Mathematics

Class X

Past Year Paper - 2013

Solution

SECTION - A (40 marks)

Sol. 1
(a) $\mathrm{A}+2 \mathrm{X}=2 \mathrm{~B}+\mathrm{C}$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
2 & -6 \\
2 & 0
\end{array}\right]+2 X=2\left[\begin{array}{cc}
-3 & 2 \\
4 & 0
\end{array}\right]+\left[\begin{array}{ll}
4 & 0 \\
0 & 2
\end{array}\right]} \\
& {\left[\begin{array}{cc}
2 & -6 \\
2 & 0
\end{array}\right]+2 X=\left[\begin{array}{cc}
-6+4 & 4+0 \\
8+0 & 0+2
\end{array}\right]} \\
& {\left[\begin{array}{cc}
2 & -6 \\
2 & 0
\end{array}\right]+2 X=\left[\begin{array}{cc}
-2 & 4 \\
8 & 2
\end{array}\right]} \\
& 2 X=\left[\begin{array}{cc}
-2 & 4 \\
8 & 2
\end{array}\right]-\left[\begin{array}{cc}
2 & -6 \\
2 & 0
\end{array}\right] \\
& 2 X=\left[\begin{array}{cc}
-4 & 10 \\
6 & 2
\end{array}\right] \\
& X=\frac{1}{2}\left[\begin{array}{cc}
-4 & 10 \\
6 & 2
\end{array}\right]=\left[\begin{array}{cc}
-2 & 5 \\
3 & 1
\end{array}\right]
\end{aligned}
$$

(b) $\mathrm{P}=₹ 4000$, C.I. $=₹ 1324, \mathrm{n}=3$ years

Amount, A = P + C.I. $=₹ 4000+₹ 1324=₹ 5324$
$A=P\left(1+\frac{r}{100}\right)^{n}$
$5324=4000\left(1+\frac{r}{100}\right)^{3}$
$\left(1+\frac{r}{100}\right)^{3}=\frac{5324}{4000}=\frac{1331}{1000}$
$\left(1+\frac{r}{100}\right)^{3}=\left(\frac{11}{10}\right)^{3}$
$1+\frac{r}{100}=\frac{11}{10}$
$\frac{r}{100}=\frac{11}{10}-1=\frac{1}{10}$
$r=10 \%$
(c) The observations in ascending order are:
$11,12,14,(x-2),(x+4),(x+9), 32,38,47$

Past Year Paper

Number of observations $=9$ (odd)
Median $=\left(\frac{\mathrm{n}+1}{2}\right)^{\text {th }}$ observation $=5^{\text {th }}$ observation
$\therefore \mathrm{x}+4=24$
$\Rightarrow \mathrm{x}=20$
Thus, the observations are:
$11,12,14,18,24,29,32,38,47$
Mean $=\frac{11+12+14+18+24+29+32+38+47}{9}$
$=\frac{225}{9}$
$=25$

Sol. 2
(a) Let the number added be x.
$\therefore(6+\mathrm{x}):(15+\mathrm{x})::(20+\mathrm{x})(43+\mathrm{x})$
$\frac{6+x}{15+x}=\frac{20+x}{43+x}$
$(6+x)(43+x)=(20+x)(15+x)$
$258+6 x+43 x+x^{2}=300+20 x+15 x+x^{2}$
$49 x-35 x=300-258$
$14 x=42$
$\mathrm{x}=3$
Thus, the required number which should be added is 3 .
(b) Let $p(x)=2 x^{3}+a x^{2}+b x-14$

Given, $(x-2)$ is a factor of $p(x)$
\Rightarrow Remainder $=\mathrm{p}(2)=0$
$\Rightarrow 2(2)^{3}+\mathrm{a}(2)^{2}+\mathrm{b}(2)-14=0$
$\Rightarrow 16+4 \mathrm{a}+2 \mathrm{~b}-14=0$
$\Rightarrow 4 \mathrm{a}+2 \mathrm{~b}+2=0$
$\Rightarrow 2 \mathrm{a}+\mathrm{b}+1=0$
Given, when $\mathrm{p}(\mathrm{x})$ is divided by ($\mathrm{x}-3$), it leaves a remainder 52 .
$\therefore \mathrm{p}(3)=52$
$\Rightarrow 2(3)^{3}+\mathrm{a}(3)^{2}+\mathrm{b}(3)-14=52$
$\Rightarrow 54+9 \mathrm{a}+3 \mathrm{~b}-14-52=0$
$\Rightarrow 9 \mathrm{a}+3 \mathrm{~b}-12=0$
$\Rightarrow 3 a+b-4=0$
Subtracting (1) from (2), we get,

$$
a-5=0 \Rightarrow a=5
$$

From (1),
$10+\mathrm{b}+1=0 \Rightarrow \mathrm{~b}=-11$
(c)

