

Answer (3)

Hints :

$$g' = g \frac{R^2}{(R+h)^2}$$
 or $a = \frac{v^2}{r}$

3. A rope of mass 0.1 kg is connected at the same height of two opposite walls. It is allowed to hang under its own weight. At the contact point between the rope and the wall, the rope makes an angle θ = 10° with respect to horizontal. The tension in the rope at its midpoint between the walls is

Answer (3)		
(3) 2.82 N	(4)	2.71 N
(1) 2.78 N	(2)	2.56 N

Aakash Institute - Regd. Office: Aakash Tower, Plot No. 4, Sector-11, MLU, Dwarka, New Delhi-75 Ph. : 011-47623456 Fax: 011-25084124

DUMET-2009 (Answers) : Series-43

DUM	ET-2009 (Answers) : Series-43		Aakash Institute
6.	Top of the stratosphere has an electric field E (in $\boldsymbol{\upsilon}$	inits (of V/m) nearly equal to
	(1) 0	(2)	10
	(3) 100	(4)	1000
Ans	swer (3)		
7.	The surface charge density (in C/m ²) of the earth is	s abc	but
	(1) 10 ⁻⁹	(2)	-10 ⁹
	(3) 10 ⁹	(4)	-10 ⁻⁹
Ans	swer (4)		
8.	Gauss's law is valid for		
	(1) Any closed surface	(2)	Only regular closed surfaces
	(3) Any open surfaces	(4)	Only irregular open surfaces
Ans	swer (1)		
9.	One of the following is not a property of field lines		
	(1) Field lines are continuous curves without any b	oreak	s
	(2) Two field lines cannot cross each other		
	(3) Field lines start at positive charges and end at	nega	ative charges
	(4) They form closed loops		
Ans	swer (4)		
10.	Nichrome or Manganin is widely used in wire boun	d sta	ndard resistors because of their
	(1) Temperature independent resistivity		
	(2) Very weakly temperature dependent resistivity		
	(3) Strong dependence of resistivity with temperatu	ire	
	(4) Mechanical strength		
Ans	swer (2)		
11.	A galvanometer coil has a resistance of 10 Ω and The shunt resistance required to convert the galvar	the n	neter shows full scale deflection for a current of 1mA. ter into an ammeter of range 0-100mA is about
	(1) 10 Ω	(2)	1 Ω
	(3) 0.1 Ω	(4)	0.01 Ω
Ans	swer (3)		
Hint	ts :		
	$S(I - I_g) = GI_g$		
	$S = \frac{GI_9}{(I - I_9)} = 10 \times \frac{1}{99} \approx 0.1\Omega$		

13. A long straight wire of a circular cross-section (radius *a*) carries a steady current *I* and the current *I* is uniformly distributed across this cross-section. Which of the following plots represents the variation of magnitude of magnetic field *B* with distance *r* from the centre of the wire?

Aaka	sh Institute		DUMET-2009 (Answers) : Series-43
17.	An a.c. voltage is applied to a be	pure inductor <i>L</i> , drives a c	current in the inductor. The current in the inductor would
	(1) Ahead of the voltage by	$\frac{\pi}{2}$ (2)	Lagging the voltage by $\frac{\pi}{2}$
	(3) Ahead of the voltage by	$\frac{\pi}{4}$ (4)	Lagging the voltage by $\frac{3\pi}{4}$
Ans	swer (2)		
18.	The radiation pressure (in N/r	n ²) of the visible light is of	the order of
	(1) 10 ⁻²	(2)	10-4
	(3) 10 ⁻⁶	(4)	10 ⁻⁸
Ans	swer (3)		
19.	The critical angle for total inte	rnal reflection in diamond	is 24.5°. The refractive index of the diamond is
	(1) 2.41	(2)	1.41
	(3) 2.59	(4)	1.59
Ans	swer (1)		
Hint	ts :		
	$i_c = \sin^{-1}\left(\frac{1}{\mu}\right)$		
20.	When a glass lens with $n = 7$ the trough could be	1.47 is immersed in a trou	ugh of liquid, it looks to be disappeared. The liquid in
	(1) Water	(2)	Kerosene
	(3) Glycerin	(4)	Alcohol
Ans	swer (3)		
21.	In Young's double slit experir is the fringe separation when	nent, two slits are made 5 light of wavelength 500 nr	5 mm apart and the screen is placed 2 m away. What m is used?
	(1) 0.002 mm	(2)	0.02 mm
	(3) 0.2 mm	(4)	2 mm
Ans	swer (3)		
Hint	ts :		
	$\beta = \frac{\lambda D}{d}$	λ = 5 × 10 ⁻⁷ m	
		<i>D</i> = 2 m	
	So β = 0.2 × 10 ⁻³ m	$d = 5 \times 10^{-3} \mathrm{m}$	

