Code: D-02
Time: 3 Hours

## Subject: APPLIED MECHANICS

Max. Marks: 100

NOTE: There are 11 Questions in all.

- Question 1 is compulsory and carries 16 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.
- Answer any THREE Questions each from Part I and Part II. Each of these questions carries 14 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or best alternative in the following: (2x8)
a. A mass of 2 kg is acted upon by two forces of 6 N and 8 N at right angles to each other. Its acceleration would be:
(A) $3 \mathrm{~m} / \mathrm{s}^{2}$.
(B) $4 \mathrm{~m} / \mathrm{s}^{2}$.
(C) $5 \mathrm{~m} / \mathrm{s}^{2}$.
(D) None of these.
b. A free body diagram shows the body and
(A) the supports.
(B) the external forces.
(C) the internal forces.
(D) the internal and external forces.
c. The radius of gyration of a circular ring of mass $m$ and radius $r$ about its diameter would be
(A) $r$.
(B) $r / 4$.
(C) $r / 2$.
(D) $\mathrm{r} / \sqrt{2}$.
d. A block of weight $W$ is at impending slip on a rough inclined plane with angle $2 \theta$ to the horizontal. The coefficient of friction is $\mu$. If the angle of inclination is decreased to $\theta$, the friction force on the block would be
(A) $\mu W$.
(B) $\mu W \cos \theta$.
(C) $\mu W \cos 2 \theta$.
(D) $W \sin \theta$.
e. A car moving on a straight road travels 60 km with a speed of $20 \mathrm{~km} / \mathrm{h}$ and the next 60 km with a speed of $60 \mathrm{~km} / \mathrm{h}$. Its average speed would be
(A) $30 \mathrm{~km} / \mathrm{h}$
(B) $40 \mathrm{~km} / \mathrm{h}$
(C) $50 \mathrm{~km} / \mathrm{h}$
(D) none of these
f. A thin disc of mass $m$ and radius $R$ is rolling without slip on horizontal ground with constant angular velocity $\omega$. Its kinetic energy would be:
(A) $m R^{2} \omega^{2} / 4$.
(B) $m R^{2} \omega^{2} / 2$
(C) $3 m R^{2} \omega^{2} / 4$
(D) none of these.
g. If the diameter of a shaft is doubled its stiffness increases by a factor of
(A) 16
(B) 8
(C) 4
(D) none of these.
h. The section modulus of a beam depends on
(A) The material of the beam.
(B) The geometry of cross section.
(C) Both the material and geometry.
(D) none of these.


## PART I

Answer any THREE Questions. Each question carries 14 marks.
Q. 2 a. Determine the moment of the forces shown in Fig. 1 about the hinge O. (4)


Fig. 1
b. Determine the magnitude, direction and location on the beam for the

shown in Fig. 2

Fig. 2
(10)
Q. 3 a. Using the method of sections, determine the forces in the members BC and GC of the bridge truss shown in Fig.3.
(8)


Fig. 3

## C

## A

b. A two-member linkage has pin joints at A, B and C. Each member is 1 m long and has a weight of 100 N . Obtain the angle $\theta$ for equilibrium when a force of 50 N is acting at C as shown in Fig.4, using principle of virtual work.
(6)


Fig. 4
Q. 4 a. Determine the centroid of the shaded area shown in Fig.5.
(8)

b. For a plane lamina in the $x y$ plane show that $I_{z z}=$ $I_{x x}+I_{y y}$
Q. 5 a. A light ladder 5 m long rests on a rough horizontal floor and against a smooth vertical wall at an angle of $30^{\circ}$ to the wall. The coefficient of friction between the ladder and the horizontal surface is 0.4 . Determine the maximum distance ' $d$ ' along the ladder, which a man of 750 N can climb just before the ladder slips.
b. A load of 480 N is to be raised using a wheel and axle. The axle has a diameter of 10 cm and the wheel has a diameter of 40 cm . A force of 160 N is required to lift the load. Determine the mechanical advantage, velocity ratio, efficiency and the friction load of the machine.
(6)
Q. 6 a. A particle moves along the $x$ axis such that its velocity $v$ is given as $v=$ $\left(3 \mathrm{t}^{2}-6 \mathrm{t}\right) \mathrm{m} / \mathrm{s}$, where $t$ is the time in seconds. Initially at $t=0$, it is at the origin O . Determine the time at which the velocity changes sign. Find the distance travelled
during the time interval $t=0$ to $t=3.5 \mathrm{~s}$ and the average velocity and average speed during this time interval.
(8)
b. A racing car travels around a horizontal circular track of radius 100 m . If it increases its speed at a constant rate of $3 \mathrm{~m} / \mathrm{s}^{2}$, determine the acceleration when it is moving with a speed of $20 \mathrm{~m} / \mathrm{s}$. (6)

## PART II <br> Answer any THREE Questions. Each question carries 14 marks.

Q. 7 a. Two blocks A and B of mass 100 kg and 200 kg start from rest. Determine the acceleration of each block and the tension in the string. Neglect friction and mass of the pulley.
(10)


Fig. 6 b. A mass of 5 kg , at rest is acted upon by a horizontal impulse of 50 N. Determine the kinetic energy of the mass.
(4)
a. An aluminum bar of 50 mm diameter is subjected to a uniaxial load of 100 kN . The elongation is 0.3 mm over a gauge length of 300 mm and the diameter decreases by 0.015 mm . If the material is within elastic limit, calculate the Young's modulus and Poisson's ratio.
b. A weight of 100 kN is suspended from a roof by two aluminum rods each 5 m long as shown in Fig.7. The ends A, B and C of the rods are hinged and the included angle between the rods is $100^{\circ}$. If the working stress is 56 MPa , determine the diameter of the rods and the vertical deflection at B. Take Young's modulus $E=210 \mathrm{GPa}$.


Fig. 7
Q. 9 The shafts AB of 5 cm diameter, 4 m length and CD of 3 cm diameter, 3 m length, are connected by gears $P$ and $Q$ of pitch diameters 24 cm and 6 cm , respectively. The end A of the shaft is fixed and a twisting moment of $100 \mathrm{~N}-\mathrm{m}$ is applied at D. The shaft $A B$ is of steel and CD of brass. The modulus of rigidity of steel and brass are 80 GPa and 40 GPa , respectively. Determine the angle of rotation at D.
(14)


Fig. 8
Q

## Q. 10

A beam is supported and loaded as shown. Draw the S.F. and B.M. diagrams. Determine the maximum S.F., B.M. and their location. Locate the point of contraflexure. (14)

Q. 11

A cast iron girder of I- section shown is simply supported over a span of 4 m . Calculate the uniformly distributed load per metre length that can be carried, without the tensile stress exceeding 15 MPa . Also find the maximum compressive stress in the beam.


Fig. 10