Steps for calculation of mode.
(i) Mark the end points of the upper corner of rectangle with maximum frequency as A and B.
(ii) Mark the inner corner of adjacent rectangles as C and D.
(iii) Join AC and BD to intersect at K . From K, draw KL perpendicular to x -axis.
(iv) The value of L on x - axis represents the mode.
\therefore Mode $=13$

Sol. 3
(a) $3 \cos 80^{\circ} \cdot \operatorname{cosec} 10^{\circ}+2 \sin 59^{\circ} \sec 31^{\circ}$
$=3 \cos \left(90^{\circ}-10^{\circ}\right) \operatorname{cosec} 10^{\circ}+2 \sin \left(90^{\circ}-31^{\circ}\right) \sec 31^{\circ}$
$=3 \sin 10^{\circ} \operatorname{cosec} 10^{\circ}+2 \cos 31^{\circ}, \sec 31^{\circ}$
$\left[\because \sin \left(90^{\circ}-\theta\right)=\cos \theta, \cos \left(90^{\circ}-\theta\right)=\sin \theta\right]$
$=3 \times 1+2 \times 1 \quad[\because \sin \theta \cdot \operatorname{cosec} \theta=1, \cos \theta \cdot \sec \theta=1]$
$=3+2=5$
(b) (i) In $\triangle \mathrm{ABD}$,
$\angle \mathrm{DAB}+\angle \mathrm{ABD}+\angle \mathrm{ADB}=180^{\circ}$
$\Rightarrow 65^{\circ}+70^{\circ}+\angle \mathrm{ADB}=180^{\circ}$

Past Year Paper

$\Rightarrow \angle \mathrm{ADB}=180^{\circ}-70^{\circ}-65^{\circ}=45^{\circ}$
Now, $\angle \mathrm{ADC}=\angle \mathrm{ADB}+\angle \mathrm{BDC}=45^{\circ}+45^{\circ}=90^{\circ}$
$\angle \mathrm{ADC}$ is the angle of semi-circle so AC is a diameter of the circle.
(ii) $\angle \mathrm{ACB}=\angle \mathrm{ADB}$ (angle subtended by the same segment)
$\Rightarrow \angle \mathrm{ACB}=45^{\circ}$
(c)

(i) Radius $\mathrm{AC}=\sqrt{(3+2)^{2}+(-7-5)^{2}}$

$$
\begin{aligned}
& =\sqrt{(5)^{2}+(-12)^{2}} \\
& =\sqrt{25+144} \\
& =\sqrt{169} \\
& =13 \text { units }
\end{aligned}
$$

(ii) Let the coordinates of B be (x, y)

Using mid-point formula, we have

$$
\begin{aligned}
-2 & =\frac{3+x}{2} & & 5=\frac{-7+y}{2} \\
-4 & =3+x & & 10=-7+y \\
x & =-7 & & y=17
\end{aligned}
$$

Thus, the coordinates of points B are $(-7,17)$.

Sol. 4

(a) $x^{2}-5 x-10=0$

Use quadratic formula: $a=1, b=-5, c=-10$
$x=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$
$x=\frac{-(-5) \pm \sqrt{(-5)^{2}-4(1)(-10)}}{2(1)}$
$x=\frac{5 \pm \sqrt{25+40}}{2}$
$x=\frac{5 \pm \sqrt{65}}{2}$
$x=\frac{5 \pm 8.06}{2}$
$x=\frac{13.06}{2}, \frac{-3.06}{2}$
$x=6.53,-1.53$
(b) (i) In $\triangle A B C$ and $\triangle D E C$,

```
\angleABC= }\angle\textrm{DEC}=9\mp@subsup{0}{}{\circ}\mathrm{ (perpendiculars to BC)
\angleACB = \angleDCE (Common)
\therefore\triangleABC ~\triangleDEC (AA criterion)
(ii) Since }\triangleABC~\triangleDEC
AB
=>}\frac{6}{4}=\frac{15}{CD
=>6\timesCD=60
CDD = \frac{60}{6}=10\textrm{cm}
```

