Code: AE-06/ AC-04/ AT-04

JUNE 2007

Time: 3 Hours Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Choose the correct or best alternative in the following: **Q.1**

(2x10)

- a. Let u[n] be a unit step sequence. The sequence u[N-n] can be described as
 - $x[n] = \begin{cases} 1 & n < N \\ 0 & otherwise \end{cases}$ (A) $x[n] = \begin{cases} 1 & n < N \\ 0 & otherwise \end{cases}$ (B) $x[n] = \begin{cases} 1 & n \le N \\ 0 & otherwise \end{cases}$ (C) $x[n] = \begin{cases} 1 & n > N \\ 0 & otherwise \end{cases}$ (D) $x[n] = \begin{cases} 1 & n \ge N \\ 0 & otherwise \end{cases}$

Subject: SIGNALS & SYSTEMS

- b. A continuous-time periodic signal x(t), having a period T, is convolved with itself. The resulting signal is
 - (A) not periodic

- **(B)** periodic having a period T
- (C) periodic having a period 2T
- (**D**) periodic having a period T/2
- c. If the Fourier series coefficients of a signal are periodic then the signal must be
 - (A) continuous-time, periodic
- (B) discrete-time, periodic
- (C) continuous-time, nonperiodic
- (**D**) descrete-time, nonperiodic
- The Fourier transform of a signal $x(t) = e^{2t}u(-t)$ is given by
 - (A) $\frac{1}{2-j\varpi}$. (C) $\frac{1}{j2-\varpi}$

- $(B) \frac{2}{1 j\omega}$ $(D) \frac{2}{j2 \omega}$ $H(j\omega) = \frac{1}{2 + 2j\omega + (j\omega)^2}, \text{ maximum value of group delay is}$ For the function
 - **(A)** 1

(B) 1/2

(C) 2

- **(D)** 3
- A continuous-time signal x(t) is sampled using an impulse train. In terms of $X(j\omega)$, the Fourier transform of x(t), the spectrum of the sampled signal can be expressed as