First Semester B.E. Degree Examination, Dec. 07 / Jan. 08 Engineering Mathematics - I

Time: 3 hrs.

Max. Marks:100

Note: Answer any Eight questions from question no. 1 to 12 and Six questions from question no. 13 to 21.

- 1 Derive an expression for the angle between the lines whose direction ratios are a, b, c and a', b', c'. (05 Marks)
- 2 Find the image of the point (2, -1, 3) in the plane 2x + 4y + z 24 = 0. (05 Marks)
- 3 If $u = \frac{\sinh^{-1} x}{\sqrt{1+x^2}}$, show that

$$(1+x^2)y_{n+2} + (2n+3)xy_{n+1} + (n+1)^2y_n = 0.$$
 (05 Marks)

4 If $y = (\sin^{-1} x)^2$ prove that

$$(1-x^2)y_{n+2} - (2n+1)xy_{n+1} - n^2y_n = 0$$
 (05 Marks)

- 5 Obtain the reduction formula for $\int_{0}^{7/2} \sin^{n} x dx$. (05 Marks)
- 6 If $U = (x^2 + y^2 + z^2)^{-1/2}$ prove that $U_{xx} + U_{yy} + U_{zz} = 0$. (05 Marks)
- A particle moves along the curve $x = 2t^2$, $y = t^2 4t$, z = 3t 5. Find the components of velocity and acceleration at time t = 1 in the direction i 2j + 2k. (05 Marks)
- 8 Show that the vector $\overrightarrow{F} = 2xyz^3 \overrightarrow{i} + x^2z^3 \overrightarrow{j} + 3x^2yz^2 \overrightarrow{k}$ is an irrotational vector field. Hence find the scalar ϕ such that $\nabla \phi = \overrightarrow{F}$. (05 Marks)
- 9 Examine the nature of the series $1 + \frac{2!}{2^2} + \frac{3!}{3^3} + \frac{4!}{4^4} + \dots$ (05 Marks)
- 10 Test the convergence of the series,

ii)
$$1 + \frac{1}{2} + \frac{1}{4} + \dots$$
 (05 Marks)

11 Solve the equation
$$(x+y)^2 \left(x\frac{dy}{dx} + y\right) = xy\left(1 + \frac{dy}{dx}\right)$$
. (05 Marks)

- 12 Obtain the conditions of convergence for the
 - i) binomial series and
 - ii) the exponential series. (05 Marks)
- 13 a. Show that the lines $\frac{x+1}{1} = \frac{y+1}{2} = \frac{z+1}{3}$ and x+2y+3z-8=0=2x+3y+4z-11 intersect. Find their point of intersection. (05 Marks)

(05 Marks)

13 b. Find the points on the lines L_1 and L_2 which are nearest to each other and hence find the shortest distance between them where,

$$L_1: \frac{x+3}{2} = \frac{y-6}{3} = \frac{z-3}{-2}$$
 and $L_2: \frac{x}{2} = \frac{y-6}{2} = \frac{z}{-1}$ (05 Marks)

- 14 a. Show that the angle between the polar curves $r = a(1 + \cos \theta)$ and $r^2 = a^2 \cos 2\theta$ is $3\sin^{-1}(\frac{3}{4})^{\frac{1}{4}}$. (05 Marks)
 - b. If $u = \sin^{-1}(x y)$ where x = 3t, $y = 4t^3$ show that the total derivative of u with respect to 't' is $\frac{3}{\sqrt{1 t^2}}$. Verify the result by direct substitution. (05 Marks)
- 15 a. If $u = x^2 2y^2$ and $v = 2x^2 y^2$ where $x = r\cos\theta$ and $y = r\sin\theta$, show that $\frac{\partial(u, v)}{\partial(r, \theta)} = 6r^3 \sin 2\theta.$ (05 Marks)
 - b. The focal length of a mirror is given by the formula $\frac{1}{v} \frac{1}{u} = \frac{2}{f}$. If equal errors 'e' are made in the determination of u and v, show that the resulting relative error in f is $e\left(\frac{1}{u} + \frac{1}{v}\right)$.
- 16 a. Obtain the reduction formula for $I_n = \int \cos ec^n x dx$ and hence evaluate I_3 . (05 Marks)
 - b. Trace the curve $x^2(2a-y)=y^3$. (05 Marks)
- a. Find the entire length of the cardiod r = a(1 + cos θ).
 b. Find the volume of the reel shaped solid formed by the revolution about y-axis, of the part of the parabola y² = 4ax cut off by its latus rectum.
 (05 Marks)
 (05 Marks)
- 18 a. Find the angle between the normals to the surface $xy = z^2$ at the points (4, 1, 2) and (3, 3, -3). (05 Marks)
 - b. Show that the vector field, $\overline{F} = (x^2 - yz)i + (y^2 - zx)j + (z^2 - xy)k$

is irrotational and find its scalar potential.

19 a. Test for convergence of the series, $\frac{2}{3} + \frac{2.4}{3.5} + \frac{2.4.5}{3.5.7} + \dots$ (05 Marks)

b. Find the nature of the series

$$\frac{1}{2} + \left(\frac{2}{3}\right) + \left(\frac{3}{4}\right)^2 x^2 + \left(\frac{4}{5}\right)^3 x^3 + \dots (x > 0)$$
 (05 Marks)

- 20 a. Solve $(x^2 + y^2)dx 2xydy = 0$. (05 Marks)
 - b. Solve $(1+y^2)dx = (\tan^{-1}y x)dy$. (05 Marks)
- 21 a. Solve (x+y+1)dx (2x+2y+3)dy = 0. (05 Marks)
 - b. Solve $\left(y^2 e^{xy^2} + 4x^3\right) dx + \left(2xy e^{xy^2} 3y^2\right) dy = 0$. (05 Marks)