(iii) It is known that the ratio of areas of two similar triangles is equal to the square of the ratio of their corresponding sides.
$\operatorname{ar}(\triangle \mathrm{ABC}): \operatorname{ar}(\triangle \mathrm{DEC})=\mathrm{AB}^{2}: \mathrm{DE}^{2}=6^{2}: 4^{2}=36: 16=9: 4$
(c)
(i)

(ii) Co-ordinates of $\mathrm{A}^{\prime}=(-6,-4)$

Co-ordinates of $\mathrm{B}^{\prime}=(0,-4)$
(iii) ABA ' B^{\prime} is a parallelogram.

Past Year Paper

(iv) $\mathrm{AB}=\mathrm{A}^{\prime} \mathrm{B}^{\prime}=6$ units

In $\triangle \mathrm{OBO}^{\prime}$,
$O O^{\prime}=3$ units
$O B=4$ units

$$
\begin{aligned}
\mathrm{BO}^{\prime} & =\sqrt{\mathrm{OB}^{2}+\mathrm{OO}^{\prime 2}} \\
& =\sqrt{4^{2}+3^{2}} \\
& =\sqrt{25} \\
& =5 \text { units }
\end{aligned}
$$

Since BO' = 5 units
$\mathrm{BA}^{\prime}=10$ units = AB'
Perimeter of $A B A^{\prime} \mathrm{B}^{\prime}=(6+10+6+10)$ units $=32$ units

SECTION - B (40 marks)

Sol. 5
(a) The given inequation is $-\frac{x}{3} \leq \frac{x}{2}-1 \frac{1}{3}<\frac{1}{6}, x \in R$
$-\frac{x}{3} \leq \frac{x}{2}-1 \frac{1}{3}$
$-\frac{x}{3}-\frac{x}{2} \leq-\frac{4}{3}$
$\frac{x}{2}-1 \frac{1}{3}<\frac{1}{6}$
$\frac{2 x+3 x}{6} \geq \frac{4}{3}$
$\frac{x}{2}<\frac{1}{6}+\frac{4}{3}$
$\frac{5 x}{6} \geq \frac{4}{3}$
$\frac{x}{2}<\frac{1+8}{6}$
$5 x \geq 8$
$\frac{x}{2}<\frac{9}{6}$
$x \geq \frac{8}{5}$
$x<\frac{18}{6}$
$x<3$
The solution set is $\{x: x \in R$ and $1.6 \leq x<3\}$
It can be represented on a number line as follows:

(b) Maturity amount $=₹ 8088$

Period (n) = 3 yrs = 36 months
Rate $=8 \%$ p.a.

Past Year Paper

Let x be the monthly deposit.
S.I. $=P \times \frac{n(n+1)}{2 \times 12} \times \frac{r}{100}$

$$
=P \times \frac{36 \times 37}{24} \times \frac{8}{100}=4.44 x
$$

Total amount of maturity $=36 x+4.44 x=40.44 x$
Now,
$40.44 x=8088$
$\Rightarrow x=200$
Thus, the value of monthly installment is ₹ 200 .
(c)
(i) No. of shares $=50$

Market value of one share $=₹ 132$
Salman's investment $=₹(132 \times 50)=₹ 6600$
(ii) Dividend on one share $=7.5 \%$ of $₹ 100=₹ 7.50$

His annual income $=50 \times ₹ 7.50=₹ 375$
(iii) Salman wants to increase his income by ₹ 150 .

Income on one share = ₹ 7.50
No. of extra shares he buys $=\frac{150}{7.50}=20$

Sol. 6
(a)

> LHS
> $=\sqrt{\frac{1-\operatorname{Cos} A}{1+\operatorname{Cos} A}}$
> $=\sqrt{\frac{(1-\operatorname{Cos} A)(1+\operatorname{Cos} A)}{(1+\operatorname{Cos} A)(1+\operatorname{Cos} A)}}$
> $=\sqrt{\frac{1-\operatorname{Cos}^{2} A}{(1+\operatorname{Cos} A)^{2}}}$
> $=\sqrt{\frac{\sin ^{2} A}{(1+\operatorname{Cos} A)^{2}}}$
> $=\frac{\sin A}{1+\operatorname{Cos} A}=$ RHS
(b) In cyclic quadrilateral ABCD ,
$\angle \mathrm{B}+\angle \mathrm{D}=180^{\circ}$ (opp. angles of cyclic quad are supplementary)
$\Rightarrow 100^{\circ}+\angle A D C=180^{\circ}$
$\Rightarrow \angle A D C=80^{\circ}$

