/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |                                                                                                                |                                                                              |
|             | 3) 11.2 km/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |                                                                                                                |                                                                              |
|             | 2) 7.82 km/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |                                                                                                                |                                                                              |
|             | 1) 15.8 km/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |                                                                                                                |                                                                              |
| 20.         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               | jected from the eartl<br>horizontal, then esca                                                                 | n's surface is 11.2 km/s. If it is pe velocity is :                          |
|             | 1) 2v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2) v/2                        | 3) 3v                                                                                                          | 4) v/3                                                                       |
| 19.         | Then, the speed of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | the system after c            | collision is :                                                                                                 | stationary particle of mass 2 <i>m</i> .                                     |
|             | +/ 20 kg-m−                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |                                                                                                                |                                                                              |
|             | 3) 0.002 kg-m <sup>2</sup><br>4) 20 kg-m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                                                                                                                |                                                                              |
|             | 2) 0.025 kg-m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                                                                                                                |                                                                              |
|             | 1) 0.2 kg-m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |                                                                                                                |                                                                              |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ar to the plane of            | the disc and passing                                                                                           | through its centre is :                                                      |
|             | 10 miles 10  | and the state of the state of | da a alta a de la composition de la co | Observation Program Control                                                  |

| <ul><li>3) oscillator</li><li>4) amplifier</li></ul>                                                                             |                                                   |                           |                                   |
|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------|-----------------------------------|
|                                                                                                                                  | nductors of copper an                             |                           | d in an identical electric field. |
| 1) Less than tha                                                                                                                 | t in copper                                       |                           |                                   |
| 2) Equal to that                                                                                                                 | in copper                                         |                           |                                   |
| 3) Greater than                                                                                                                  | that in copper                                    |                           |                                   |
| 4) Zero                                                                                                                          |                                                   |                           |                                   |
| 26. The activity of a after 10 days will                                                                                         |                                                   | 1.6 curie and its half-li | fe is 2.5 days. Then, activity    |
| 1) 0.2 curie                                                                                                                     |                                                   |                           |                                   |
| 2) 0.4 curie                                                                                                                     |                                                   |                           |                                   |
| 3) 0.1 curie                                                                                                                     |                                                   |                           |                                   |
| 4) 0.25 curie                                                                                                                    |                                                   |                           |                                   |
| •                                                                                                                                | wn vertically upwards<br>attained by it will be : | s velocity at half of the | e height is 10 m/s, then the      |
| 1) 10 m                                                                                                                          | 2) 30 m                                           | 3) 60 m                   | 4) 70 m                           |
| <ul><li>28. In an adiabatic pr</li><li>1) total heat of s</li><li>2) temperature</li><li>3) volume</li><li>4) pressure</li></ul> | •                                                 | ich remains constant is   | :                                 |
| 29. In <i>n</i> -type semicor                                                                                                    | nductor, majority char                            | ge carriers are :         |                                   |
| 1) electrons                                                                                                                     |                                                   |                           |                                   |
| 2) neutrons                                                                                                                      |                                                   |                           |                                   |
| 3) holes                                                                                                                         |                                                   |                           |                                   |
| 4) protons                                                                                                                       |                                                   |                           |                                   |
| 30. Two bodies of ma                                                                                                             |                                                   | moving with equal kinet   | tic energy. Then, the ratio of    |
| 1) 1 : 1                                                                                                                         |                                                   |                           |                                   |
| 2) 2 : 1                                                                                                                         |                                                   |                           |                                   |
| 3) 4 : 1                                                                                                                         |                                                   |                           |                                   |
| 4) 1 : 2                                                                                                                         |                                                   |                           |                                   |
| 31. A particle execut                                                                                                            | tes simple harmonic                               | motion with an angula     | ar velocity of 3.5 rad/s and      |

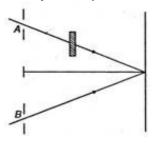
maximum acceleration 7.5 m/s<sup>2</sup>. The amplitude of oscillation will be :

- 1) 0.52 cm
- 2) 0.64 cm
- 3) 0.61 cm
- 4) 0.84 cm

32. Frequency of infrared wave is approximately:

- 1) 10<sup>16</sup> Hz
- 2) 10<sup>14</sup> Hz
- 3) 10<sup>12</sup> Hz
- 4) 10<sup>20</sup> Hz

<sup>33.</sup> An ideal gas at 27°C is compressed adiabatically to (8/27) its original volume [TV $\gamma^{-1}$  = constant] and  $\gamma$  = (5/3), then the rise in temperature will be :


$$\alpha$$
 (1/n<sup>2</sup>)

- 2) rαn
- 3)  $r \alpha (1/n)$
- 4)  $r \alpha n^2$

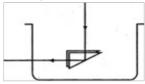
46. If the vibrations of a string are to be increased by a factor of two, then tension in the string should be made :

- 1) twice
- 2) four times
- 3) eight times
- 4) half

47. In Young's experiment the monochromatic light is used to illuminate two slits A and B as shown in figure. Interference fringes are observed on a screen placed in front of the slits. Now a thin glass plate is placed normally in the path of beam coming from the slit A, then:



- 1) there will be no change in fringe width
- 2) fringe width will decrease
- 3) fringe width will increase
- 4) fringes will disappear


48. When a solid is converted into a gas, directly by heating then this process is known as:

|                                             |                                                      | 7/31                                             | med.edooni.con                                   |
|---------------------------------------------|------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|
| 2) B                                        |                                                      |                                                  |                                                  |
| 1) A                                        |                                                      |                                                  |                                                  |
| minimum.                                    | ·                                                    | of SHM differ in phase                           |                                                  |
| 53. Assertion: In                           | simple harmonic motic                                | on, the velocity is maxi                         | mum when the acceleration is                     |
| 5) E                                        |                                                      |                                                  |                                                  |
| 4) D                                        |                                                      |                                                  |                                                  |
| 3) C                                        |                                                      |                                                  |                                                  |
| 2) B                                        |                                                      |                                                  |                                                  |
| 1) A                                        |                                                      |                                                  |                                                  |
|                                             |                                                      | t unit measuring tempe<br>nperature scale used f | erature.<br>for measuring temperature.           |
| 5) E                                        |                                                      |                                                  |                                                  |
| 4) D                                        |                                                      |                                                  |                                                  |
| 3) C                                        |                                                      |                                                  |                                                  |
| 2) B                                        |                                                      |                                                  |                                                  |
| 1) A                                        |                                                      |                                                  |                                                  |
| Reason : An e                               | ectron has a negative                                | charge.                                          |                                                  |
| 51. Assertion: Ele                          | ectron move from a reg                               | ion of lower potential to                        | o a region of higher potential.                  |
|                                             | rue but assertion is fals                            |                                                  |                                                  |
|                                             | s true but reason is fals<br>ssertion and reason are |                                                  |                                                  |
| assertion.                                  |                                                      |                                                  |                                                  |
|                                             |                                                      |                                                  | not the correct explanation of                   |
| •                                           | •                                                    | noose any one of the fi                          | ve responses.<br>rrect explanation of assertion. |
| ·                                           |                                                      |                                                  | n and reason. While answering                    |
| <del>-,</del>                               |                                                      |                                                  |                                                  |
| <ul><li>3) logic</li><li>4) truth</li></ul> |                                                      |                                                  |                                                  |
| 2) symbol                                   |                                                      |                                                  |                                                  |
| 1) numbers                                  |                                                      |                                                  |                                                  |
| _                                           | a is essentially based of                            | on :                                             |                                                  |
|                                             |                                                      |                                                  |                                                  |
| The grid voltag<br>1) 12 V                  | e to reduce the plate c<br>2) 15 V                   | urrent to zero, is :<br>3) 18 V                  | 4) 21 V                                          |
| 49. A triode value                          | nas an amplification fa                              | ctor of 20 and its plate                         | e is given a potential of 300 V.                 |
| 4) boiling                                  |                                                      |                                                  |                                                  |
| 3) condensation                             | on                                                   |                                                  |                                                  |
| 2) vaporizatioi                             |                                                      |                                                  |                                                  |
|                                             |                                                      |                                                  |                                                  |