DOM	E1-2009 (Answers) : Series-43		
22.	For what distance is ray optics a go 500 nm?	ood approximation w	hen the aperture is 4 mm wide and the wavelength is
	(1) 32 m	(2)	64 m
	(3) 16 m	(4)	8 m
Ans	swer (1)		
Hin	ts :		
	$Z_{F} = \frac{a^{2}}{a}$ $a =$	4 × 10 ⁻³	
	$\lambda = \lambda$	5 × 10 ⁻⁷	
		0 10	
	$=\frac{16\times10^{-5}}{5\times10^{-7}}$		
	= 32 m		
23	Which of the following metal thermi	onically emit an elec	tron at a relatively lowest temperature among them?
20.	(1) Platinum		
	(1) Flathan	(2)	Molybdonum
A 10 0		(4)	Molybdendin
Ans 24	Among the following four spectral r	egions the photon h	as the highest energy in
27.	(1) Infrared		Violet
	(1) Initialeu	(2)	
A 10 0		(4)	Diue
Ans	swer (2)		
25.	Which of these particles (having the	e same kinetic energ	y) has the largest de Broglie wavelength?
	(1) Electron	(2)	Alpha particle
	(3) Proton	(4)	Neutron
Ans	swer (1)		
26.	The radius of an electron orbit in a	hydrogen atom is of	the order of
	(1) 10 ⁻⁸ m	(2)	10 ⁻⁹ m
	(3) 10 ⁻¹¹ m	(4)	10 ⁻¹³ m
Ans	swer (3)		
27.	The size of nucleus of an atom of n	mass number A is pro	oportional to
	(1) A ^{3/4}	(2)	A ^{2/3}
	(3) A ^{1/3}	(4)	A ^{5/3}
Ans	swer (3)		

Aaka	sh Institute		DUMET-2009 (Answers) : Series-43
28.	A radioactive isotope has a half-life of 2 years. How value?	w lon	g will it take the activity to reduce to 3% of its original
	(1) 4.8 years	(2)	7 years
	(3) 10 years	(4)	9.6 years
Ans	wer (3)		
Hin	is :		
	3% is nearly equal $\left(\frac{1}{2}\right)^5$		
	so it will take 5 half lives		
29.	A p-n photodiode is fabricated from a semicono wavelengths it can detect?	ducto	r with band gap of 2.8 eV. Which of the following
	(1) 950 nm	(2)	820 nm
	(3) 580 nm	(4)	440 nm
Ans	swer (4)		
Hin	is :		
	$\lambda = \frac{1240}{2.8}$ nm = 442 nm		
30.	An <i>n-p-n</i> transistor having a.c. current gain of 50 What will be the voltage gain of the amplifier?	is to	be used to make an amplifier of power gain of 300.
	(1) 8.5	(2)	6
	(3) 4	(4)	3
Ans	swer (2)		
Hin	is :		
	Power gain = Voltage gain × Current gain		
31.	A water molecule has an electric dipole moment 6 meter between the centre of positive and negative	.4 × char	10^{-30} C.m. when it is in vapour state. The distance in ge of the molecule is
	(1) 4×10^{-10}	(2)	4 × 10 ⁻¹¹
	(3) 4×10^{-12}	(4)	4 × 10 ⁻¹³
Ans	swer (2)		
32.	The radius of the rear wheel of bicycle is twice that speed of the rear wheel compared to that of the fro	of the	e front wheel. When the bicycle is moving, the angular
	(1) Greater	(2)	Smaller
	(3) Same	(4)	Exact double
Ans	swer (2)		