Now, in $\triangle A C D$,
$\angle A C D+\angle C A D+\angle A D C=180^{\circ}$
$40^{\circ}+\angle \mathrm{CAD}+80^{\circ}=180^{\circ}$
$\angle C A D=180^{\circ}-120^{\circ}=60^{\circ}$
Now $\angle \mathrm{DCT}=\angle \mathrm{CAD}$ (angles in the alternate segment)
$\therefore \angle \mathrm{DCT}=60^{\circ}$
(c)

On completing the given table, we get:

Date	Particulars	Withdrawls	Deposit	Balance
Feb8	B/F	-	-	$₹ 8500$
Feb 18	To self	$₹ 4000$	-	$₹ 4500$
April 12	By cash	-	$₹ 2230$	$₹ 6730$
June 15	To self	$₹ 5000$	-	$₹ 1730$
July 8	By cash	-	$₹ 6000$	$₹ 7730$

Principal for the month of $\mathrm{Feb}=₹ 4500$
Principal for the month of March $=₹ 4500$
Principal for the month of April = ₹ 4500
Principal for the month of May $=₹ 6730$
Principal for the month of June $=₹ 1730$
Principal for the month of July $=₹ 7730$
Total Principal for 1 month

$$
=₹(4500+4500+4500+6730+1730+7730)=₹ 29690
$$

$$
P=₹ 29690, T=\frac{1}{12} \text { years, } R=6 \%
$$

$$
\therefore \text { Interest }=\frac{\mathrm{P} \times \mathrm{R} \times \mathrm{T}}{100}
$$

$$
=\frac{29690 \times 6 \times 1}{100 \times 12}
$$

$$
=\text { Rs } 148.45
$$

Sol. 7
(a) The vertices of $\triangle \mathrm{ABC}$ are $\mathrm{A}(3,5), \mathrm{B}(7,8)$ and $\mathrm{C}(1,-10)$.

Coordinates of the mid-point D of $B C$ are
$\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
$=\left(\frac{7+1}{2}, \frac{8+(-10)}{2}\right)$
$=\left(\frac{8}{2}, \frac{-2}{2}\right)$
$=(4,-1)$
Slope of $A D=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$=\frac{-1-5}{4-3}$
$=\frac{-6}{1}=-6$
Now, the equation of median is given by:
$y-y_{1}=m\left(x-x_{1}\right)$
$y-5=-6(x-3)$
$y-5=-6 x+18$
$6 x+y-23=0$
(b) Since, the shopkeeper sells the article for ₹ 1500 and charges sales-tax at the rate of 12%.
\therefore Tax charged by the shopkeeper $=12 \%$ of ₹ $1500=₹ 180$
VAT = Tax charges - Tax paid
₹ $36=$ ₹ 180 - Tax paid
Tax paid $=₹ 144$
If the shopkeeper buys the article ₹ x .
Tax on it $=12 \%$ on ₹ $\mathrm{x}=₹ 144$
$\Rightarrow \mathrm{x}=₹ 144 \times \frac{100}{12}=₹ 1200$
Thus, the price (inclusive of tax) paid by the shopkeeper $=₹ 1200+₹ 144=₹ 1344$.
(c)

Past Year Paper

(i) In $\triangle \mathrm{AEC}$, $\tan 30^{\circ}=\frac{\mathrm{AE}}{\mathrm{EC}}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{y}{x}$
$\Rightarrow y=\frac{x}{\sqrt{3}} \ldots .$.
In $\triangle \mathrm{DBA}$,
$\cot 60^{\circ}=\frac{\mathrm{BD}}{\mathrm{AB}}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{\mathrm{x}}{60}$
$\Rightarrow x=\frac{60}{\sqrt{3}}=20 \sqrt{3}=34.64 \mathrm{~m}$
Therefore, the horizontal distance between AB and $\mathrm{CD}=34.64 \mathrm{~m}$.
(ii) Substituting the value of x in (1),
$\Rightarrow \mathrm{y}=\frac{20 \sqrt{3}}{\sqrt{3}}=20 \mathrm{~m}$
\therefore Height of the lamp post $=C D=(60-20) \mathrm{m}=40 \mathrm{~m}$