- 3) C
- 4) D
- 5) E
- 54. **Assertion :** Bodies radiate heat at all temperatures.

**Reason:** Rate of radiation of heat is proportional to the fourth power of absolute temperature.

- 1) A
- 2) B
- 3) C
- 4) D
- 5) E
- 55. **Assertion**: The maximum refractive index of liquid for total internal reflection of the ray passing through the prism as shown in figure must be  $\sqrt{2}$ .



**Reason:** Here, critical angle is 45°.

- 1) A
- 2) B
- 3) C
- 4) D
- 5) E
- 56. **Assertion**: A double convex lens $\mu$ ( = 1.5) has focal length 10 cm. When the lens is immersed in water (  $\mu$  = 4/3) its focal length becomes 40 cm.

**Reason**:  $(1/f) = ((\mu_q - \mu_a)/\mu_a) ((1/R_1) - (1/R_2)).$ 

- 1) A
- 2) B
- 3) C
- 4) D
- 5) E
- 57. **Assertion :** On a rainy day it is difficult to drive a car or bus at high speed.

**Reason :** The value of coefficient of friction is lowered due to wetting of the surface.

- 1) A
- 2) B
- 3) C
- 4) D
- 5) E

| 58. <b>Assertion</b> : The specining Reason: The mass of the | - ·                                        |                                         |                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------|------------------------------------------------|
| 59. <b>Assertion</b> : Separation numbers of isotope. <b>Reason</b> : Isotope of an 1) A 2) B 3) C 4) D 5) E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                            | le because of the differe               |                                                |
| 60. <b>Assertion</b> : Kinetic depends upon the inte <b>Reason</b> : The ejection incident photon below  1) A  2) B  3) C  4) D  5) E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nsity of incident photon of electrons from | on.<br>metallic surface is pos          | photosensitive surface sible with frequency of |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Chem                                       | nistry                                  |                                                |
| 61. Oxidation number of C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s in OsO <sub>4</sub> :                    |                                         |                                                |
| 1) + 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2) + 4                                     | 3) + 8                                  | 4) + 6                                         |
| 62. The normality of solution obtained by mixing 10 mL of N/5 HCl and 30 mL of N/10 HCl is :  1) (N/10) 2) (N/12) 3) (N/7.5) 4) (N/8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                         |                                                |
| 63. The pH of a solution ha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | aving the H <sup>+</sup> ion cond<br>2) 3  | centration of 1 x 10 <sup>-4</sup> g io | ons/L is :<br>4) 5                             |
| 64. Which produce ketone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | on treatment with Gr                       | rignard reagent ?                       |                                                |

- 1) Methyl cyanide
- 2) Acetaldehyde
- 3) Methyl alcohol
- 4) Acetic acid

#### 65. lodide of Million's base is:

- 1) HIO<sub>3</sub>
- 2) K<sub>2</sub>HgI<sub>4</sub>
- 3) NH<sub>2</sub>HgO . HgI
- 4) Hg (NH<sub>2</sub>) I

66. 
$$X \xrightarrow{\text{NaOH}} Y \xrightarrow{\text{CHCl}_3 + \text{KOH}} Z \xrightarrow{\text{[O]}} COOH$$

in the above reaction Z, is:

- 1) phenol
- 2) benzoic acid
- 3) salicylaldehyde
- 4) carbolic acid
- 67. The process of decomposition of organic compound by the application of heat is :
  - 1) pyrolysis
  - 2) evaporation
  - 3) sublimation
  - 4) condensation
- 68. The energy of electron in first energy level is  $-21.79 \times 10^{-12}$  erg per atom. The energy of electron in second energy level is :
  - 1) 64.47 x 0<sup>-12</sup> erg atom<sup>-1</sup>
  - 2) 5.447 x 10<sup>-12</sup> erg atom<sup>-1</sup>
  - 3) 0.6447 x 10<sup>-12</sup> erg atom<sup>-1</sup>
  - 4) 0.06447 x 10<sup>-12</sup> erg atom<sup>-1</sup>
- 69. The monomer of teflon is:
  - 1) monofluoroethene
  - 2) difluoroethene
  - 3) trifluorethene
  - 4) tetrafluorethene

70. Phenol  $\xrightarrow{\text{NaOH}} X \xrightarrow{\text{CO}_2} Y \xrightarrow{\text{H}^+} Z$ .

Z is identified as:

- 1) benzoic acid
- 2) benzaldehyde
- 3) sodium benzoate
- 4) salicylic acid
- 71. The product obtained by treating:

$$CH_3$$
— $CH = CH_2 + HBr \rightarrow ?$ 

- 3)  $CH_2BrCH_2 = CH_2$
- 4)  $CH_3 CH = CH_2Br$
- 72. The empirical formula of a compound is CH<sub>2</sub>O. Its molecular weight is 180. The molecular formula of compound is :
  - 1) C<sub>4</sub>HO<sub>4</sub>
  - 2) C<sub>3</sub>H<sub>6</sub>O<sub>3</sub>
  - 3)  $C_6H_{12}O_6$
  - 4) C<sub>5</sub>H<sub>10</sub>O<sub>5</sub>
- 73. One mole of  $CH_3COOH$  and one mole of  $C_2H_5OH$  reacts to produce (2/3) mole of  $CH_3COOC_2H_5$ . The equilibrium constant is :

$$2) + 2$$

$$4) + 4$$

- 74. The general molecular formula for disaccharide is :
  - 1) C<sub>12</sub>H<sub>22</sub>O<sub>11</sub>
  - 2) C<sub>10</sub>H<sub>20</sub>O<sub>10</sub>
  - 3) C<sub>12</sub>H<sub>20</sub>O<sub>10</sub>
  - 4) C<sub>12</sub>H<sub>22</sub>O<sub>10</sub>
- 75. The correct decreasing order of basic strength is :
  - 1)  $AsH_3 > SbH_3 > PH_3 > NH_3$
  - 2)  $SbH_3 > AsH_3 > PH_3 > NH_3$
  - 3)  $NH_3 > PH_3 > AsH_3 > SbH_3$
  - 4)  $PH_3 > AsH_3 > SbH_3 > NH_3$
- 76. Benzaldehyde can be prepared by the hydrolysis of :

