PULEET - 2016

Important: Please consult your Admit Card/Roll No. slip before filling your Roll Number on the Test Booklet and Answer Sheet.

Roll No.	In Figure		In Words	S .
O.M.R. Ans	wer Sh	eet Serial No.	-	
Signature of Co	ındidate:		Signature	of Invigilator:
Time: 90 Mi		Number of Qu THE SEAL ON TH		Maximum Marks: 75 NTIL ASKED TO DO SO

INSTRUCTIONS:

- 1. Write your Roll No. on the Questions Booklet and also on the OMR Answer Sheet in the space provided and nowhere else.
- 2. Enter the Question Booklet Serial No. on the OMR Answer Sheet. Darken the corresponding bubbles with Black Ball Point/Black Gel Pen.
- Do not make any identification mark on the Answer Sheet or Question Booklet.
- 4. Please check that this Question Booklet contains 75 Questions. In case of any discrepancy, inform the Assistant Superintendent within 10 minutes of the start of Test.
- 5. Each question has four alternative answer (A,B,C,D) of which only one is correct. For each question, darken only one bubble (A or B or C or D), whichever you think is the correct answer, on the Answer Sheet with Black Ball Point/Black Gel Pen. There shall be negative marking for wrong answer, 1/4 of the marks of the question will be deducted for every wrong answer.
- 6. If you do not want to answer a question, leave all the bubbles corresponding to that question blank in the Answer Booklet. No marks will be deducted in such cases.
- 7. Darken the bubbles in the OMR Answer Sheet according to the Serial No. of the question given in the Question Booklet.
- 8. If you want to change an already marked answer, erase the shade in the darkened bubble completely.
- For rough work only the blank sheet at the end of the Question Booklet be used.
- 10. The University will provide logarithmic tables. Borrowing of log table or other material is not allowed.
- 11. The Answer Sheet is designed for computer evaluation. Therefore, if you do not follow the instructions given on the Answer Sheet, it may make evaluation by the computer difficult. Any resultant loss to the candidate on the above account, i.e. not following the instructions completely, shall be of the candidate only.
- 12. After the test, hand over the Question Booklet and the Answer Sheet to the Assistant Superintendent on
- 13. In no case the Answer Sheet, the Question Booklet, or its part or any material copied/noted from this Booklet is to be taken out of the examination hall. Any candidate found doing so would be expelled from the examination.
- 14. A candidate who creates disturbance of any kind or changes his/her seat or is found in possession of any paper possibly of any assistant or found giving or receiving assistant or found using any other unfair means during the examination will be expelled from the examination by the Centre Superintendent/Observer whose decision shall be final.
- 15. Communication equipment such as mobile phones, pager, wireless set, scanner, camera or any electronic/digital gadget etc., is not permitted inside the examination hall. Use of calculators is not
- 16. The candidates will not be allowed to leave the Examination Hall/Room before the expiry of the allotted time.

			(1076)			
1.		re the roots of $x^2 + ax$	of $x^2 + ax + \beta = 0$ and — + $b = 0$ are:	2,4 are the re	oots of	$x^2 + ax + b == 0 \text{ then}$
	A) -	-1,8	B) -2, -8	C) 2,-9		D) 1,9
2.	Which	of the follow	ing statements is true for	a square ma	trix A	of order n
	A) B) C) D)	Rank of A Rank of A	= n if and only if determ < n if and only if determ < n if and only if A is in < n if and only if the rov	inant $A \neq 0$ vertible		dependent
3.	In a tr	riangle ABC,	let a, b, c denote the	ne sides opp	oosite	to the angles A,B,C
	A Charles of the Control of the Cont		$eA = \pi/6$ and angle $B = \pi$			uals
	32.50	1:√3:2		B) 1:2:		
	C)	1:2:3		D) 1 : √2	2:3	
4.		int, on the cos s given by:	arve $y^2 = x$, the tangent	at which ma	kes an	angle of $\pi/4$ with the
		x = 1, y = 1 $x = \frac{1}{4}, y = \frac{1}{2}$		B) x= 4, D) x== 0		
5.	Which	of these is no	t a value of the slope of	the function	e ^x	
	A) 6	3	B) 1	C)-1		D) 0.0001
6.	For the	function f (x,	$y = 1 + 2x + 8y - x^2 - 2$	y ²		
	A)	(1, 2) is a po	int of maxima	B) (1,2)	is a poi	int of minima
	1000	21/2 12/2	oint of maxima			oint of minima
7.		of these $\frac{dy}{dx} + \frac{x}{1+x}$	is an integrating $y = 1 + x$	factor for	the	linear differentia
	A) (e ^x		B) $\frac{e^x}{1+x}$		
	C) e	$e^{x}(1+x)$		D) ex+x2	2	
8.	The per	rimeter of the	e curve $r = \cos \theta + \sin \theta$,	$0 \le \theta \le \pi$ is		
	A) ·	√2π	Β) 2π	C) π		D) $\sqrt{2\pi}$
9,	The cur	rvature of the	e curve $(x-2)^2 + (y-3)^2$	= 9 at the poi	int (5,3) on the curve is
	A)	1/5	B) 1/9	C) 1/3		D) 0