Sol. 8

(a) $\left[\begin{array}{ll}x & 3 x \\ y & 4 y\end{array}\right]\left[\begin{array}{l}2 \\ 1\end{array}\right]=\left[\begin{array}{c}5 \\ 12\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}2 x+3 x \\ 2 y+4 y\end{array}\right]=\left[\begin{array}{c}5 \\ 12\end{array}\right]$
$\Rightarrow 2 \mathrm{x}+3 \mathrm{x}=5 \Rightarrow \mathrm{x}=1$
and $2 \mathrm{y}+4 \mathrm{y}=12 \Rightarrow \mathrm{y}=2$
(b) Sphere: R = 15 cm

Cone : $\mathrm{r}=2.5 \mathrm{~cm}, \quad \mathrm{~h}=8 \mathrm{~cm}$
Let the number of cones recasted be n.
$\therefore \mathrm{n} \times$ Volume of one cone $=$ Volume of solid sphere
$\Rightarrow \mathrm{n} \times \frac{1}{3} \pi \mathrm{r}^{2} \mathrm{~h}=\frac{4}{3} \pi \mathrm{R}^{3}$
$\Rightarrow \mathrm{n} \times(2.5)^{2} \times(8)=4 \times(15)^{3}$
$\Rightarrow \mathrm{n}=\frac{4 \times 15 \times 15 \times 15}{2.5 \times 2.5 \times 8}$
$\Rightarrow \mathrm{n}=270$
Thus, 270 cones were recasted.
(c) $x^{2}+(p-3) x+p=0$

Here, $A=1, B=(p-3), C=p$
Since, the roots are real and equal, $D=0$
$\Rightarrow \mathrm{B}^{2}-4 \mathrm{ac}=0$
$\Rightarrow(\mathrm{p}-3)^{2}-4(1)(\mathrm{p})=0$
$\Rightarrow \mathrm{p}^{2}+9-6 \mathrm{p}-4 \mathrm{p}=0$
$\Rightarrow p^{2}-10 p+9=0$
$\Rightarrow(p-1)(p-9)=0$
$\Rightarrow \mathrm{p}=1$ or $\mathrm{p}=9$

Sol. 9
(a) Area of the quadrant $\mathrm{OACB}=$
$\frac{1}{4} \times \pi r^{2}$
$=\frac{1}{4} \times \frac{22}{7} \times 3.5 \times 3.5$
$=9.625 \mathrm{~cm}^{2}$
Area of the triangle $0 A D=$
$\frac{1}{2} \times$ base \times height
$=\frac{1}{2} \times 3.5 \times 2$
$=3.5 \mathrm{~cm}^{2}$
Shaded Area $=$ Area of quadrant OACB - area of triangle OAD

$$
\begin{aligned}
& =9.625-3.5 \mathrm{~cm}^{2} \\
& =6.125 \mathrm{~cm}^{2}
\end{aligned}
$$

(b) Number of white balls in the bag $=30$

Let the number of black balls in the box be x.
\therefore Total number of balls $=\mathrm{x}+30$
$P($ drawing a black ball $)=\frac{x}{x+30}$
$P($ drawing a white ball $)=\frac{30}{x+30}$
It is given that:
$\mathrm{P}($ drawing a black ball $)=\frac{2}{5} \times \mathrm{P}($ drawing a white ball $)$
$\Rightarrow \frac{x}{x+30}=\frac{2}{5} \times \frac{30}{x+30}$
$\Rightarrow \frac{x}{x+30}=\frac{12}{x+30}$
$\Rightarrow x=12$
Therefore, number of black balls in the box is 12 .
(c)

Class interval	Frequency (f)	Class mark (x)	$\mathrm{d}=\frac{\mathrm{x}-\mathrm{A}}{\mathrm{h}}(\mathrm{A}=55)$	fd
$20-30$	10	25	-3	-30
$30-40$	6	35	-2	-12
$40-50$	8	45	-1	-8
$50-60$	12	$\mathrm{~A}=55$	0	0
$60-70$	5	65	1	5
$70-80$	9	75	2	18
Total	50			-27

Here, $A=55, h=10$

$$
\begin{aligned}
\text { Mean } & =A+\frac{\sum \mathrm{fd}}{\sum \mathrm{f}} \times \mathrm{h} \\
& =55+\frac{-27}{50} \times 10 \\
& =55-5.4 \\
& =49.6
\end{aligned}
$$

Sol. 10
(a)
(i) Steps of constructions:
(a) Draw a line segment $\mathrm{BC}=6 \mathrm{~cm}$.
(b) At B , draw a ray BX making an angle of 120° with BC .
(c) From point B cut an arc of radius 3.5 cm to meet ray BX at C .
(d) Join AC.