- 1) benzonitrile
- 2) benzotrichloride
- 3) benzyl chloride
- 4) benzal chloride
- 77. When two halogen atoms are attached to same carbon atom then it is:
  - 1) vic-dihalide
  - 2) gem-dihalide
  - 3) α-ω-halide
  - 4)  $\alpha$ - $\beta$ -halide
- 78. Internal energy does not include:
  - 1) rotational energy
  - 2) nuclear energy
  - 3) vibrational energy
  - 4) energy due to gravitational pull
- 79. Flux is used to remove:
  - 1) basic impurities
  - 2) acidic impurities
  - 3) all type of impurities
  - 4) acidic and basic both impurities
- 80. Purple of cassius is colloidal solution of :
  - 1) silver
  - 2) lead
  - 3) gold
  - 4) mercury
- 81. Gun metal is:
  - 1) Cu + Zn
  - 2) Cu + Sn + Zn
  - 3) Cu + Sn
  - 4) Zn + Sn
- 82. Chemical A is used for softening of water to remove temporary hardness. A reacts with sodium carbonates to produce caustic soda. When CO<sub>2</sub> is bubble through 'A' it turns cloudy. Chemically 'A' is:
  - 1) CaO
  - 2) CaCO<sub>3</sub>
  - 3) Ca(HCO<sub>3</sub>)<sub>2</sub>

- 4) Ca(OH)<sub>2</sub>
- 83. The transition element which shows the highest oxidation state is :
  - 1) iron
  - 2) vanadium
  - 3) manganese
  - 4) chromium
- 84. Turpentine oil can be purified by :
  - 1) steam distillation
  - 2) sublimation
  - 3) vacuum distillation
  - 4) fractional distillation
- 85. Vinegar is represented by:
  - 1) CH<sub>3</sub>COOH
  - 2) CH<sub>3</sub>CH<sub>2</sub>COOH
  - 3) HCOOH
  - 4) CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>COOH
- 86. The product obtained by treating benzene with chlorine in presence of ultraviolet light:
  - 1) CCI<sub>4</sub>
  - 2) C<sub>6</sub>H<sub>5</sub>Cl
  - 3)  $C_6H_6CI_6$
  - 4)  $C_6Cl_6$
- 87. CuSO<sub>4</sub> and KCN reacts to produce :
  - 1) CuCN<sub>2</sub>
  - 2) CuCN
  - 3) K<sub>3</sub>[Cu (CN)<sub>4</sub>]
  - 4) K<sub>4</sub>[Cu (CN)<sub>6</sub>]
- 88.  $_{13}\text{Al}^{27} + _2\text{He}^4 \rightarrow _{14}\text{Si}^{30} + _1\text{H}^1 + Q$   $_{13}\text{Al}^{27} = 26.9815$  amu and mass of  $_{14}\text{Si}^{30} = 29.9738$ ,  $_1\text{H}^1 = 1.0078$  amu  $_2\text{H}^4 = 4.0026$  amu. The Q is equal to :
  - 1) 5.437 MeV
  - 2) 7.578 MeV
  - 3) 9.328 MeV
  - 4) 2.329 MeV
- 89. Gammexane is:

| <ol> <li>They are c</li> <li>More react</li> <li>Have low b</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ollowing is not the chara-<br>ovalent<br>ive than halogens<br>o.p. and high volatility<br>able but not explosive | cteristic of interhaloge | en compounds ? |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------|----------------|
| 91. Sodium on hea<br>1) NaO<br>2) NaOH<br>3) Na <sub>2</sub> O<br>4) Na <sub>2</sub> CO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ating with moist air prod                                                                                        | uce :                    |                |
| 92. Alkynes usually 1) substitution 2) elimination 3) addition 4) replaceme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                  | action ?                 |                |
| 93. The chief ore of 1) pyrolusite 2) barunite 3) galena 4) cinnabar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | of Hg is :                                                                                                       |                          |                |
| 94. Which cannot o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | displace hydrogen from<br>2) Fe                                                                                  | its compound ?  3) Hg    | 4) Pb          |
| 95. The transport of the first | of matter in the absence                                                                                         | e of bulk flow is known  | as:            |
| 96. Hydrogen has 1) ionic bond 2) covalent bo 3) large size 4) small size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | high ionization energy t                                                                                         | han alkali metals beca   | ause it has :  |

3) DDT

1) chloral

2) BHC

4) HCB

- 97. Which shows electrical conductance?
  - 1) Sodium
  - 2) Diamond
  - 3) Potassium
  - 4) Graphite
- 98. Geometrical isomerism is possible in case of :
  - 1) tartaric acid
  - 2) 1-butene
  - 3) 2-butene
  - 4) propene
- 99. Which compound can be sulphonated easily?
  - 1) Benzene
  - 2) Toluene
  - 3) Nitrobenze
  - 4) Chlorobenzene
- 100. The natural gas mainly contains:
  - 1) methane
  - 2) propane
  - 3) butane
  - 4) pentane
- 101. If  $e = 1.60206 \times 10^{-19} \text{ C}$

$$(e/m) = 1.75875 \times 10^{11} \text{ C kg}^{-1}$$

then the mass of electron is:

- 1) 8.5678 x 10<sup>-31</sup> kg
- 2) 9.1091 x 10<sup>-31</sup> kg
- 3) 10.2531 x 10<sup>-31</sup> kg
- 4) 12.0513 x 10<sup>-31</sup> kg
- 102. Transition elements form coloured ions due to :
  - 1) d d transition
  - 2) fully filled d-orbitals
  - 3) smaller atomic radii
  - 4) availability of s-electrons
- 103. The value of  $K_p$  for the reaction  $2H_2S(g) \rightleftharpoons 2H_2(g) + S_2(g)$  is 1.2 x  $10^{-2}$  at  $1065\,^{\circ}$ C. The value of  $K_c$  is :
  - $^{1)}$  < 1.2 x  $10^{-2}$