DUMET-2009 (Answers) : Series-43

39.	On the centre of frictionless table a small hole is made, through which a weightless string of length $2I$ is inserted. On the two ends of the string two balls of the same mass <i>m</i> are attached. Arrangement is made in such a way that half of the string is on the table top and half is hanging below. The ball on the table top is made to move in a circular path with a constant speed <i>V</i> . What is the centripetal acceleration of the moving ball?		
	(1) <i>mVI</i>	(2)	g
	(3) Zero	(4)	2mVI
Ans	wer (2)		
Llint			
пш	5.		
	For ball on the table, $\frac{mv^2}{l} = T$		
	and for hanging ball, $T = mg$		
	v^2		
	So $\frac{v}{l} = g$		
40.	Tom and Dick are running forward with the same s constant speed V as seen by the thrower. Accordin is	speed g to 3	d. They are throwing a rubber ball to each other at a Sam who is standing on the ground the speed of ball
	(1) Same as V	(2)	Greater than V
	(3) Less than V	(4)	None of these
Ans	wer (2)		
41.	A ball moves in a frictionless inclined table without is	t slipp	ping. The work done by the table surface on the ball
	(1) Positive	(2)	Negative
	(3) Zero	(4)	None of these
Ans	wer (3)		
42.	A synchronous satellite goes around the earth once is satellite in terms of the earth's radius? (Given mas $r_e = 6.37 \times 10^6$ m, Universal constant of gravitation	n eve ss of , G =	ery 24 h. What is the radius of orbit of the synchronous the earth, $m_e = 5.98 \times 10^{24}$ kg, radius of the earth, = 6.67 × 10 ⁻¹¹ N.m ² /kg ²)
	(1) 2.4 r _e	(2)	3.6 r _e
	(3) 4.8 r _e	(4)	6.6 r _e
Ans	wer (4)		
43.	Two cylinders of equal size are filled with equal are cylinders are fitted with pistons. In cylinder <i>A</i> the pist When same amount of heat is supplied to both the by 20°K. What will be the rise in temperature of the	tount ston i cylir e gas	of ideal diatomic gas at room temperature. Both the is free to move, while in cylinder <i>B</i> the piston is fixed. Inders, the temperature of the gas in cylinder <i>A</i> raises in cylinder <i>B</i> ?
	(1) 28°K	(2)	20°K
	(3) 15°K	(4)	10°K
Ans	wer (1)		

(11)

Aakash Institute DUMET-2009 (Answers) : Series-43 Hints : For gas in cylinder A, $Q = nC_P \Delta T_1$ $Q = n C_V \Delta T_2$ So, $\Delta T_2 = \frac{C_P}{C_V} \Delta T_1$ $=\frac{7}{5} \times 20 = 28 \text{ K}$ 44. An ideal gas is made to go through a cyclic thermodynamical process in four steps. The amount of heat involved are $Q_1 = 600$ J, $Q_2 = -400$ J, $Q_3 = -300$ J and $Q_4 = 200$ J respectively. The corresponding work involved are $W_1 = 300$ J, $W_2 = -200$ J, $W_3 = -150$ J and W_4 . What is the value of W_4 ? (1) -50 J (2) 100 J (3) 150 J (4) 50 J Answer (3) Hints : $Q = \Delta U + W$ and $\Delta U = 0$ $Q = Q_1 + Q_2 + Q_3 + Q_4 = 100$ $W = W_1 + W_2 + W_3 + W_4 = -50 + W_4$ $W_{4} = 150 \text{ J}$ 45. The angle subtended by a coin of radius 1 cm held at a distance of 80 cm from your eyes is (1) 1.43° 0.72° (2)(3) 0.0125° (4) 0.025° Answer (1) Hints : $\theta = \frac{2r}{r}$ 46. The three initial and final position of a man on the x-axis are given as (i) (-8 m, 7 m) (ii) (7 m, -3 m) (iii) (-7 m, 3 m) Which pair gives the negative displacement? (1) (i) (2) (ii) (3) (iii) (4) (i) and (iii) Answer (2)

DUMET-2009 (Answers) : Series-43

47. A bird flies from (-3 m, 4 m, -3 m) to (7 m, -2 m, -3 m) in xyz coordinates. The bird's displacement in unit vectors is given by

(1)
$$(4i + 2j - 6k)$$
(2) $(10i + 6j)$ (3) $(4i - 2j)$ (4) $(10i + 6j - 6k)$

Answer (*)

Note: The correct answer is (10i – 6j). There is misprint in the choice.

