Signature and Name of Invigilator	OM	IR Sheet No	. :				 .	
			(To	be fill	ed by	the C	Candi	idat
l. (Signature)		Roll No.						
(Name)		1011110.		20.00.	2011 0	dmiss		
			(In figur					
2. (Signature)	Rol	1 No		n wor				
(Name)			(1	II WOI	usj			
T 0=00	PAPER – II	Test Bo	oklet N	lo.				
T 9709								

0/00

COMPUTER SCIENCE AND

[Maximum Marks: 100 Time: $1\frac{1}{4}$ hours **APPLICATIONS**

Number of Pages in this Booklet: 8

Instructions for the Candidates

- 1. Write your roll number in the space provided on the top of this page.
- This paper consists of fifty multiple-choice type of questions.
- At the commencement of examination, the question booklet will be given to you. In the first 5 minutes, you are requested to open the booklet and compulsorily examine it as below:
 - To have access to the Question Booklet, tear off the paper seal on the edge of this cover page. Do not accept a booklet without sticker-seal and do not accept an open booklet.
 - Tally the number of pages and number of questions in the booklet with the information printed on the cover page. Faulty booklets due to pages/questions missing or duplicate or not in serial order or any other discrepancy should be got replaced immediately by a correct booklet from the invigilator within the period of 5 minutes. Afterwards, neither the question booklet will be replaced nor any extra time will be
 - (iii) After this verification is over, the Test Booklet Number should be entered in the OMR Sheet and the OMR Sheet Number should be entered on this Test
- 4. Each item has four alternative responses marked (A), (B), (C) and (D). You have to darken the oval as indicated below on the correct response against each item.

Example: (A) (B)

where (C) is the correct response.

- Your responses to the items are to be indicated in the Answer Sheet given **inside the Paper I booklet only**. If you mark at any place other than in the ovals in the Answer Sheet, it will not be evaluated.
- 6. Read instructions given inside carefully.
- 7. Rough Work is to be done in the end of this booklet.
- 8. If you write your name or put any mark on any part of the test booklet, except for the space allotted for the relevant entries, which may disclose your identity, you will render yourself liable to disqualification.
- 9. You have to return the test question booklet to the invigilators at the end of the examination compulsorily and must not carry it with you outside the Examination
- 10. Use only Blue/Black Ball point pen.
- 11. Use of any calculator or log table etc., is prohibited.
- 12. There is NO negative marking.

परीक्षार्थियों के लिए निर्देश

Number of Questions in this Booklet: 50

- 1. पहले पृष्ठ के ऊपर नियत स्थान पर अपना रोल नम्बर लिखिए।
- 2. इस प्रश्न-पत्र में पचास बहुविकल्पीय प्रश्न हैं।
- 3. परीक्षा प्रारम्भ होने पर, प्रश्न-पुस्तिका आपको दे दी जायेगी। पहले पाँच मिनट आपको प्रश्न-पुस्तिका खोलने तथा उसकी निम्नलिखित जाँच के लिए दिये जायेंगे जिसकी जाँच आपको अवश्य करनी है:
 - प्रश्न-पुस्तिका खोलने के लिए उसके कवर पेज पर लगी कागज की सील को फाड़ लें। खुली हुई या बिना स्टीकर-सील की पुस्तिका
 - कवर पष्ट पर छपे निर्देशानसार प्रश्न-पस्तिका के पष्ट तथा प्रश्नों की संख्या को अच्छी तरह चैक कर लें कि ये पुरे हैं। दोषपूर्ण पुस्तिका जिनमें पृष्ठ / प्रश्न कम हों या दबारा आ गये हों या सीरियल में न हों अर्थात किसी भी प्रकार की त्रृटिपूर्ण पुस्तिका स्वीकार न करें तथा उसी समय उसे लौटाकर उसके स्थान पर दूसरी सही प्रश्न-पुस्तिका ले लें। इसके लिए आपको पाँच मिनट दिये जायेंगे। उसके बाद न तो आपकी प्रश्न-पुस्तिका वापस ली जायेगी और न ही आपको अतिरिक्त समय दिया जायेगा।
 - (iii) इस जाँच के बाद प्रश्न-प्स्तिका की ऋम संख्या OMR पत्रक पर अंकित करें और OMR पत्रक की ऋम संख्या इस प्रश्न-पस्तिका पर
- 4. प्रत्येक प्रश्न के लिए चार उत्तर विकल्प (A), (B), (C) तथा (D) दिये गये हैं। आपको सही उत्तर के दीर्घवृत्त को पेन से भरकर काला करना है जैसा कि नीचे दिखाया गया है।