|      | $2) > 1.2 \times 10^{-2}$                                     |                                |         |                                                         |
|------|---------------------------------------------------------------|--------------------------------|---------|---------------------------------------------------------|
|      | 3) 1.2 x 10 <sup>-2</sup>                                     |                                |         |                                                         |
|      | 4) 0.12 x 10 <sup>-2</sup>                                    |                                |         |                                                         |
| 104  | Nitrolim is :                                                 |                                |         |                                                         |
| 104. |                                                               |                                |         |                                                         |
|      | 1) CaCN <sub>2</sub>                                          |                                |         |                                                         |
|      | 2) Ca(CN) <sub>2</sub>                                        |                                |         |                                                         |
|      | 3) CaCN <sub>2</sub> + C                                      |                                |         |                                                         |
|      | 4) Ca(NO <sub>3</sub> ) <sub>2</sub>                          |                                |         |                                                         |
| 105. | Oxidation is :                                                |                                |         |                                                         |
|      | 1) gain of electrons                                          |                                |         |                                                         |
|      | 2) loss of neutrons                                           |                                |         |                                                         |
|      | 3) loss of electrons                                          |                                |         |                                                         |
|      | 4) decrease in positive                                       | e valency                      |         |                                                         |
| 106. | Which group of period                                         | dic table contain no me        | etal ?  |                                                         |
|      | 1) IA                                                         | 2) IIIA                        | 3) VIIA | 4) VIII                                                 |
| 107. | -                                                             | ume of 20 dm <sup>3</sup> . It | -       | ure of 1 atm from a volume<br>f thermal energy from its |
| 108. | Bell metal is an alloy of                                     | of:                            |         |                                                         |
|      | 1) Sn and Pb                                                  |                                |         |                                                         |
|      | 2) Cu and Pb                                                  |                                |         |                                                         |
|      | 3) Sn, Zn and Cu                                              |                                |         |                                                         |
|      |                                                               |                                |         |                                                         |
|      | 4) Sn and Cu                                                  |                                |         |                                                         |
| 109. | 4) Sn and Cu Beilstein test is used f                         | or the detection of :          |         |                                                         |
| 109. | ·                                                             | or the detection of :          |         |                                                         |
| 109. | Beilstein test is used f                                      | or the detection of :          |         |                                                         |
| 109. | Beilstein test is used f 1) N <sub>2</sub>                    | or the detection of :          |         |                                                         |
| 109. | Beilstein test is used f 1) N <sub>2</sub> 2) CO <sub>2</sub> | or the detection of :          |         |                                                         |

| 1١ | ΔΙ   |   | CO2    |  |
|----|------|---|--------|--|
| Ι, | ) AI | + | $CC_2$ |  |

2) Al + 
$$CO_2$$
 + NO

3) 
$$Al_4C_3 + NO$$

These questions consists of two statements each printed as assertion and reason. While answering these questions you are required to choose any one of the following five responses.

- A. If both assertion and reason are true and reason is a correct explanation of assertion.
- B. If both assertion and reason are true but reason is not a correct explanation of assertion.
- C. If assertion is true but reason is false.
- D. If both assertion and reason are false.
- E. If assertion is false but reason is true.
- 111. **Assertion**: Trichloroacetic acid is stronger than acetic acid.

**Reason:** Electron withdrawing substituents decrease the activity.

- 1) A
- 2) B
- 3) C
- 4) D
- 5) E
- 112. Assertion: Amines are basic in nature.

**Reason:** Presence of lone pair of electron on nitrogen atom.

- 1) A
- 2) B
- 3) C
- 4) D
- 5) E
- 113. **Assertion:** lodine is more soluble in water than in carbon tetrachloride.

**Reason**: lodine is a polar compound.

- 1) A
- 2) B
- 3) C
- 4) D
- 5) E
- 114. **Assertion**: A small amount of acid or alkali is added before electrolysis of water.

**Reason:** Pure water is weak electrolyte.

- 1) A
- 2) B
- 3) C

| 4) D                                                                                                                                      |                |
|-------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 5) E                                                                                                                                      |                |
|                                                                                                                                           |                |
| 115. <b>Assertion :</b> Wet air is heavier than dry air. <b>Reason :</b> The density of dry air is more than density of water.            |                |
|                                                                                                                                           |                |
| 1) A                                                                                                                                      |                |
| 2) B                                                                                                                                      |                |
| 3) C                                                                                                                                      |                |
| 4) D                                                                                                                                      |                |
| 5) E                                                                                                                                      |                |
| 116. <b>Assertion</b> : Atom are not electrically neutral.                                                                                |                |
| Reason: Number of protons and electrons are different.                                                                                    |                |
| 1) A                                                                                                                                      |                |
| 2) B                                                                                                                                      |                |
| 3) C                                                                                                                                      |                |
| 4) D                                                                                                                                      |                |
| 5) E                                                                                                                                      |                |
|                                                                                                                                           |                |
| 117. <b>Assertion :</b> Water is liquid but H <sub>2</sub> S is a gas.                                                                    |                |
| Reason: Oxygen is paramagnetic.                                                                                                           |                |
| 1) a                                                                                                                                      |                |
| 2) B                                                                                                                                      |                |
| 3) C                                                                                                                                      |                |
| 4) D                                                                                                                                      |                |
| 5) E                                                                                                                                      |                |
| 118. Assertion: Benzene diazonium chloride does not give tests for nitroge<br>Reason: N <sub>2</sub> gas lose takes place during heating. | en.            |
| 1) A                                                                                                                                      |                |
| 2) B                                                                                                                                      |                |
| 3) C                                                                                                                                      |                |
| 4) D                                                                                                                                      |                |
| 5) E                                                                                                                                      |                |
|                                                                                                                                           |                |
| 119. <b>Assertion :</b> We feel cold on touching the ice. <b>Reason :</b> Ice is a solid form of water.                                   |                |
|                                                                                                                                           |                |
| 1) A                                                                                                                                      |                |
| 2) B                                                                                                                                      |                |
| 3) C                                                                                                                                      |                |
| 4) D                                                                                                                                      |                |
| 5) E                                                                                                                                      |                |
| 18/31                                                                                                                                     | med.edooni.com |

| 120. Assertion: Inert gase         | ases are monoatomic.<br>es have stable configuration. |
|------------------------------------|-------------------------------------------------------|
| 1) A                               |                                                       |
| 2) B                               |                                                       |
| 3) C                               |                                                       |
| 4) D                               |                                                       |
| 5) E                               |                                                       |
|                                    | Biology                                               |
| 121. Inflorescence of Fig          | cus is :                                              |
| 1) spike                           |                                                       |
| 2) hypanthodium                    |                                                       |
| 3) raceme                          |                                                       |
| 4) verticillaster                  |                                                       |
| ,                                  |                                                       |
| 122. XO chromosomal a              | bnormality in humans cause :                          |
| 1) Turner's syndror                | ne                                                    |
| <ol><li>Down's syndrom</li></ol>   | e                                                     |
| <ol><li>Drawin's syndror</li></ol> | ne                                                    |
| 4) Klinefelter's synd              | Irome                                                 |
| 123. Which of the followi          | ng is present between cell wall of the plant cells ?  |
| 1) Lomasome                        |                                                       |
| 2) Microsome                       |                                                       |
| 3) Lysosome                        |                                                       |
| 4) Middle lamella                  |                                                       |
| 124. Heart beat increase           | es at the time of interview because :                 |
| 1) hypersecretion o                | of rennin                                             |
| 2) hyposecretion of                |                                                       |
| 3) secretion of adre               | enaline                                               |
| 4) direlic hormone                 |                                                       |
| 125. Mycorrhiza help in a          | absorption of :                                       |
| 1) calcium                         |                                                       |
| 2) nutrients                       |                                                       |
| 3) metals                          |                                                       |
| 4) none of these                   |                                                       |
| 126. Wings of pigeon, me           | osquito and bat shows :                               |

