JUNE 2007

Time: 3 Hours Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or best alternative in the following: (2x10)

- a. If $n_{C_{12}} = n_{C_8}$, then n is equal to
 - **(A)** 8

(B) 12

(C) 16

- **(D)** 20
- b. $\lim_{x \to 0} \frac{2 \sin x \sin 2x}{x^3}$ is equal to
 - **(A)** 0

(B) 1

(C) 2

- **(D)**
- c. If the point P(x, y) is equidistant from the points A(a+b,b-a) and B(a-b,a+b), then
 - $(\mathbf{A}) \ \mathbf{b}\mathbf{x} = \mathbf{a}\mathbf{y}$

(B) ax = by

(C) x = y

- **(D)** x + y = 0
- d. The area of the triangle formed by the lines y = a + x, y = a x, y = 0, where a > 0, is
 - **(A)** 1

(B) a

(**C**) a²

(**D**) zero

e. If
$$\frac{x}{y} + \frac{y}{x} = 2$$
 and $Y \neq x$, then $\frac{dy}{dx}$ is equal to

(C)
$$-1$$

$$\int \frac{\cos 2x}{\cos^2 x \sin^2 x} dx$$
f. $\frac{\cos^2 x \sin^2 x}{\cos^2 x} \cos^2 x$

(A)
$$\sec x + \csc x$$

g. The area bounded by the parabola
$$y^2 = 4ax$$
 and its latus rectum is

(B)
$$\frac{2}{3}$$
 a²

(C)
$$\frac{4}{3}$$
 a

(D)
$$\frac{\circ}{3}$$
 a²

h. The solution of differential equation
$$\frac{dy}{dx} = e^{x-y} + 2xe^{-y}$$

(A)
$$y = xe^{x-y} + x^{z-y}e + c$$

(B)
$$e^{y} = e^{x} + x^{2} + c$$

(C)
$$y = e^{x-y} + x^{z-y}e + c$$

(D)
$$e^{-y} = e^{x} + 2x + c$$

i. Value of
$$\sin^{-1} x + \cos^{-1} x$$
 is

(A)
$$2\pi$$

(C)
$$\frac{\pi}{2}$$

$$\frac{\pi}{4}$$

j. Value of
$$(\sin 3A - \sin A)\cos A - (\cos 3A + \cos A)\sin A$$
 is

(C)
$$\frac{1}{2}$$

(D)
$$\frac{1}{\sqrt{2}}$$

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 a. The sum of first p terms of an A.P. is the same as the sum of its first q terms. Find the sum of its first (p + q) terms. **(8)**

- b. For what value of n are the coefficients of second, third and fourth terms in the expansion of $(1+x)^n$ in A.P.?
- **Q.3** a. Solve for θ the equation $\sin m \theta + \sin n \theta = 0$, where $m \neq n$. (8)
 - b. If a, b, c be the sides opposite to the angles A, B, C for a triangle ABC, show that $\frac{a+b}{c} = \frac{\cos \frac{A-B}{2}}{\sin \frac{C}{2}}.$ (8)
- Q.4 a. Derive the formula for the angle between the straight lines $y = m_1 x + c_1$ and $y = m_2 x + c_2$. (8)
 - b. Find the equation of a straight line which is perpendicular to 2x 5y = 30 and the sum of its intercepts on the coordinate axes is 7. (8)
 - Q.5 a. Find the equation of the circle concentric with the circle $2x^2 + 2y^2 + 8x + 10y 39 = 0$ and having its area equal to 16π .
 - b. Find the centre, eccentricity, foci and length of the latus rectum of the ellipse $4x^2 + 9y^2 8x + 36y + 4 = 0$. (8)
- Q.6 a. Differentiate from the first principle the function $y = \tan x$.
 (8)
 - b. Evaluate $\lim_{x\to 0} \frac{\sqrt{1+x+x^2}-1}{\sin 4x}$. (8)
- Q.7 a. Find the local maximum and minimum values of the function $y = \sin 3x 3 \sin x$, $0 \le x < 2\pi$. (8)
 - b. Evaluate $\int \frac{x dx}{\sqrt{x^2 + a^2} + \sqrt{x^2 a^2}}.$ (8)
- **Q.8** a. Find the area bounded by the curve $\sqrt{y} + \sqrt{x} = \sqrt{a}$ and the coordinate axes. (8)

b. Evaluate
$$\int_{0}^{\pi/2} \frac{\cos x \, dx}{(1 + \sin x)(2 + \sin x)}.$$
 (8)

Q.9 Solve any <u>TWO</u> of the following differential equations:-

(i)
$$xy \frac{dy}{dx} = 1 + x + y + xy$$
(ii)
$$(x^2 - y^2) dx = 2xy dy$$
(iii)
$$(1 - x^2) \frac{dy}{dx} - xy = 1$$
(2 x 8 = 16)