उदाहरण : (A) (B) (D) जबकि (C) सही उत्तर है।

5. प्रश्नों के उत्तर **केवल प्रश्न पत्र ! के अन्दर दिये गये** उत्तर-पत्रक पर ही अंकित करने हैं। यदि आप उत्तर पत्रक पर दिये गये दीर्घवृत्त के अलावा किसी अन्य स्थान पर उत्तर चिन्हांकित करते है, तो उसका मृल्यांकन नहीं होगा।

- 6. अन्दर दिये गये निर्देशों को ध्यानपूर्वक पढ़ें।
- 7. कच्चा काम (Rough Work) इस पुस्तिका के अन्तिम पृष्ठ पर करें।
- 8. यदि आप उत्तर-पुस्तिका पर अपना नाम या ऐसा कोई भी निशान जिससे आपकी पहचान हो सके, किसी भी भाग पर दर्शाते या अंकित करते हैं तो परीक्षा के लिये अयोग्य घोषित कर दिये जायेंगे।
- 9. आपको परीक्षा समाप्त होने पर उत्तर-पुस्तिका निरीक्षक महोदय को लौटाना आवश्यक है और परीक्षा समाप्ति के बाद अपने साथ परीक्षा भवन से बाहर न
- 10. केवल नीले / काले बाल प्वाईंट पैन का ही इस्तेमाल करें।
- 11. किसी भी प्रकार का संगणक (कैलकुलेटर) या लाग टेबल आदि का प्रयोग वर्जित है।
- 12. गलत उत्तर के लिए अंक नहीं काटे जायेंगे।

Computer Science and Applications

PAPER-II

Note: This paper contains **fifty** (50) objective-type questions, each question carrying **two** (2) marks. Attempt **all** of them.

Which of the following does *not* define a tree?

(A) A tree is a connected acyclic graph.

1.

	(B)	A tree is a connected graph with $n-1$ edges where 'n' is the number of vertices in the graph.								
	(C)		A tree is an acyclic graph with $n-1$ edges where 'n' is the number of vertices in							
	(D)	A tree is a graj	oh witl	n no cycles.						
2.		complexity of kes and 'e' edges:		's minimui	m spai	nning	tree algorithm	n on a gr	aph with	'n'
		O (n)		$O(n \log n)$	ı)	(C)	O ($e \log n$)	(D)	O (e)	
3.	If a c	code is <i>t</i> -error co	orrectir	ıg, the mini	mum]	Hamn	ning distance is	s equal to):	
	(A)	2t + 1	(B)	2 <i>t</i>		(C)	2t - 1	(D)	t-1	
4.	The (A) (C)	set of positive ir not a monoid a group	ntegers	under the	operat (B) (D)	not a	ordinary mult a group Abelian group	iplicatior	ı is :	
5.		set of 8 positive ainder when div	_		lways	exists	a pair of num	bers hav	ing the sa	me
	(A)	7	(B)	11		(C)	13	(D)	15	
6.	An e	example of a tau	tology	is:						
	(A)	x v y			(B)	$x \mathbf{v}$ ((~y)			
	(C)	<i>x</i> v (~ <i>x</i>)			(D)	(x =	$>y)\land(x<=y)$			
7.	Amo	ong the logic fan	nilies R	TL, TTL, E	CL and	d CMO	OS, the fastest	family is	:	
	(A)	ECL	(B)	CMOS		(C)	TTL	(D)	RTL	
8.	The	octal equivalent	of the	hexadecim	al nun	nber F	F is:			
	(A)	100	(B)	150		(C)	377	(D)	737	
9.	The	characteristic eq	uation	of a T flip	flop is	given	by:			
	(A)	$Q_{N+1} = TQ_N$			(B)	Q_{N+1}	$-1 = T + Q_N$			
	(C)	$Q_{N+1} = T \oplus Q_N$	I		(D)	Q_{N+1}	$-1 = \overline{T} + Q_N$			
J – 8	708				2					

10.	The i	idempotent law i	n Boo	lean algebra	says	that:			
	(A)	$\sim (\sim x) = x$	(B)	x + x = x		(C)	x + xy = x	(D)	x(x+y)=x
11.	for(i	t is the effect of that $i=1$; $i \le 5$; $i=i-t$ of the function of the functi	+ ½) 2, 2.5, 4, 5, a 4, 5, a	3, 3.5, 4, 4.5 and stops and repeats f	i, 5, ai	er	pps		
12.	char char Whic		ıg stat			lid sta (C)		(D)	p=&a[2];
13.	$\begin{cases} \text{int } a \\ \text{float} \\ r = b \end{cases}$	/a;} t is the value of r		ode :		(C)	2.0	(D)	0.0
14.	 Function overloading is a concept in which: (A) a function is used to implement lots of tasks at the same time. (B) a function is called too many number of times by another function. (C) a function provides common interface to the user to carry out possibly different functions in each call. (D) a function is computationally too expensive for the system to handle. 								
15.	 Which of the following is <i>true</i>? (A) A "static" member of a class cannot be inherited by its derived class. (B) A "static" member of a class can be initialized only within the class it is a member of. (C) A "static" member of a class can be initialized before an object of that class is created. (D) Since "static" member of a class is actually a global element, it does not require a class/object qualifier to access it independently of class/object. 								
16.		perkey for an ent	•	nsists of :					
	(A)	one attribute on	•		(B)		ast two attributes		
	(C)	at most two attr	ributes	5	(D)	one (or more attribute	S	