- 1) atavism
- 2) mutation
- 3) divergent evolution
- 4) convergent evolution
- 127. The vertebrae in birds are mostly:
  - 1) procoelous
  - 2) heterocoelous
  - 3) amphicoelous
  - 4) acoelous
- 128. If a homozygous tall plant is crossed with homozygous dwarf plant, the offsprings will be:
  - 1) all tall plants
  - 2) all dwarf plants
  - 3) half tall plants
  - 4) half dwarf plants
- 129. Amoebiasis is caused by:
  - 1) Entamoeba histolytica
  - 2) Taenia solium
  - 3) Plasmodium vivax
  - 4) E. coli
- 130. Water current in Leucosolenia is produced by :
  - 1) pinacocytes
  - 2) choanocytes
  - 3) archeocytes
  - 4) tenocytes
- 131. The food chain in which microbes breakdown energy rich compounds synthesized by producers is called:
  - 1) ecosystem
  - 2) parasitic food chain
  - 3) detritus level chain
  - 4) predator food chain
- 132. Anemophillous flower have:
  - 1) sessile stigma
  - 2) small, smooth stigma
  - 3) coloured and scented flowers
  - 4) large feathery stigma

| 133 | . Root cell of wheat ha the synergid cell?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s 42 chromosomes. W     | hat would be the numb   | er of chromosomes in |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------|----------------------|
|     | 1) 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2) 14                   | 3) 21                   | 4) 28                |
| 134 | <ol> <li>The extra embryonic</li> <li>trophoblast</li> <li>follicle cells</li> <li>inner cell mass</li> <li>formative cell</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | membranes of mamma      | ılian embryo are derive | d from :             |
| 135 | . Otorhinolaryngology is<br>1) brain cells<br>2) bird anatomy<br>3) locomotary organs<br>4) ENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ·                       |                         |                      |
| 136 | . Blood from which of th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ne following blood grou | p can be given to any p | atient ?             |
|     | 1) A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2) B                    | 3) O                    | 4) AB                |
| 137 | <ol> <li>Lateral root in higher</li> <li>1) cortex</li> <li>2) pericycle</li> <li>3) epidermis</li> <li>4) endodermis</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | plants arise from :     |                         |                      |
| 138 | <ol> <li>Sporogony of malaria</li> <li>liver of man</li> <li>RBCs of man</li> <li>stomach wall of model</li> <li>salivary glands of respect to the second control of the second co</li></ol> | osquito                 |                         |                      |
| 139 | <ul><li>Endodermis is part of</li><li>1) cortex</li><li>2) pericycle</li><li>3) medulla</li><li>4) epidermis</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | :                       |                         |                      |
| 140 | <ul> <li>Liver in our body store</li> <li>1) vitamin A</li> <li>2) vitamin D</li> <li>3) vitamin B<sub>12</sub></li> <li>4) all of these</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | es:                     |                         |                      |

|         | 22/31                                                                            | med.edooni.com            |
|---------|----------------------------------------------------------------------------------|---------------------------|
|         | 4) Asteroidea                                                                    |                           |
|         | 3) Crinoidea                                                                     |                           |
|         | 2) Echinoidea                                                                    |                           |
|         | 1) Ophiuroidea                                                                   |                           |
| 147.    | '. Basket star belongs to class :                                                |                           |
|         | 4) all of the above                                                              |                           |
|         | 3) grow as massive bodies                                                        |                           |
|         | 2) solitary or colonial                                                          |                           |
|         | 1) form branch colonies                                                          |                           |
| 146     | 5. The true statement regarding corals is :                                      |                           |
|         | 4) Mitochondria                                                                  |                           |
|         | 3) E.R.                                                                          |                           |
|         | <ol> <li>Dictyosome</li> <li>Cell membrane</li> </ol>                            |                           |
| 145.    | <ul> <li>Which of the following is responsible for mechanical support</li> </ul> | oon and enzyme transport? |
| 1 4 5   | : Which of the following is recognished for recoloring                           | port and anywas transport |
|         | 4) spores                                                                        |                           |
|         | 3) alternation of generation                                                     |                           |
|         | 2) gametophyte                                                                   |                           |
| . ¬r¬r. | Dryophytes do not possess :     1) vascular tissue                               |                           |
| 144     | Bryophytes do not possess :                                                      |                           |
|         | 4) murein                                                                        |                           |
|         | 3) cellulose                                                                     |                           |
|         | 2) chitin                                                                        |                           |
|         | 1) xylan                                                                         |                           |
| 143     | B. Bacterial cell wall is made up of :                                           |                           |
|         | 4) Pancreas                                                                      |                           |
|         | 3) Thymus                                                                        |                           |
|         | 2) Thyroid                                                                       |                           |
|         | 1) Adrenal                                                                       |                           |
| 142     | 2. Which gland plays key role in metamorphosis of frog?                          |                           |
|         | 4) gamete                                                                        |                           |
|         | 3) saprophyte                                                                    |                           |
|         | 2) sporophyte                                                                    |                           |
|         | 1) gametophyte                                                                   |                           |
| 171.    | . The neart snaped Fern protnalius is :                                          |                           |