Hints :

 $\vec{r}_i = -3\hat{i} + 4\hat{j} - 3\hat{k}$ $\vec{r}_f = 7\hat{i} - 2\hat{j} - 3\hat{k}$

So, displacement vector $(\vec{r}_f - \vec{r}_i) = 10\hat{i} - 6\hat{j}$

48. A coastguard ship locates a pirate ship at a distance 560 m. It fires a cannon ball with an initial speed 82 m/s. At what angle from horizontal the ball must be fired so that it hits the pirate ship?

	(1) 54°	(2)	125°
	(3) 27°	(4)	18°
Ans	wer (3)		
Hint	s :		
	$R = \frac{u^2 \sin 2\theta}{g}$		
	$\Rightarrow 2\theta = 53.8$		
	$\Rightarrow \theta \approx 27^{\circ}$		
49.	An object moves at a constant speed along a circ	ular p	bath in a horizontal XY plane, with the centre at the
	origin. When the object is at $x = -2$ m, its velocity is $y = 2$ m?	y is –	(4 m/s) \hat{j} . What is the object's acceleration when it
	(1) $-(8 \text{ m/s}^2)\hat{j}$	(2)	$-(8 \text{ m/s}^2)\hat{i}$
	(3) $(-4 \text{ m/s}^2)\hat{j}$	(4)	$(4 \text{ m/s}^2)\hat{i}$
Ans	wer (1)		
Hint	s :		
	$a = \frac{u^2}{r} = 8 \text{ m/s}^2$ toward centre of the circle		
50.	A block is lying static on the floor. The maximum horizontal force of 8 N is applied to the block, what	value t will b	e of static frictional force on the block is 10 N. If a be the frictional force on the block?
	(1) 2 N	(2)	18 N
	(3) 8 N	(4)	10 N
Ans	wer (3)		

Aaka	sh Institute		DUMET-2009 (Answers) : Series-43
	[CH	EMIS	TRY]
51.	Chlorobenzene is? reactive than	benzen	ne towards electrophilic substitution and directs the
	incoming electrophile to the?	ion.	
	(1) More, ortho/para	(2)	Less, ortho/para
	(3) More, meta	(4)	Less, meta
Ans	swer (2)		
52.	When acetyl chloride reacts with sodium propion	ate, the	e product formed is
	(1) Acetic anhydride	(2)	Acetic propionic anhydride
	(3) <i>n</i> -propyl acetate	(4)	Pent-2, 4-dione
Ans	swer (2)		
53.	In the reaction below, X is		
	$C_6H_5MgBr + CH_3OH \rightarrow X$		
	(1) C ₆ H ₆	(2)	C ₆ H₅OH
	(3) C ₆ H ₅ OCH ₃	(4)	СН ₃ СООН
Ans	swer (1)		
54.	Which of the following compounds will show geo	metric i	somerism?
	(1) Cyclohexene	(2)	2-hexene
_	(3) 3-hexyne	(4)	1, 1-diphenyl ethylene
Ans	swer (2)		
55.	Which of the following reactions involves carbon-	carbon k	bond formation?
	(1) Reimer-Tiemann reaction	(2)	Hydroboration-oxydation
I	(3) Cannizzaro reaction	(4)	Reaction of primary alcohols with PCC
Ans	swer (1)		
56.	Aldol condensation does not occur between		
	(1) Two different aldehydes	(2)	Two different ketones
_	(3) An aldehyde and a ketone	(4)	An aldehyde and an ester
Ans	swer (4)		
57.	Which of the following statements is not true? (1) Pheromones are secreted outside the body	by the i	nsects
	(2) Aspirin is analgesic and anti-pyretic		
	(3) Sucrose is a dipeptide commonly known as	asparta	me
	(4) The DNA assists in the synthesis of RNC me	olecules	3
Ans	swer (3)		
58.	In which of the following reactions, the product o	btained	is chiral?
	(1) $CH_3COCH_3 \xrightarrow{\text{NaBH}_4}$	(2)	CH ₃ COCI Rosenmund reduction →
	(3) $CH_3CH_2COCH_2CH_3 \xrightarrow{Sn, HCl}$	(4)	$CH_3CH_2COCH_3 \xrightarrow{LiAIH_4} \rightarrow$
Ans	swer (4)		

