B.Tech. Degree V Semester (Supplementary) Examination, June 2008

CS 504 AUTOMATA LANGUAGES AND COMPUTATION

(1999 Scheme)

	(1777 Beneme)	
Time: 3 Hours		Maximum Marks: 100
I a) b)	Distinguish between NFA and DFA. Illustrate with an example. Prove the equivalence of NFA and DFA.	(10) (10)
II a)	OR Prove the equivalence of NFA with and without epsilon moves.	(10)
b)	Construct the DFA equivalent to the given NFA over $\{a,b\}$.	,
	start a a 12 b 12 b 13	(10)
III a)	State and prove Myhill-Nerode theorem.	(15)
b)	Explain the term Moore machine with an example. OR	(5)
IV a) b)	Prove the equivalence of finite automata and regular expressions. Explain the following terms:	(10)
	i) Regular Expressionsii) Mealy Machines	$(5 \times 2 = 10)$
V	Explain the following terms: i) CHOMSKY Normal Form ii) GREIBACH Normal Form iii) PUSH DOWN AUTOMATA iv) Derivation Tree OR	$(5 \times 4 = .20)$
VI a)	Design a deterministic PDA corresponding to language	
	$L = \left\{ w c w^R \middle w \text{ is in } (0+1)^* \right\} \text{ by empty stack.}$	(10)
b)	Explain useless symbol with an example.	(10)
VII a)	Explain the basic Turing Machine model with a neat diagram.	(10)
b)	Design a Turing Machine to accept the language $L = \{0^n 1^n \mid n \ge 1\}$	(10)
****	OR	
VIII	Explain the following terms: i) Storage in Finite control ii) Non Deterministic Turing Machines iii) Shifting Over iv) Multiple tracks	$(5 \times 4 = 20)$
IX a) b)	Show that if L has a regular grammar, then L is a regular set. Explain the following terms: i) UNRESTRICTED GRAMMAR ii) REGULAR GRAMMAR	(10) $(5 \times 2 = 10)$
X a)	OR Show that if L is a regular set, then L is generated by some left-linear graduates.	ammar and
	by some right -linear grammar.	animar and (10)
SCIE TO	Explain the following terms: i) Linear bound automata	
SCIENCE & THE	ii) UNIVERSAL TURING MACHINE	$(5 \times 2 = 10)$
