First Semester B.E. Degree Examination, June / July 08 Engineering Mathematics

ime: 3 hrs.

ŀ

Max. Marks:100

Note: Answer any FIVE full questions, choosing at least one question from each part.

PART - A

a. Find the angle between any two diagonals of a cube.

(07 Marks)

- b. Find the image of the point P(2, -1, 4) in the plane 3x 3y + z = 6.
- c. Find the point of intersection of the lines.

(07 Marks)

 $\frac{x-4}{1} = \frac{y+3}{-4} = \frac{z+1}{7} \text{ and } \frac{x-1}{2} = \frac{y+1}{-3} = \frac{z+10}{8}.$ Also find the equation of the plane containing these lines (06 Marks)

a. Find the shortest distance and the equations of the line of shortest distance between the

$$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$$
 and $\frac{x-2}{3} = \frac{y-4}{4} = \frac{z-5}{5}$. (07 Marks)

- b. Find the equation of the right circular cone whose vertex is at the origin and the axis is the $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and the semi vertical angle is 30° . (07 Marks)
- c. Find the equation of the right circular cylinder whose axis is the line $\frac{x-1}{2} = \frac{y-2}{1} = \frac{z-3}{2}$ and the radius is 2 units. (06 Marks)

PART - B

a. Find the nth derivatives of e^x sin² x

(06 Marks)

b. If
$$y = x \log \frac{x-1}{x+1}$$
, prove that $y_n = (-1)^n (n-2)! \left[\frac{x-n}{(x-1)^n} - \frac{x+n}{(x+1)^n} \right]$. (07 Marks)

c. Find the angle of intersection of the curves $r = \frac{a\theta}{1+\theta}$ and $r = \frac{a}{1+\theta^2}$ (07 Marks)

a. If
$$u = \tan^{-1} \left(\frac{x^3 + y^3}{x - y} \right)$$
, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin 2u$ (06 Marks)

b. If
$$x = u(1-v)$$
 and $y = uv$ find $J' = \frac{\partial(x,y)}{\partial(u,v)}$ and $J = \frac{\partial(u,v)}{\partial(x,y)}$. Verify that $JJ' = 1$. (07 Marks)

c. In estimating the cost of a pile of bricks measured as 2 m × 15 m × 1.2 m, the tape is stretched 1% beyond the standard length. If the count is 450 bricks per cubic meter and the bricks cost Rs. 1,100 per thousand, find the approximate error in the cost. (07 Marks)

PART - C

a. Evaluate $\int_{\sqrt{4-x^2}}^{2} dx$.

(06 Mari

b. Establish reduction formula for $\int_{-\infty}^{\frac{\pi}{2}} \sin^m x \cos^n x dx$ where m and n are positive integer

(07 Mark

c. Trace the curve $y^2(a-x) = x^3, a > 0$

(07 Mark

a. Find the area bounded by a quadrant of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

(06 Mark

- b. Find the area of the surface formed by revolution of $y^2 = 4$ ax about its axis, by the a from the vertex to one end of the latus rectum.
- c. Find the volume of the solid formed by revolution of the cissoids $y^2 (2a x) = x^3$ about it asymptote. (07 Mark

7 a. Solve: $(x+1)\frac{dy}{dx} - y = e^{2x}(x+1)^2$.

(06 Marks

b. Solve: $(xy^3 + y)dx + 2(x^2y^2 + x + y^4)dy = 0$.

(07 Marks

c. Solve: $ydy + \sin^2(\frac{y}{y})xdy - ydx] = 0$.

(07 Marks

a. Show that the family of conics $\frac{x^2}{a^2+\lambda} + \frac{y^2}{b^2+\lambda} = 1$, where λ is a parameter, is selforthogonal.

(06 Marks

b. State D'Alebert's ratio test. Use it to test the convergence of -

$$\frac{3}{4+1} + \frac{3^2}{4^2+1} + \frac{3^3}{4^3+1} + ----$$

(07 Marks)

c. Define absolute convergence and conditional convergence. İs the series $1-\frac{1}{2\sqrt{2}}+\frac{1}{3\sqrt{3}}-\frac{1}{4\sqrt{4}}+---$ conditionally convergent?

(07 Marks)