Aaka	sh Institute		DUMET-2009 (Answers) : Series-43
65.	Calculate the work done when I mol of an ideal ga constant temperature of 300 K	as is	compressed reversibly from 1.0 bar to 4.00 bar at a
	*(1) 4.01 kJ	(2)	–8.02 kJ
	(3) 18.02 kJ	(4)	–14.01 kJ
Ans	wer (1)		
Not	e: The correct answer is 3.45 kJ but the nearest	t app	roximate value can be taken as 4.01 kJ.
66.	The enthalpy of neutralization of oxalic acid by a stro of strong acid and strong base is −13.7 kcal equiv is	ong t ¹ . Th	base is –25.4 kcal mol ⁻¹ . The enthalpy of neutralization e enthalpy of dissociation of $H_2C_2O_4 \leftrightarrow 2H^+ + C_2O_4^{2-}$
	(1) 1.0 kcal mol ^{−1}	(2)	2.0 kcal mol ⁻¹
	(3) 18.55 kcal mol ^{−1}	(4)	11.7 kcal mol ⁻¹
Ans	wer (2)		
67.	At the equilibrium of the reaction 2X(g) + Y(g) \rightarrow X2 by the	₂ Y(g),	, the number of moles of X_2Y at equilibrium is affected
	(1) Temperature and pressure	(2)	Temperature only
	(3) Pressure only	(4)	Temperature, pressure and catalyst used
Ans	swer (1)		
68.	For a first order reaction, the time required for 99.9	9% of	the reaction to take place is nearly
	(1) 10 times that required for half of the reaction		
	(2) 100 times that required for two-thirds of the rea	action	1
	(3) 10 times that required for one-fourth of the read	ction	
	(4) 20 times that required for half of the reaction		
Ans	swer (1)		
69.	An endothermic reaction has a positive internal enerthat the activation energy can have?	rgy c	hange ΔU . In such a case, what is the minimum value
	(1) ΔU	(2)	$\Delta U = \Delta H + \Delta n R T$
	(3) $\Delta U = \Delta H - \Delta nRT$	(4)	$\Delta U = Ea + RT$
Ans	swer (3)		
70.	A compound contains two types of atoms X and Y. of the unit cell and atoms Y at the body centers. T	It cry he si	vstallizes in a cubic lattice with atoms X at the corners implest possible formula of this compound is
	(1) X ₈ Y	(2)	X ₂ Y
	(3) XY	(4)	XY ₈
Ans	wer (3)		
71.	Which of the following halogens does not exhibit a	posit	ive oxidation number in their compounds?
	(1)	(2)	Br
	(3) Cl	(4)	F
Ans	wer (4)		