| 148. | High energy bond of A          | ATP are between :           |                           |               |
|------|--------------------------------|-----------------------------|---------------------------|---------------|
|      | 1) C – C                       |                             |                           |               |
|      | 2) C – O                       |                             |                           |               |
|      | 3) C – N                       |                             |                           |               |
|      | 4) O – P                       |                             |                           |               |
|      |                                |                             |                           |               |
| 149. | Conn's disease is cau          | sed by the over secret      | ion of :                  |               |
|      | 1) ADH                         |                             |                           |               |
|      | 2) ACTH                        |                             |                           |               |
|      | 3) Oxytocin                    |                             |                           |               |
|      | 4) Aldosterone                 |                             |                           |               |
| 150. | The function of rennin         | is:                         |                           |               |
|      | 1) vasodiation                 |                             |                           |               |
|      | 2) reduce blood press          | sure                        |                           |               |
|      | 3) degradation of ang          | iotensinogen                |                           |               |
|      | 4) none of the above           |                             |                           |               |
| 151. | Female gametophyte             | of angiosperm is:           |                           |               |
|      | 1) 7 celled                    |                             |                           |               |
|      | 2) 8 celled                    |                             |                           |               |
|      | 3) 11 celled                   |                             |                           |               |
|      | 4) 5 celled                    |                             |                           |               |
| 152. | In <i>Dryopteris</i> , the ope | ning mechanism of spo       | orangium is effectively c | pperated by : |
|      | 1) stalk                       |                             |                           |               |
|      | 2) stomium                     |                             |                           |               |
|      | 3) annulus                     |                             |                           |               |
|      | 4) peristome                   |                             |                           |               |
| 153. | Inflammatory respons           | e, in allergy is caused     | by the release of :       |               |
|      | 1) antigen                     |                             |                           |               |
|      | 2) histone                     |                             |                           |               |
|      | 3) histamines                  |                             |                           |               |
|      | 4) antibodies                  |                             |                           |               |
| 154. | The plant hormone co           | ontrolling fruit ripening i | s:                        |               |
|      | 1) IAA                         | 2) GA                       | 3) KN                     | 4) Ethylene   |
| 155. | Which is the example           | of conditioned reflex ?     |                           |               |

|      | 24/31                                                                   | med.edooni.com |
|------|-------------------------------------------------------------------------|----------------|
| 162. | The correct sequence in cell cycle is :                                 |                |
|      | 4) Right auricle                                                        |                |
|      | 3) Right ventricle                                                      |                |
|      | 2) Left ventricle                                                       |                |
|      | 1) Left auricle                                                         |                |
| 161. | Which of the following chamber of heart has the thickest muscular wall? |                |
|      | 4) Summer                                                               |                |
|      | 3) Kuhne                                                                |                |
|      | 2) Buchner                                                              |                |
|      | 1) Pasteur                                                              |                |
| 160. | Who coined the term zymase ?                                            |                |
|      | 4) All of these                                                         |                |
|      | 3) Progesterone                                                         |                |
|      | 2) Estrogen                                                             |                |
|      | 1) Epinephrine                                                          |                |
| 159. | Which is the derivative of amino acid?                                  |                |
|      | 4) CO <sub>2</sub>                                                      |                |
|      | 3) NH <sub>3</sub>                                                      |                |
|      | 2) Uric acid                                                            |                |
|      | 1) Urea                                                                 |                |
| 158. | The end product of Ornithine cycle is :                                 |                |
|      | 4) progressive                                                          |                |
|      | 3) phylogenetic                                                         |                |
|      | 2) artificial                                                           |                |
|      | 1) natural                                                              |                |
| 157. | Linnaeus system of classification is :                                  |                |
|      | 4) Schistosoma                                                          |                |
|      | 3) Wuchereria                                                           |                |
|      | 2) Plasmodium                                                           |                |
|      | 1) Entamoeba                                                            |                |
| 156. | Which is the example of Platyhelminthes ?                               |                |
|      | 4) Digestion food goes forward in alimentary canal                      |                |
|      | 3) Your kneeing took up a stone then dog runs away                      |                |

Eye closed when anything enter into it
 Hand took up when piercing with needle

- 1) S G<sub>1</sub> G<sub>2</sub> M
- 2) S M G<sub>1</sub> G<sub>2</sub>
- 3) G<sub>1</sub> S G<sub>2</sub> M
- 4) M<sub>1</sub> G<sub>1</sub> G<sub>2</sub> S
- 163. Paired spermathecae occur in Pheretima in which of the following segments?
  - 1) 4, 5, 6, 7
  - 2) 6, 7, 8
  - 3) 6, 7, 8, 9
  - 4) 3, 4, 5, 6
- 164. Which of the following induces dormancy?
  - 1) Auxin
  - 2) Cytokinin
  - 3) Both (1) and (2)
  - 4) Abscisic acid
- 165. Cork cambium is a:
  - 1) lateral meristem
  - 2) apical meristem
  - 3) intercalary meristem
  - 4) primitive meristem
- 166. Acrosome of sperm is formed by :
  - 1) nucleus
  - 2) Golgi bodies
  - 3) lysosome
  - 4) ER
- 167. Crop rotation is used to increase:
  - 1) soil fertility
  - 2) pore size and soil particle
  - 3) organic content of soil
  - 4) viscosity of soil water
- 168. Obligate parasites live:
  - 1) on living host only
  - 2) on living host and dead organic matter
  - 3) on dead organic matter only
  - 4) on artificial liquid medium

