Code: DE23/DC23
Time: 3 Hours

JUNE 2011

Subject: MATHEMATICS - II
Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. The modulus of the complex number $\cos \theta+\mathrm{i} \sin \theta$ is
(A) -1
(B) 1
(C) 2
(D) 0
b. The principal argument of 2 is
(A) 0
(B) 1
(C) -1
(D) i
c. The scalar product of the vectors $\hat{i}+3 \hat{j}-8 k$ and $-3 \hat{i}-5 \hat{j}+4 \hat{k}$ is
(A) 60
(B) -55
(C) -50
(D) 45
d. The adjoint of the square matrix $\left[\begin{array}{cc}7 & 4 \\ 3 & -6\end{array}\right]$ is
(A) $\left[\begin{array}{cc}-6 & -4 \\ -3 & 7\end{array}\right]$
(В) $\left[\begin{array}{cc}-6 & 7 \\ -3 & -4\end{array}\right]$
(C) $\left[\begin{array}{cc}-6 & -3 \\ -4 & 7\end{array}\right]$
(D) $\left[\begin{array}{cc}-3 & -6 \\ 7 & -4\end{array}\right]$
e. The product of $\left[\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right]$ and $\left[\begin{array}{ll}2 & 1 \\ 2 & 4\end{array}\right]$ is
(A) $\left[\begin{array}{cc}9 & 6 \\ -6 & 2\end{array}\right]$
(B) $\left[\begin{array}{ll}2 & 9 \\ 3 & 6\end{array}\right]$
(C) $\left[\begin{array}{cc}-6 & 9 \\ 2 & 6\end{array}\right]$
(D) $\left[\begin{array}{cc}6 & 9 \\ -2 & 2\end{array}\right]$
f. The value of $\left|\begin{array}{lll}1 & 5 & 27 \\ 1 & 5 & 40 \\ 1 & 5 & 18\end{array}\right|$ is
(A) 125
(B) 200
(C) 0
(D) 225
g. The value $\left|\begin{array}{rr}\sin 10^{\circ} & -\cos 10^{\circ} \\ \sin 80^{\circ} & \cos 80^{\circ}\end{array}\right|$ is
(A) 0
(B) $\frac{1}{2}$
(C) 1
(D) -1
h. The solution of the differential equation $\left(D^{2}+4\right) y=0$ is
(A) $y=A \cos 2 x+B \sin 2 x$
(B) $y=e^{x}\left(A \cos ^{2} 2 x+B \sin ^{2} 2 x\right)$
(C) $\mathrm{y}=\left(\mathrm{A}_{1}+\mathrm{A}_{2}\right) \cos ^{2} \mathrm{x}+\left(\mathrm{A}_{3}+\mathrm{A}_{4}\right) \sin ^{2} \mathrm{x}$
(D) $y=\left(A_{1}+A_{2} x\right) \cos 2 x+\left(A_{3}+A_{4}\right) \sin 2 x$
i. The value $L^{-1}\left[\frac{\mathrm{~s}}{\mathrm{~s}^{2}+\mathrm{a}^{2}}\right]$ is
(A) $\frac{1}{\mathrm{a}} \cos \mathrm{at}$
(B) cosh at
(C) cosat
(D) $\frac{1}{\mathrm{a}} \cosh \mathrm{at}$
j. The function $f(x)=e^{x}$ has the Fourier expansion $e^{x}=\sum_{1}^{\infty} b_{n} \sin n x$ in the interval $(0, \pi)$. Then $\sum_{1}^{\infty}\left(b_{n}\right)^{2}$ converges to
(A) $\frac{1}{\pi}\left(\mathrm{e}^{\pi}-1\right)$
(B) $\frac{1}{\pi}\left(\mathrm{e}^{\pi}+1\right)$
(C) $\frac{1}{\pi}\left(\mathrm{e}^{2 \pi}-1\right)$
(D) $\frac{1}{\pi}\left(\mathrm{e}^{2 \pi}+1\right)$