ABC is the required triangle.
(ii)
(a) Bisect BC and draw a circle with BC as diameter.
(b) Draw perpendicular bisectors of $A B$. Let the two bisectors meet the ray of angle bisector of $\angle \mathrm{ABC}$ at point P . P is equidistant from AB and BC .
(iii) On measuring $\angle \mathrm{BCP}=30^{\circ}$

(b)

Marks	No. of Students	Cumulative Frequency
$0-10$	5	5
$10-20$	9	14
$20-30$	16	30
$30-40$	22	52
$40-50$	26	78
$50-60$	18	96
$60-70$	11	107
$70-80$	6	113
$80-90$	4	117
$90-100$	3	120

$$
\mathrm{n}=\frac{120}{2}=60
$$

(i) Through marks 60, draw a line segment parallel to x-axis which meets the curve at A . From A , draw a line perpendicular to x -axis meeting at B .

Median $=43$

(ii) Through marks 75, draw a line segment parallel to y-axis which meets the curve at D . From D , draw a line perpendicular to y -axis which meets y -axis at 110 .
Number of students getting more than $75 \%=120-110=10$ students
(iii) Through marks 40, draw a line segment parallel to y-axis which meets the curve at C . From C , draw a line perpendicular to y -axis which meets y -axis at 52.
Number of students who did not pass $=52$.

Past Year Paper

Sol. 11
(a) Let the coordinates of A and B be $(x, 0)$ and $(0, y)$ respectively.

Given P divides $A B$ is the ratio 2:3,
Using section formula, we have :
$-3=\frac{2 \times 0+3 \times x}{2+3}$
$4=\frac{2 \times y+3 \times 0}{2+3}$
$-3=\frac{3 x}{5}$
$4=\frac{2 y}{5}$
$-15=3 x$
$20=2 y$
$\mathrm{x}=-5$
$y=10$
Thus, the coordinates of A and B are $(-5,0)$ and $(0,10)$ respectively.
(b) $\frac{x^{4}+1}{2 x^{2}}=\frac{17}{8}$

Using componendo and dividendo,
$\frac{x^{4}+1+2 x^{2}}{x^{4}+1-2 x^{2}}=\frac{17+8}{17-8}$
$\Rightarrow \frac{\left(x^{2}+1\right)^{2}}{\left(x^{2}-1\right)^{2}}=\frac{25}{9}$
$\Rightarrow\left(\frac{x^{2}+1}{x^{2}-1}\right)^{2}=\left(\frac{5}{3}\right)^{2}$
$\Rightarrow \frac{x^{2}+1}{x^{2}-1}=\frac{5}{3}$
$\Rightarrow \frac{x^{2}+1+x^{2}-1}{x^{2}+1-x^{2}+1}=\frac{5+3}{5-3}$ (Using componendo and dividendo)
$\Rightarrow \frac{2 x^{2}}{2}=\frac{8}{2}$
$\Rightarrow x^{2}=4$
$\Rightarrow x= \pm 2$
(c) Original cost of each book $=₹ \mathrm{x}$
\therefore Number of books brought for $₹ 960=\frac{960}{x}$
In $2^{\text {nd }}$ case:
The cost of each book $=₹(x-8)$
Number of books bought for ₹ $960=\frac{960}{x-8}$
From the given information, we have:

Past Year Paper

$$
\begin{aligned}
& \frac{960}{x-8}-\frac{960}{x}=4 \\
& \Rightarrow \frac{960 x-960 x+960 \times 8}{x(x-8)}=4 \\
& \Rightarrow x(x-8)=\frac{960 \times 8}{4}=1920 \\
& \Rightarrow x^{2}-8 x-1920=0 \\
& \Rightarrow(x-48)(x+40)=0 \\
& \Rightarrow x=48 \text { or }-40
\end{aligned}
$$

But x can't be negative.
$\therefore \mathrm{x}=48$
Thus, the original cost of each book is ₹ 48 .