| 169. Cumulus covers :                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1) ovary                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2) ovum                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3) embryo                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4) sperm                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 170. Weberian ossicles are found in :                                                                                                                                                                                                                                                                                                                                                                                              |
| 1) frog                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2) snakes                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3) fishes                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4) birds                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1) 51143                                                                                                                                                                                                                                                                                                                                                                                                                           |
| The questions consist of two statements each, printed as Assertion and Reason. While answering these questions your are required to choose any one of the following five responses.  A. If both the Assertion and the Reason are true and the Reason is a correct explanation of the Assertion.                                                                                                                                    |
| <ul><li>B. If both the Assertion and the Reason are true but the Reason is not a correct explanation of the Assertion.</li><li>C. If the Assertion is true but the Reason is false.</li><li>D. If both the Assertion and the Reason are false.</li><li>E. If the Assertion is false but the Reason is true.</li></ul>                                                                                                              |
| 171. <b>Assertion</b> : Transmission of nerve impulse across a synapse is accomplished by                                                                                                                                                                                                                                                                                                                                          |
| Tr. Adderson : Transmission of herve impalse deress a synapse is accomplished by                                                                                                                                                                                                                                                                                                                                                   |
| neurotransmitters. <b>Reason:</b> Transmission across a synapse usually required neurotransmitter because there is a small space, <i>i. e.</i> , synaptic cleft, that separates one neuron from another.                                                                                                                                                                                                                           |
| <b>Reason:</b> Transmission across a synapse usually required neurotransmitter because there is a small space, $i. e.$ , synaptic cleft, that separates one neuron from another.                                                                                                                                                                                                                                                   |
| Reason: Transmission across a synapse usually required neurotransmitter because                                                                                                                                                                                                                                                                                                                                                    |
| <b>Reason:</b> Transmission across a synapse usually required neurotransmitter because there is a small space, <i>i. e.</i> , synaptic cleft, that separates one neuron from another.  1) A                                                                                                                                                                                                                                        |
| <b>Reason:</b> Transmission across a synapse usually required neurotransmitter because there is a small space, <i>i. e.</i> , synaptic cleft, that separates one neuron from another.  1) A 2) B                                                                                                                                                                                                                                   |
| <b>Reason :</b> Transmission across a synapse usually required neurotransmitter because there is a small space, <i>i. e.</i> , synaptic cleft, that separates one neuron from another.  1) A 2) B 3) C                                                                                                                                                                                                                             |
| Reason: Transmission across a synapse usually required neurotransmitter because there is a small space, <i>i. e.</i> , synaptic cleft, that separates one neuron from another.  1) A 2) B 3) C 4) D 5) E  172. Assertion: Enzymes have active sites and substrates reactive sites on their surfaces                                                                                                                                |
| Reason: Transmission across a synapse usually required neurotransmitter because there is a small space, <i>i. e.</i> , synaptic cleft, that separates one neuron from another.  1) A 2) B 3) C 4) D 5) E                                                                                                                                                                                                                           |
| Reason: Transmission across a synapse usually required neurotransmitter because there is a small space, <i>i. e.</i> , synaptic cleft, that separates one neuron from another.  1) A 2) B 3) C 4) D 5) E  172. Assertion: Enzymes have active sites and substrates reactive sites on their surfaces respectively.  Reason: Active and reactive sites push the enzyme and substrate molecules away from                             |
| Reason: Transmission across a synapse usually required neurotransmitter because there is a small space, <i>i. e.</i> , synaptic cleft, that separates one neuron from another.  1) A 2) B 3) C 4) D 5) E  172. Assertion: Enzymes have active sites and substrates reactive sites on their surfaces respectively.  Reason: Active and reactive sites push the enzyme and substrate molecules away from each other.                 |
| Reason: Transmission across a synapse usually required neurotransmitter because there is a small space, <i>i. e.</i> , synaptic cleft, that separates one neuron from another.  1) A 2) B 3) C 4) D 5) E  172. Assertion: Enzymes have active sites and substrates reactive sites on their surfaces respectively.  Reason: Active and reactive sites push the enzyme and substrate molecules away from each other.  1) A           |
| Reason: Transmission across a synapse usually required neurotransmitter because there is a small space, <i>i. e.</i> , synaptic cleft, that separates one neuron from another.  1) A 2) B 3) C 4) D 5) E  172. Assertion: Enzymes have active sites and substrates reactive sites on their surfaces respectively.  Reason: Active and reactive sites push the enzyme and substrate molecules away from each other.  1) A 2) B      |
| Reason: Transmission across a synapse usually required neurotransmitter because there is a small space, <i>i. e.</i> , synaptic cleft, that separates one neuron from another.  1) A 2) B 3) C 4) D 5) E  172. Assertion: Enzymes have active sites and substrates reactive sites on their surfaces respectively.  Reason: Active and reactive sites push the enzyme and substrate molecules away from each other.  1) A 2) B 3) C |

**Reason:** Due to this fact, it can initiate excitory wave at the highest rate.

|      | 1) A                                                                               |
|------|------------------------------------------------------------------------------------|
|      | 2) B                                                                               |
|      | 3) C                                                                               |
|      | 4) D                                                                               |
|      | 5) E                                                                               |
|      |                                                                                    |
| 174. | Assertion: The genetic complement of an organism is called genotype.               |
|      | <b>Reason:</b> Genotype has the type of hereditary properties of an organism.      |
|      | 1) A                                                                               |
|      | 2) B                                                                               |
|      | 3) C                                                                               |
|      | 4) D                                                                               |
|      | 5) E                                                                               |
|      |                                                                                    |
| 175. | Assertion: Mitochondria help in photosynthesis.                                    |
|      | Reason: Mitochondria have enzymes for dark reaction.                               |
|      | 1) A                                                                               |
|      | 2) B                                                                               |
|      | 3) C                                                                               |
|      | 4) D                                                                               |
|      | 5) E                                                                               |
|      |                                                                                    |
| 176. | Assertion: Birds have one ovary.                                                   |
|      | Reason: This reduces the body weight for flight.                                   |
|      | 1) A                                                                               |
|      | 2) B                                                                               |
|      | 3) C                                                                               |
|      | 4) D                                                                               |
|      | 5) E                                                                               |
|      |                                                                                    |
| 177. | Assertion: In hemianatropous ovule, the funicle lies parallel to body of ovule.    |
|      | <b>Reason</b> : Here, body of ovule has rotated by 90°.                            |
|      | 1) A                                                                               |
|      | 2) B                                                                               |
|      | 3) C                                                                               |
|      | 4) D                                                                               |
|      | 5) E                                                                               |
|      |                                                                                    |
| 178. | Assertion: Light is very important factor in transpiration.                        |
|      | Reason: It induces stomatal opening and darkness closing. Therefore, transpiration |
|      | increases in light and decreases in dark.                                          |
|      | 1) A                                                                               |
|      | 07/04                                                                              |

| 2) B                                                                                                                            |                                    |
|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| 3) C                                                                                                                            |                                    |
| 4) D                                                                                                                            |                                    |
| 5) E                                                                                                                            |                                    |
| 179. <b>Assertion</b> : Waxy and cutin coating on plant parts reduce <b>Reason</b> : These adaptation are found in xerophytes.  | e the transpiration.               |
| 1) A                                                                                                                            |                                    |
| 2) B                                                                                                                            |                                    |
| 3) C                                                                                                                            |                                    |
| 4) D                                                                                                                            |                                    |
| 5) E                                                                                                                            |                                    |
| 180. <b>Assertion</b> : Higher plants have meristematic region for in <b>Reason</b> : Higher plants have root and shoot apices. | ndefinite growth.                  |
| 1) A                                                                                                                            |                                    |
| 2) B                                                                                                                            |                                    |
| 3) C                                                                                                                            |                                    |
| 4) D                                                                                                                            |                                    |
| 5) E                                                                                                                            |                                    |
| General Knowledge                                                                                                               |                                    |
| 181. Which one of the following pair is incorrect?                                                                              |                                    |
| 1) Kapil—Cricket                                                                                                                |                                    |
| 2) M.F. Husain—Actor                                                                                                            |                                    |
| 3) Abul Fazal—Author                                                                                                            |                                    |
| 4) Feroz Gandhi—Politics                                                                                                        |                                    |
| 182. Hirakud dam is constructed on which of the following rive                                                                  | r ?                                |
| 1) Mahanadi                                                                                                                     |                                    |
| 2) Ganga                                                                                                                        |                                    |
| 3) Yamuna                                                                                                                       |                                    |
| 4) Kosi                                                                                                                         |                                    |
| 183. Nobel Prize for physiology and medicine for the year 199                                                                   | 8 was given for the discovery of : |
| 1) Prion                                                                                                                        |                                    |
| 2) Viagra                                                                                                                       |                                    |
| 3) Streptomycin                                                                                                                 |                                    |
| 4) Invading germs                                                                                                               |                                    |
| 184. Which one of the following country is not the member of                                                                    | SAARC ?                            |
| 1) Maldeiv                                                                                                                      |                                    |
| 28/31                                                                                                                           | med.edooni.con                     |

