Code: DE23/DC23 CEMBER 2008 Time: 3 Hours

Subject: MATHEMATICS - II Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or best alternative in the following:

(2x10)

a. If
$$\left(\frac{1+i}{1-i}\right)^n = 1$$
, then n is equal to

(A) -1

(B) 1

(C) 2

- **(D)** 4
- b. If $\sin \theta = \tanh \phi$, then $\tan \theta$ is equal to
 - (A) $\sinh \Phi$

(B) cosh \$\phi\$

(C) sec ho

(D) cos ec ho

c.
$$\vec{A} \times (\vec{B} + \vec{C}) + \vec{B} \times (\vec{C} + \vec{A}) + \vec{C} \times (\vec{A} + \vec{B})$$
 is equal to

(A) A

(B) **B**

(C) **c**

(D) 0

d. If
$$|\vec{A} + \vec{B}| = |\vec{A} - \vec{B}|$$
, the angle between the \vec{A} and \vec{B} is

(A) 0°

(B) 45°

(C) 90°

(D) 135°

$$\begin{vmatrix} 1+a_1 & a_2 & a_3 \\ a_1 & 1+a_2 & a_3 \\ a_1 & a_2 & 1+a_3 \end{vmatrix}$$
 is equal to

- (A) $(1+a_1)(1+a_2)(1+a_3)$ (B) $1+a_1+a_2+a_3$
- (C) $3 + a_1 + a_2 + a_3$
- (D) $1 + a_1 a_2 + a_2 a_3 + a_3 a_1$

Code: A-20 Page 2 of 5

f. If inverse of
$$\begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$$
 is
$$\begin{bmatrix} 3 & 2 & K \\ 1 & 1 & 2 \\ 2 & 2 & 5 \end{bmatrix}$$
, then K is equal to

(A) 2 **(C)** 6

- **(B)** 4
- **(D)** 8
- g. The characteristic equation of 2
 - (A) $\lambda^2 6\lambda + 3 = 0$
- $(\mathbf{B}) \quad \lambda^2 + 6\lambda 3 = 0$
- (C) $\lambda^2 + 5\lambda + 2 = 0$
- (**D**) $\lambda^2 5\lambda 2 = 0$
- h. The period of sin x is
 - (A) $\frac{\pi}{2}$

(**B**) π

(C) $\overline{2}$

- (D) 2 TI
- i. The inverse Laplace transform of $\frac{1}{s(s+2)}$ is
 - (A) $\frac{1 e^{-2t}}{2}$

 $\mathbf{(B)} \ \frac{1+\mathrm{e}^{-2\mathrm{t}}}{2}$

- (D) $\frac{1+e^{2t}}{2}$
- The solution of the differential equation $\frac{d^2y}{dx^2} + 4y = e^{2x}$ is

 - (A) $y = c_1 \cos 4x + c_2 \sin 4x + e^{2x}$ (B) $y = c_1 \cos 4x + c_2 \sin 4x + \frac{e^{2x}}{8}$
 - (C) $y = c_1 \cos 2x + c_2 \sin 2x + \frac{e^{2x}}{8}$ (D) $y = c_1 \cos 2x + c_2 \sin 2x + e^{2x}$

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Code: A-20 Page 3 of 5

Q.2 a. Show that

$$(1+i)^n + (1-i)^n = 2^{\left(\frac{n}{2}+1\right)} \cos \frac{n\pi}{4}$$
 (8)

b. If tan(x + iy) = sin(u + iy), show that

$$\frac{\sin 2x}{\sinh 2y} = \frac{\tan u}{\tan hv} \tag{8}$$

- Q.3 a. The centre of a regular hexagon is at the origin and one vertex is given by 1+i on the Argand diagram. Find the remaining vertices. (8)
 - b. Show that the vectors $\vec{A} = 3i 2j + k$, $\vec{B} = i 3j + 5k$, $\vec{C} = 2i + j 4k$ form a right angled triangle. (8)

Q.4 a. The vertices of a quadrilateral are

 $\overline{A}(i+2j-k)$, $\overline{B}(-4i+2j-2k)$, $\overline{C}(4i+j-5k)$, $\overline{D}(2i-j+3k)$ At the point A the forces of magnitudes 2, 3, 2 gm wt. act along the line AB, AC, AD respectively. Find their resultant. (8)

b. Find a unit vector perpendicular to the plane of $\vec{A} = 4i + 3j + k$ and

$$\vec{\mathbf{B}} = 2\mathbf{i} - \mathbf{j} + 2\mathbf{k} \,. \tag{8}$$

Q.5 a. Evaluate

b. Use Cramer's rule to solve the equations

$$x + y + z = 4$$

$$x - y + z = 0$$

$$2x + y + z = 5$$
(8)

Q.6 a. Investigate for what values of λ and μ , the equations

$$x + y + z = 6$$
$$x + 2y + 3z = 10$$
$$x + 2y + \lambda z = \mu$$

have (i) no solution, (ii) a unique solution, (iii) an infinite number of solutions. (8)

b. Find the characteristic equation of the matrix

cteristic equation of the matrix
$$A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$$
 and hence find the inverse of the matrix A.

Q.7 a. Find the Laplace transform of

(8)

$$e^{-3t} \cdot \sin 5t \cdot \sin 3t$$
 (8)

b. Find the inverse Laplace transform of

$$\frac{s+2}{s^2 - 4s + 13} \tag{8}$$

Code: A-20 Page 5 of 5

Q.8 a. Use Laplace transform technique to solve

$$\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 3y = e^{-t}$$
given that $y = 0$, $\frac{dy}{dt} = 0$ at $t = 0$ (8)

b. Solve the differential equation

$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = e^{2x} + \cos 2x$$
 (8)

- Q.9 a. Define even and odd functions. Give two examples of each. (4)
 - b. Find the Fourier series expansion for the function

$$f(x) = x - x^2 \quad \text{for } -\pi < x < \pi. \tag{12}$$