JUNE 2008

Code: AE14 Subject: ELECTROMAGNETICS AND RADIATION
Time: 3 Hours Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or best alternative in the following:

(2x10)

- a. Field due to infinitely long line charge along z-axis varies with
 - (A)

(B) z

(C) ₽

- **(D)** both ϕ and z
- b. Which one of the following is correct?
 - (A) $\overline{\nabla} \cdot \overline{E} = \rho_{\mathcal{V}}$

(B) $\overline{\nabla} \cdot \overline{E} = \rho_{\nu} / \epsilon_{\rho}$

(C) $\overline{\nabla} \cdot \overline{E} = -\rho_{\nu}$

- **(D)** $\overline{\nabla} \cdot \overline{E} = \epsilon_o \rho_v$
- c. When a magnetic flux cuts across 200 turns at the rate of 2 Wb/s, the induced voltage is
 - **(A)** 400 V

(B) 100 V

(C) 600 V

- **(D)** 0 V
- d. When an EM wave is incident on a dielectric, it is
 - (A) fully transmitted
 - **(B)** fully reflected
 - (C) partially transmitted and partially reflected
 - (D) none of these.
- e. If a line is terminated in an open circuit, the VSWR is
 - **(A)** 0

(B) 1

(C) 00

- **(D)** −1
- f. A hollow rectangular waveguide acts as a
 - (A) High pass filter

(B) Low pass filter

(C) Band pass filter

	g.	For a 30012 antenna operating with 5A of current, the radiated power is										
		(A) 7	7500 W			(B)	750 W					
		(C) 7	'5 W			(D)	7	7500 m ^v	W			
	h.	If a cu	rrent elem	ent is z-direc	eted, vecto	or mag	netic pot	ential is				
		(A) x	-directed			(B) y	-directe	d				
		(C) θ	-directed			(D) 2	z-directe	ed				
	i.	Divers	pence theor	rem is applic	able for							
	•		static field	• •	101							
				g fields only								
			-	and time vary								
			electric field	-	, &							
	j.	Depth	of penetra	ntion in free s	space is							
		(A)	α			(B)	1/α					
		(C) 0				(D)						
					h questio							
Q.2	i	a. Pro	ove that en (8)	nergy densit	y stored i	n an e	lectric fi	ield of 1	nagnitud	e E is p	roportional	to \mathbf{E}^2
			()									
	b.	A cir	cular ring c	of radius 'a' c	carries a u	niform	charge 1	ρ _L C/n	and is	placed o	n xy-plane	with the
		axis th	ne same as	the z-axis								
		(i)	$\operatorname{Find} \overline{\mathbb{E}}(0)$	1,0,h)								
		(ii)	What va	lue of h give	s maximur	n value	e of ₹?					
		(iii)	If the tot	tal charge on	n the ring is	s Q, fir	nd $\overline{\mathbb{E}}$ as	'a' tend	s to 0.		(8)	
Q.3	8	a. De	rive an ext	pression for	the magn	etic fie	ld due t	o an in	finite plan	ne sheet	of uniform	surface
			nt density.					(8)	•			
		b. A	circular lo	op located	on $x^2 + y$	y [∠] = 9	z = 0	carries	a direct	current (of 10A alo	ng ^ä φ.
		Deter	mine ∏ at	(0,0,4) and	d (0, 0, –	4).		(8)				
Q.4		a. S	tate and	explain Max	well's equ	uation	in their	Integra	l and di	fferential	forms. De	erive the
			sponding	equatio	_	or	fields	-	arying		nonically	with
		time.					(8)					
	L	Λ	anductine 1	har Daan ali	ida fraak:	over to	io oond	uatina =	ماء مع عام	oven in E	ia 1 Calar	ulata tha
	b	. A C	muucung i	bar P can sli	me neery (O VET IN	vo condi	ucung ra	ıns as 211	омпшг	ig. i. Calci	mate the

(D) Low frequency radiator

induced voltage in the bar

- (i) If the bar is stationed at y = 8 cm and $\overline{B} = 4 \cos 10^6$ t \hat{a}_z mWb/m²
- (ii) If the bar slides at a velocity $\bar{v} = 20~\hat{a}_y m/s~and~\bar{B} = 4~\hat{a}_z~mWb/m^2$
 - (iii) If the bar slides at a velocity $\overline{v} = 20 \,\hat{a}_y \,\text{m/s}$ and $\overline{B} = 4 \cos \left(10^6 \,\text{t} y\right) \hat{a}_z \,\text{mWb/m}^2$ (8)

- Q.5 a. State and prove Poynting theorem. Explain the physical interpretation of each terms in it. (8)
 - b. Given a uniform plane wave in air as

$$\overline{E_i} = 40\cos(\omega t - \beta z)\hat{a}_x + 30\sin(\omega t - \beta z)\hat{a}_y V/m$$

- (i) Find $\overline{\mathbb{H}_i}$.
- (ii) If the wave encounters a perfectly conducting plate normal to the z-axis at z=0, find the reflected wave $\overline{E_r}$ and $\overline{H_r}$.
- (iii) What are the total \overline{E} and \overline{H} fields for $z \le 0$?
- (iv) Calculate the time-average Poynting vectors for $z \le 0$ and $z \ge 0$. (8)
- Q.6 a. Discuss the derivation of the transmission-line equations from field equations by considering a parallel-plate line. Also model the line as a distributed circuit.
 (8)
 - b. A distortionless line has $z_0 = 60\Omega$, $\alpha = 20 \, \text{mNp/m}$, $v = 0.6 \, \text{c}$, where c is the speed of light in vacuum. Find R, L, G, C and λ at 100 MHz frequency. (8)
- Q.7 a. Explain the Terms-dominant mode, cut-off frequency, guide wavelength and characteristic Impedance. Discuss them for both TE and TM modes.
 (8)

b. Consider a parallel-plate waveguide as shown in Fig.2. Find the power reflection coefficients for $^{\text{TE}}_{1,0}$ and $^{\text{TM}}_{1,0}$ waves at frequency f = 5000 MHz incident on the junction from free space side. (8)

- Q.8 a. Discuss the concept of unit and group patterns and their multiplications to obtain the resultant pattern of an array. (8)
 - b. The radiation intensity of an antenna is given by,

$$\mathbf{U}(\boldsymbol{\theta}, \boldsymbol{\phi}) = \begin{cases} 2\sin \theta \sin^3 \phi, & 0 \le \theta \le \pi, \\ 0, & \text{otherwise} \end{cases}$$

Determine the directivity of the antenna.

a. What is skip distance and maximum usable frequency, estimate the maximum usable frequency (MUF) for a critical frequency of 1 MHz and an angle of 30°. (4+4+2)

b. State the different layers of Ionosphere. Which layer disappears at night, also explain why the ground wave propagation called medium wave propagation?

$$(4+2)$$

Q.9

(8)