DUM	ET-2009 (Answers) : Series-43		Aakash Institute
72.	Among the following, the strongest conjugate base	is	
	(1) NO ₃ ⁻	(2)	C⊢
	(3) SO ₄ ²⁻	(4)	CH₃COO⁻
Ans	swer (4)		
73.	Determine the pH of the solution that results 30.00 mL of 0.01 M HCl	from	the addition of 20.00 mL of 0.01 M $\mathrm{Ca(OH)}_{2}$ to
	(1) 11.30	(2)	10.53
	(3) 2.70	(4)	8.35
Ans	wer (1)		
74.	Adsorption is an exothermic process. The amount	of su	bstance absorbed should
	(1) Increase with decrease in temperature	(2)	Increase with increase in temperature
	(3) Decrease with decrease in temperature	(4)	Decrease with increase in temperature
Ans	swer (4)		
75	Eog is a colloidal solution of		
75.	(1) Liquid particles dispersed in gas	(2)	Gaseous particles dispersed in a liquid
	 (1) Equid particles dispersed in gas (3) Solid particles dispersed in a liquid 	(<u></u> 2)	Solid particles dispersed in das
-	(3) Solid particles dispersed in a liquid	(+)	Solid particles dispersed in gas
Ans	swer (1)		
76.	The correct set of quantum numbers for the unpaired	ed el	ectron of a chlorine atom is
	(1) 2, 0, 0, +1/2	(2)	2, 1, -1, +1/2
	(3) 3, 1, -1, ±1/2	(4)	3, 0, 0, ±1/2
Ans	wer (3)		
77.	The temperature at which real gases obey the idea	l gas	laws over a wide range of pressures is called
	(1) Critical temperature	(2)	Inversion temperature
	(3) Boyle temperature	(4)	Reduced temperature
Ans	wer (3)		
78.	Common salt obtained from sea-water contains 95 present in 10.0 g of the salt is	5% N	aCl by mass. The approximate number of molecules
	(1) 10^{21}	(2)	10 ²²
	(3) 10^{23}	(4)	10 ²⁴
Ans	wer (3)		
79.	In the redox reaction		
	$xKMnO_{4} + yNH_{3} \rightarrow KNO_{3} + MnO_{2} + KOH + H_{2}O$		
	(1) $x = 4, y = 6$	(2)	x = 3, y = 8
	(3) $x = 8, y = 6$	(4)	x = 8, y = 3
Ans	swer (4)		

Aaka	sh Institute		DUMET-2009 (Answers) : Series-43
80.	Which of the following aqueous solutions has the high	nes	st boiling point?
	(1) 0.1 M KNO ₃ (2	2)	0.1 M Na ₃ PO ₄
	(3) 0.1 M BaCl ₂ (4	1)	0.1 M K ₂ SO ₄
Ans	wer (2)		
81.	The values of electronegativity of atoms A and B are $A - B$ bond is	e 1.	2 and 4.0 respectively. The % ionic character of the
	(1) 50% (2	2)	72.24%
	(3) 55.3% (4	1)	43%
Ans	wer (2)		
82.	100 ml of PH_3 on heating forms P and H_2 , the volume	e c	hange in the reaction is
	(1) An increase of 50 ml (2	2)	An increase of 100 ml
	(3) An increase of 150 ml (4	!)	A decrease of 50 ml
Ans	wer (1)		
83.	The common features among the species CN ⁻ , CO ar	nd	NO ⁺ are
	(1) Bond order three and iso-electronic (2	2)	Bond order three and weak-field ligands
	(3) Bond order two and π -acceptor (4)	4)	Iso-electronic and weak-field ligands
Ans	wer (1)		
84.	The magnitude of crystal field stabilization energy (CF than in the octahedral field. Because	FSI	E or Δ_t) in tetrahedral complexes is considerably less
	(1) There are only four ligands instead of six so the the size	lig	and field is only 2/3 the size hence the Δ_t is only 2/3
	(2) The direction of the orbitals does not coincide wi field stabilization energy (Δ_t) by further 2/3	ith	the direction of the ligands. This reduces the crystal
	(3) Both points (1) & (2) are correct		
	(4) Both points (1) & (2) are wrong		
Ans	wer (3)		
85.	The role of phosphate in detergent powder is to		
	(1) Control pH level of the detergent water mixture		
	(2) Remove Ca^{2+} and mg^{2+} ions from the water that c	cau	ises the hardness of water
	(3) Provide whiteness to the fabrics		
	(4) Form solid detergent as phosphate-less detergent	ts a	are liquid in nature
Ans	wer (2)		
86.	If I_2 is dissolved in aqueous KI, the intense yellow spe	eci	es, I_3^- , is formed. The structure of I_3^- ion is
	(1) Square pyramidal (2	2)	Trigonal bipyramidal
	(3) Octahedral (4	1)	Pentagonal bipyramidal
Ans	wer (2)		