17.	Which of the following set of keywords constitutes a mapping in SQL?									
	(A)	SELECT, FROM, TABLE	(B)	SELI	ECT, FROM, V	WHERE				
	(C)	CONNECT, TABLE, CREATE	(D)	SELI	ECT, TABLE,	INSERT				
18.	If a	relation is in 2NF then :								
	(A)	every candidate key is a primary	key							
	(B)	every non-prime attribute is fully	y func	tionall	y dependent	on each r	elation key			
	(C)	every attribute is functionally in	depen	dent						
	(D)	every relational key is a primary	key							
19.	Whi	ch of the following is <i>true</i> ?								
	(A)	A relation in 3NF is always in BO	CNF							
	(B)	A relation in BCNF is always in	3NF							
	(C)	BCNF and 3NF are totally different	ent							
	(D)	A relation in BCNF is in 2NF but	t not i	n 3NF						
20.	(SEL	sider the query : SELECT student_ LECT rollno FROM student_marks ch of the following is <i>true</i> ?								
	(A)									
	(11)	same.								
	(B)	It gives all the names and roll no and semester 2 are same.	os of t	hose s	tudents whos	e marks i	n semester 1			
	(C)	It gives the names of all the students are same.	dents	whose	e marks in sei	mester 1 a	and semester			
	(D)	It gives roll numbers of all studer same.	its wh	ose ma	nrks in semest	er 1 and s	emester 2 are			
21.		ch of the following data structures	is mo	st effic	ient in terms	of both sp	ace and time			
		everse a string of characters?		(0)		(D)				
	(A)	Linked list (B) Stack		(C)	Array	(D)	Tree			
22.		ch of the following can be the seque searching for key 98 ?	ience	of nod	les examined	in a binar	y search tree			
	(A)	100, 50, 75, 60, 98	(B)	100,	120, 90, 95, 9	8				
	(C)	200, 70, 100, 95, 98	(D)	75, 1	50, 90, 80, 98					
23.	Whi	ch of the following is <i>true</i> for a son	rted li	st with	n 'n' elements	?				
	(A)	Insertion in a sorted array takes	consta	ant tin	ne.					
	(B)	Insertion in a sorted linear linked	d list t	akes c	onstant time.					
	(C)	Searching for a key in a sorted at	rray ca	an be	done in O(log	n) time.				
	(D)									

4

J - 8708

24.	terminals, printers and networks are called : (A) regular files (B) cha						used to model serial I/O devices such as character special files block special files			
25.	An e (A) (C)	example of a possi minimum size archive flag	ible fi	le attribute	is: (B) (D)	_	nanent flag DIC flag			
26.	The (A)	ATM cells are	(B)	bytes lo	ng.	(C)	64	(D)	69	
27.	For s (A)	slotted ALOHA, t 100%	he ma	aximum cha 50%	annel 1	utiliza (C)	ation is:	(D)	18%	
28.		a channel of 3 KF	Iz ba	ndwidth an	nd sigr	al to	noise ratio of 30	dB, tl	ne maximum	
	data (A)	rate is: 3000 bps	(B)	6000 bps		(C)	15000 bps	(D)	30000 bps	
29.	An example of a public key encryption algorithm is: (A) Caesar cipher algorithm (B) DES algorithm (C) AES algorithm (D) Knapsack algorithm									
30.		reference to hier let is :	archi	cal routing,	the op	otimu	m number of lev	vels for	an <i>m</i> router	
	(A)	m^2	(B)	m		(C)	ln m	(D)	\sqrt{m}	
31.	Assembler program is: (A) dependent on the operating system (B) dependent on the compiler (C) dependent on the hardware (D) independent of the hardware									
32.	In the indirect addressing scheme, the second part of an instruction contains: (A) the operand in decimal form (B) the address of the location where the value of the operand is stored (C) the address of the location where the address of the operand is stored (D) the operand in an encoded form									
33.	At th (A) (B) (C) (D)	ne end of parsing, tokens are ident set of instruction the syntactic gro machine instruc	ified. ns are oups a	are identifie						