Answer any FIVE Questions out of EIGHT Questions.
Each question carries 16 marks.
Q. 2 a. If $\frac{a+i b}{c+i d}=x+i y$, prove that $x^{2}+y^{2}=\frac{a^{2}+b^{2}}{c^{2}+d^{2}}$
b. If $Z_{1}=2+7 i$ and $Z_{2}=1-5 i$, then verify that (i) $\left|Z_{1} Z_{2}\right|=\left|Z_{1}\right|\left|Z_{2}\right|$
(ii) $\left|\frac{Z_{1}}{Z_{2}}\right|=\frac{\left|Z_{1}\right|}{\left|Z_{2}\right|}$
Q. 3 a. If $2 \cos \theta=x+\frac{1}{x}$

$$
2 \cos \phi=y+\frac{1}{y}
$$

Show that one of the value of
$\frac{x^{m}}{y^{n}}+\frac{y^{n}}{x^{m}}$ is
$2 \cos (\mathrm{~m} \theta-\mathrm{n} \phi)$
b. Prove using vectors:

If the diagonals of a parallelogram are equal, then it is a rectangle
Q. 4 a. Show that $|\vec{a} \times \vec{b}|^{2}=|\vec{a}|^{2}|\vec{b}|^{2}-(\vec{a} \cdot \vec{b})^{2}$
b. Forces $\mathrm{P}=2 \mathrm{i}+5 \mathrm{j}+6 \mathrm{k}$ and $\mathrm{Q}=-\mathrm{i}-2 \mathrm{j}-\mathrm{k}$ act on a particle. Determine the work done when the particle is displaced from a point A with position vector $4 \mathrm{i}-3 \mathrm{j}-2 \mathrm{k}$ to a point B with position vector $6 \mathrm{i}+\mathrm{j}-3 \mathrm{k}$.
Q. $5 \quad$ a. Show that $\left|\begin{array}{lll}a+b & b+c & c+a \\ b+c & c+a & a+b \\ c+a & a+b & b+c\end{array}\right|=2\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|$
b. Use Cramer's Rule to solve the equations

$$
\begin{align*}
& x+y+z=-1 \\
& x+2 y+3 z=-4 \\
& x+3 y+4 z=-6 \tag{8}
\end{align*}
$$

Q. 6 a. If $A=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$, find A^{-1} and hence prove that $A^{2}-4 A-5 I=0$
b. Verify Cayley-Hamilton theorem for the matrix $A=\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3\end{array}\right]$. Hence find A^{-1}
Q. 7 a. Find the Fourier series for $f(x)=\pi+x$ in $(-\pi, \pi)$.
b. Find the Fourier series for $f(x)=x^{2}$ in $(-\pi, \pi)$. Hence derive value of

$$
\begin{equation*}
\sum \frac{(-1)^{\mathrm{n}-1}}{\mathrm{n}^{2}} \tag{8}
\end{equation*}
$$

Q. 8 a. Find the Laplace transform of $\sin (\sqrt{\mathrm{t}})$.
b. Find the inverse Laplace transform of $\frac{s^{2}+1}{s^{3}+3 s^{2}+2 s}$.
Q. 9 a. Solve the differential equation, $\left(D^{2}-2 D+5\right) y=e^{2 x} \sin x$; where $D=\frac{d}{d x}$.
b. Use Laplace transform method to solve

$$
\begin{align*}
& \frac{\mathrm{d}^{2} \mathrm{x}}{\mathrm{dt}^{2}}-2 \frac{\mathrm{dx}}{\mathrm{dt}}+\mathrm{x}=\mathrm{e}^{\mathrm{t}} \\
& \text { with } \\
& \mathrm{x}(0)=2 \\
& \mathrm{x}^{\prime}(0)=-1 \tag{8}
\end{align*}
$$