DUM	ET-2009 (Answers) : Series-43		Aakash Institute
87.	In the change of NO ⁺ to NO, the electron is added	to th	e
	(1) σ orbital	(2)	π orbital
	(3) σ^* orbital	(4)	π^* orbital
Ans	ewer (4)		
88.	Iron has an oxidation number of +3, in which of the	follo	wing compounds?
	(1) $Fe(NO_3)_2$	(2)	FeC ₂ O ₄
	(3) [Fe(H ₂ O) ₆]Cl ₃	(4)	$(NH_4)_2 SO_4.FeSO_4.6H_2O$
Ans	wer (3)		
89.	The expected spin-only magnetic moments for [Fe(CN ₆)] ^{4–} and [FeF ₆] ^{3–} are
	(1) 1.73 and 1.73 B.M.	(2)	1.73 and 5.92 B.M.
	(3) 0.0 and 1.73 B.M.	(4)	0.0 and 5.92 B.M.
Ans	wer (4)		
90.	The crystal field stabilization energy (CFSE) is the	highe	est for
	(1) [CoF ₄] ²⁻	(2)	[Co(NCS) ₄] ²⁻
	(3) [Co(NH ₃) ₆] ³⁺	(4)	[CoCl ₄] ²⁻
Ans	wer (3)		
91.	Which of the following reactions will not give the an	hydr	ous AICI ₃ ?
	(1) By heating AICl ₃ .6H ₂ O		
	(2) By passing dry HCl gas on heated aluminium p	owd	er
	(3) By passing dry chlorine gas on heated aluminit	um po	owder
	(4) By passing dry chlorine gas over a heated mixed	ture o	of alumina and coke
Ans	wer (1)		
92.	A metallic ion M^{2+} ion has an electronic configuration of neutrons in its nucleus are :	on of	2, 8, 14 and the ionic weight is 56 amu. The numbers
	(1) 30	(2)	32
_	(3) 34	(4)	42
Ans	swer (1)		
93.	Which of the following has the highest value of radi	oacti	vity?
	(1) 1 gm of Ra	(2)	1 gm of RaSO ₄
_	(3) 1 gm of RaBr ₂	(4)	1 gm of Ra(HPO ₄)
Ans	swer (1)		
94.	It is believed that atoms combine with each other su of 8 electrons. If stability were attained with 6 electr fluoride ion?	uch tl rons	hat the outermost shell acquires a stable configuration rather than 8; what would be the formula of the stable
	(1) F ⁻	(2)	F ⁺
	(3) F ²⁺	(4)	F ³⁺
Ans	swer (2)		

Aaka	sh Institute		DUMET-2009 (Answers) : Series-43	
95.	When two ice cubes are pressed over each other, is responsible to hold them together?	they	unite to form one cube. Which of the following forces	
	(1) Dipole forces	(2)	van der Waal forces	
	(3) Covalent forces	(4)	Hydrogen bond forces	
Ans	swer (4)			
96.	In which of the following reactions, there is no change in valency ?			
	(1) $SO_2 + 2H_2S = 2H_2O + 3S$	(2)	$2Na + O_2 = Na_2O_2$	
	(3) $Na_2O + H_2SO_4 = Na_2SO_4 + H_2O_2$	(4)	4KCIO ₃ = 3 KCIO ₄ + KCI	
Ans	swer (3)			
97.	If helium is allowed to expand in vacuum, it liberates heat because			
	(1) Helium is an inert gas			
	(2) Helium is an ideal gas			
	(3) The critical temperature of helium is very low			
	(4) Helium is one of the lightest gases			
Ans	swer (3)			
98.	Compound A undergoes Cannizzaro reaction and B undergoes positive iodoform test. Therefore,			
	(1) A = Acetaldehyde	в =	- 1-Pentanal	
	(2) $A = C_6 H_5 C H_2 C HO$	в =	3-Pentanone	
	(3) A = Formaldehyde	в =	2-Pentanone	
	(4) A = Propionaldehyde	в =	· 1-Pentanol	
Ans	swer (3)			
99.	99. Arrange the following free radicals in order of decreasing stability :			
	Methyl (I), Vinyl (II), Allyl (III), Benzyl (IV)			
	(1) > > > V	(2)	> > > V	
	(3) > > \ >	(4)	V > > >	
Ans	swer (4)			
100. Which isomer of hexane has only two different sets of structurally equivalent hydrogen atoms?				
	(1) 2, 2-dimethyl butane	(2)	2-methylpentane	
	(3) 3-methylpentane	(4)	2, 3-dimethyl butane	
Ans	swer (4)			
1				