34.	Dead-code elimination in machine code optimization refers to :											
	(A)											
	(B)											
	(C)	removal of fund				olved.						
	(D)	removal of a m	odule	after its use	•							
35.	Ара	arse tree is an an	notate	d parse tree	if:							
	(A)	it shows attribu	ıte val	ues at each	node.							
	(B)	there are no in	herited	d attributes.								
	(C)	it has synthesiz	ed no	des as termi	inal no	odes.						
	(D)	every non-term	inal n	odes is an i	nherit	ed att	ribute.					
36.	An example of a non-preemptive CPU scheduling algorithm is :											
	(A) Shortest job first scheduling.				(B)	Rou	nd robin sched	duling.				
	(C)	Priority schedu	ling.		(D)	Fair	share schedul	ing.				
37.	The	re are 'n' process	es in n	nemory. A	proce	ss spe	nds a fraction	'p' of its	time waiting			
	for I	/O to complete.	The C	CPU utilizati	on is	_	•					
	(A)	p^n	(B)	$1-p^n$		(C)	$(1-p)^n$	(D)	1-n p			
38.	An e	example of a mer	nory r	management	t syste	em cal	l in UNIX is :					
	(A)	fork.	(B)	mmap.		(C)	sigaction.	(D)	execve.			
39.	With 64 bit virtual addresses, a 4KB page and 256 MB of RAM, an inverted page tal											
	-	ires:										
	` '	8192 entries.			(B)		4 entries.					
	(C)	32768 entries.			(D)	6553	6 entries.					
40.	A computer has 6 tape drives with n' processes competing for them. Each process may need two drives. For which values of n' is the system deadlock free?											
	•				es of 1		•					
	(A)	1	(B)	2		(C)	3	(D)	6			
41.		er fall model for		*				_				
	(A)	a top down ap	•		(B)		ttom up appro					
	(C)	a sequential ap	proac	h.	(D)	a co	nsequential ap	proach.				
42.	In software development, value adjustment factors include the following among others:											
	(A) the criticality of the performance and reusability of the code.											
	(B)	number of lines	s of co	de in the so	ftware	e.	-					
	(C)	number of tech	nical	manpower a	and h	ardwa	re costs.					
	(D)	•										

6

J - 8708

43 .	Whil	le designing the user interface, one	shou	uld:	
	(A)	use as many short cuts as possible	e.		
	(B)	use as many defaults as possible.			
	(C)	use as many visual layouts as pos	sible.	2.	
	(D)	reduce the demand on short-term	n men	mory.	
44.	In so	oftware cost estimation, base estima	ation	is related to:	
	(A)	cost of similar projects already co	mple	eted.	
	(B)	cost of the base model of the pres	ent p	project.	
	(C)	÷ /		÷	
	(D)	cost of the project under ideal sit	uatio	ons.	
45.	In cl	ean room software engineering:			
	(A)	only eco-friendly hardware is use	ed.		
	(B)	only hired facilities are used for c		=	
	(C)			9	
	(D)	implementation is done only after	r ensi	suring correctness.	
46.	Amd	lahl's law states that the maximun	n spe	eedup S achievable by a parall	el computer
		'p' processors is given by :			
		$S \le f + (1 - f)/p$		$S \le f/p + (1-f)$	
	(C)	$S \le 1/[f + (1-f)/p]$	(D)	$S \le 1/[1-f+f/p]$	
47.		n reference to cluster analysis in dat	ta mii	ning, a distance measure that i	s NOT used
	is:	T 1:1	(D)	36 1 0 10	
	(A)		` '	Manhattan distance.	
	(C)	Chebychev's distance.	(D)	Lee distance.	
48.		mobile communication system, a g			
	_	uency set, there is a buffer			
	(A)	one-cell (B) two-cells		(C) three-cells (D)	four-cells
49.	Iden	tify the <i>incorrect</i> statement:			
	(A)	The overall strategy drives the e-	comn	merce data warehousing strate	gy.
	(B)	Data warehousing in an e-comme	erce e	environment should be done i	n a classical
	(0)	manner.			
	(C)	E-commerce opens up an entirely			•
	(D)	E-commerce security threats can	be gr	rouped into three major catego	ries.
50.	Iden	tify the <i>incorrect</i> statement:			
	(A)	The ATM adaptation layer is not	servi	ice dependent.	
	(B)	Logical connections in ATM are i			
	(C)	ATM is a streamlined protocol w	ith m	ninimal error and flow control	capabilities.
	(D)	ATM is also known as cell relay.			
		- 0	O o -	-	

Space For Rough Work

J-8708 8