Diplete - ET (OLD SCHEME)

Code Time			JUNE 2010		•	Subject: APPLIED MECHANICS Max. Marks: 100		
Qu spOu ca	iestic pace j it of arries	provided for it the remaining s 16 marks.	sory and carries 20 in the answer book EIGHT Questions,	suppl answ	s. Answer to Q.1 must blied and nowhere else. Ver any FIVE Questions Suitably assumed and st	. Each question		
Q.1	Cl	hoose the corre	t or the best alternative in the following: (2×10)					
	a.	Which of the following is not considered as the basic quantity?						
		(A) Length(C) Time		` ′	Mass Density			
	b.	The vectors are said to be equal if they have						
		(C) same mag	gnitude gnitude, same directio gnitude, different dire nagnitude, same direc	ection				
	c.	Newton's first law of motion gives the concept of						
		(A) Work(C) Inertia		, ,	Force Energy			
	d. A force which combines with two or more forces to produce equilibrium							
		(A) resultant(C) couple			equilibrium moment			
	e.	The time-accelline		ody m	oving with uniform accel	eration is a straight		
		(A) passing t(C) parallel t	hrough the origin. o time axis.		inclined to the time axis. parallel to acceleration a			
	f.		near momentum P ar he K.E. will have the		nslational kinetic energy	E. If momentum		

(C) 2E **(D)** 4E g. The apparent weight of a man in a lift is less than the real weight when the lift is going down _____. (A) freely **(B)** under the force of gravity (C) with some constant velocity **(D)** with some acceleration h. In SHM, the acceleration is proportional to ______. (B) linear velocity (A) displacement (C) time (D) rate of change of angular velocity A zero torque acting on a system will result in conservation of _____. (A) linear velocity **(B)** angular velocity (**D**) moment of momentum (C) angular momentum A solid particle covers equal distances around a circular path in equal intervals of time. Which of the following parameters connected with the motion of particle remains constant with time? (A) displacement **(B)** speed (C) velocity (D) acceleration Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks. **Q.2** a. Explain difference between fundamental & derived units. Which system of units is being followed in india these days? (6) b. Find the greatest and the least resultant of two forces whose magnitudes are 50 N and 30 N respectively by making the suitable assumptions in respect of their angle of inclination. (10)0.3 a. Describe the method of finding centre of gravity of an irregular body. **(6)**

(B) E

(A) 0.5E

(10)

b. Determine the position of the centroid of the section shown in Fig.1.

Q.4	a.	Define: (i) Coefficient of friction (ii) Angle of friction (iii) Angle of repose	(6)
	b.	A block of wood weighs 25 N. It can be just drawn along a table by a h force of 15 N, Find: (i) Co-efficient of friction, (ii) If the block is then loaded with another 10 N load, which least force	(10)
		be able to move the block?	
Q.5	a.	State and explain D'Alembert's principle.	(6)
	b.	A bullet weighing 2 N leaves the barrel of a gun with a velocity of 25 the impulse of force produced by the discharge of bullet when the force 0.2 s. Also find the average impulsive force.	
Q.6	a.	What do you understand by a self locking machine? State the conditio locking.	n for self (4)
	b.	The length of an inclined plane is 5 m. and its height is 2.5 m. If a force pulls a load of 600 N up the inclined plane, find: (i) Mechanical advantage; (ii) Velocity Ratio; and (iii) Efficiency of the machine.	of 400 N (6)
	c.	State Lami's theorem. What are the conditions of equilibrium of s coplanar forces?	ystem of (6)
Q.7	a.	Define: (i) Hooke's law. (ii) Modulus of rigidity. (iii) Bulk modulus of elasticity.	(6)

- b. The following observations were made during a tensile test on a mild steel specimen 40 mm diameter and 200 mm long. Elongation with 40 kN load (within limit of proportionality), δl =0.0304 mm, Yield load = 161 kN, maximum load = 242 kN, Length of specimen at fracture = 249 mm.
 (10)
 - (i) Young's modulus of elasticity.
 - (ii) Yield point stress.
 - (iii) Ultimate stress.
 - (iv) Percentage elongation.
- **Q.8** a. What assumptions are made while deriving the torsion equation? (6)
 - b. A solid steel shaft is subjected to a torque of 45 kNm. If the angle of twist is 0.5° per metre length of the shaft and the shear stress is not to be allowed to exceed 90 MN/m² find: (10)
 - (i) Suitable diameter for the shaft
 - (ii) Final maximum shear stress and angle of twist; and
 - (iii) Maximum shear strain in the shaft. Take: $C = 80 \text{ GN/m}^2$
- Q.9 a. Define Shear force and Bending moment diagrams. What are their salient features? (6)
 - b. A simply supported beam is carrying a u.d.l. of 2.5 kN/m over the right half portion of the beam. The length of the beam is 6 m. draw the S.F.D. and B.M.D. for the beam. (10)