|      | <ul><li>2) Bangladesh</li><li>3) Nepal</li><li>4) Myanmar</li></ul>                                                 |                          |                        |      |
|------|---------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------|------|
| 185. | The person who served<br>1) Radha Krishnan<br>2) Dr. Rajendra Prasad<br>3) Zakir Hussain<br>4) V.V. Giri            |                          | ndia twice, was :      |      |
| 186. | Which one of the follow  1) Argemone maxicana  2) Brassica oleracea  3) Oenothera lamarckia  4) Brassica campestris | ana                      | the disease 'dropsy' ? |      |
| 187. | Which of the following (1) Akash 2) Prithvi 3) Pinaka 4) Both (2) and (3)                                           | missile of India has the | e longest range ?      |      |
| 188. | Ecology is the branch of 1) cell structure 2) soils surface 3) balance of nature 4) human anatomy                   | of science which deals   | with:                  |      |
| 189. | How many countries ac                                                                                               | dopted Euro currency     | ?                      |      |
|      | 1) 12                                                                                                               | 2) 6                     | 3) 9                   | 4) 8 |
| 190. | President of India gives 1) Chief Justice 2) Parliament 3) Vice President 4) Prime Minister                         | s his resignation to the | :                      |      |
| 191. | The disease rheumatis 1) legs 2) ears 3) lungs 4) joints                                                            | m effects :              |                        |      |

| 192. Grand prix is a term associated with :                                         |
|-------------------------------------------------------------------------------------|
| 1) Chess                                                                            |
| 2) Table tennis                                                                     |
| 3) Hockey                                                                           |
| 4) Badminton                                                                        |
| 193. The great poetry 'Madhushala' was composed by :                                |
| 1) Mulk Raj Anand                                                                   |
| 2) Harivansh Rai Bachchan                                                           |
| 3) Mahadevi Verma                                                                   |
| 4) Surender Sharma                                                                  |
| 194. Hari Prasad Chaurasia is related to which of the following musical instrument? |
| 1) Tabla                                                                            |
| 2) Flute                                                                            |
| 3) Violin                                                                           |
| 4) Santoor                                                                          |
| 195. Which one of the following is the cave temple in India?                        |
| 1) Parasnath                                                                        |
| 2) Ajanta                                                                           |
| 3) Parli                                                                            |
| 4) Tuljapur                                                                         |
| 196. Seoul is the capital of :                                                      |
| 1) Japan                                                                            |
| 2) South Korea                                                                      |
| 3) Afganistan                                                                       |
| 4) Philippines                                                                      |
| 197. Fundamental duties were introduced in the constitution by :                    |
| 1) 42nd amendment                                                                   |
| 2) 40th amendment                                                                   |
| 3) 48th amendment                                                                   |
| 4) 53rd amendment                                                                   |
| 198. The Fifth Pay commission was headed by justice :                               |
| 1) Pandiyan                                                                         |
| 2) Ahmadi                                                                           |
| 3) Anand                                                                            |
| 4) Vadhwa                                                                           |

30/31

med.edooni.com

| 199. Which of the following vitamin is required in bone formation? |      |      |      |  |
|--------------------------------------------------------------------|------|------|------|--|
| 1) D                                                               | 2) B | 3) C | 4) A |  |

200. Present speaker in 12th Lok Sabha is :

- 1) G.M.C. Balyogi
- 2) Nazma Haptullah
- 3) P.A. Sangama
- 4) Murali Manohar Joshi

# Answer Key

| 1) 1   | 2) 3   | 3) 4   | 4) 2   | 5) 1,3 | 6) 4   | 7) 4   | 8) 1   | 9) 4   | 10) 4  |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 11) 4  | 12) 1  | 13) 1  | 14) 1  | 15) 2  | 16) 1  | 17) 4  | 18) 1  | 19) 4  | 20) 3  |
| 21) 2  | 22) 1  | 23) 4  | 24) 2  | 25) 3  | 26) 3  | 27) 1  | 28) 1  | 29) 1  | 30) 4  |
| 31) 3  | 32) 2  | 33) 3  | 34) 2  | 35) 4  | 36) 2  | 37) 3  | 38) 1  | 39) 2  | 40) 1  |
| 41) 2  | 42) 3  | 43) 4  | 44) 3  | 45) 4  | 46) 2  | 47) 1  | 48) 1  | 49) 2  | 50) 3  |
| 51) 1  | 52) 3  | 53) 2  | 54) 5  | 55) 1  | 56) 1  | 57) 1  | 58) 5  | 59) 3  | 60) 4  |
| 61) 3  | 62) 4  | 63) 3  | 64) 1  | 65) 3  | 66) 3  | 67) 1  | 68) 2  | 69) 4  | 70) 4  |
| 71) 2  | 72) 3  | 73) 4  | 74) 1  | 75) 3  | 76) 4  | 77) 2  | 78) 4  | 79) 4  | 80) 3  |
| 81) 2  | 82) 4  | 83) 3  | 84) 1  | 85) 1  | 86) 3  | 87) 3  | 88) 4  | 89) 2  | 90) 3  |
| 91) 2  | 92) 3  | 93) 4  | 94) 3  | 95) 1  | 96) 4  | 97) 4  | 98) 3  | 99) 2  | 100) 1 |
| 101) 2 | 102) 1 | 103) 1 | 104) 3 | 105) 3 | 106) 3 | 107) 3 | 108) 4 | 109) 4 | 110) 4 |
| 111) 3 | 112) 1 | 113) 4 | 114) 1 | 115) 5 | 116) 4 | 117) 2 | 118) 1 | 119) 2 | 120) 1 |
| 121) 2 | 122) 1 | 123) 4 | 124) 3 | 125) 1 | 126) 4 | 127) 2 | 128) 1 | 129) 1 | 130) 2 |
| 131) 3 | 132) 4 | 133) 3 | 134) 1 | 135) 4 | 136) 3 | 137) 2 | 138) 3 | 139) 1 | 140) 4 |
| 141) 1 | 142) 2 | 143) 4 | 144) 1 | 145) 3 | 146) 4 | 147) 1 | 148) 4 | 149) 4 | 150) 3 |
| 151) 1 | 152) 2 | 153) 3 | 154) 4 | 155) 3 | 156) 4 | 157) 2 | 158) 1 | 159) 1 | 160) 2 |
| 161) 2 | 162) 3 | 163) 3 | 164) 4 | 165) 1 | 166) 2 | 167) 1 | 168) 1 | 169) 2 | 170) 3 |
| 171) 1 | 172) 3 | 173) 5 | 174) 1 | 175) 4 | 176) 1 | 177) 5 | 178) 1 | 179) 1 | 180) 1 |
| 181) 2 | 182) 1 | 183) 2 | 184) 4 | 185) 2 | 186) 1 | 187) 2 | 188) 3 | 189) 1 | 190) 3 |
| 191) 4 | 192) 1 | 193) 2 | 194) 2 | 195) 2 | 196) 2 | 197) 1 | 198) 1 | 199) 1 | 200) 1 |