uniform velocity of 5 energy of its motion		line on a smooth horiz	ontal table. The total
A) 87.5x10 ⁻⁶ J C) 250x10 ⁻⁶ J		B) 25x10 ⁻⁶ J D) 62.5 x 10 ⁻⁶ J	
 The frequency and s difference between between them will be 	two adjacent particl	00Hz and 350m/s responses of the medium is	ectively. If the phase 60°, then distance
A) 0.7 cm	B) 12.0 cm	C) 70.0 cm	D) 120.0 cm
 Two Nicol prisms and 60°. The percentage 	e first crossed and the of light transmitted th	n one of them is rotated rough the Nicol prism	d through an angle of is:
A) 12.5%	B) 25.0%	C) 37.5%	D) 50.0%
14. Two cells, each of resistance R. The ma	emf E and internal r ximum energy delive	esistance r, are conne red by the cells to the c	cted in parallel with ircuit will be:
A) $\frac{E^2}{r}$	B) $\frac{4E}{r^2}$	C) $\frac{4E^{\lambda}}{r}$	D) $\frac{E^{2a}}{4\tau}$
 The potential differe volts while the curr power dissipated in t 	ent I flowing through	ument in AC circuit is h it is given as I = 2	given by V = 5cosωt sinωt amperes. The
A) 2.5W	B) 10W	C) 5W	D) 0W
16. A spectral line appe 550nm in the spectr velocity of the galax	rum of the light com	of 500nm in the laboring from a distant gal	ratory is observed as laxy. The recessional
A) $\sim 10^9$ cm/s C) $\sim 2 \times 10^9$ cm/s	's	B) ~3 x10 ⁹ cm/ D) ~0.5x10 ⁹ cm	
17. A photon of energy velocity of the electr	14.05eV ionizes the	e hydrogen atom in i atom will be:	its ground state. The
A) $4.0 \times 10^5 \text{m/s}$		B) 4.0x10 ⁶ m/s	
C) 8.0 x 10 ⁵ m/s		D) 9.9 x 10 ⁶ m/s	
18. The 88Ra ²³⁶ nucleu The daughter nucleu	as decays in a series l	by emission of 3α part	icles and a β particle
A) 83Bi ²²⁴	B) 84Po ²²⁴	C) 85At ²²⁰	D) 87Fr ²²³
5.07	(2)		

10. The directional derivative of the function $f(x, y, z) = xy^2 + yz^3$ at the point (2, -1,1) in the direction of the vector $\hat{i} + 2\hat{j} + 2\hat{k}$ is:

11. A solid sphere of mass 50 grams and diameter 2cm rolls, without sliding, with

C) -10/3

D) -11/3

B) 10/3

A) 11/3

	March Street Section 1		
 Silver crystal has separation between 	unit cell with Face atoms 0.288nm then la	Centered Cubic stru	cture. If inter-atomic
A) 0.204nm	B) 0.408nm	C) 10.0nm	D) 0.144nm
20. For a given therm temperature is 285°	ocouple, the cold jun C. The temperature of	ction temperature is inversion for this there	10°C and its neutral mocouple is:
A) 137.5°C	B) 560°C	C) 147.5°C	D) 570°C
21. When superposition is always	theorem is applied to	any circuit, the depe	ndant voltage source
A) Opened	B) Shorted	C) Active	D) None of these
22. The initial permeabi	ility of an iron rod is		
A) The permeal	oility almost in non-ma	onetized state	
	permeability of the iron		
	permeability of the iro		
	The state of the s		
D) The permean	bility at the end of the	od	
			4.1
23. Power factor of the	following circuit will b	e zero when the circui	it contains
A) Capacitance	only	B) Inductance o	nly
C) Either of A o	or B	D) Resistance or	nly
Section of the second			
 A current carrying of The force experience 	conductor placed in the ed on the conductor ac	e magnetic field as sh ts	own in figure below.
A) Upward		4	
B) Downward		~	Ĉ.
		4	Conducto
C) To the left		4.0	uct
D) To the right		-	9
		Flux lines	
 The instantaneous va Amp, for a phase sec 	alues of the currents in quence of ABC. The in	both phase B and C o stantaneous value of p	f a 3-ф system are 10 hase A is
A) 17.32 A	B) 10 A	C) 20 A	D) 34.64 A
 If in a transformer the voltage is reduced by 	he secondary turns are half, then the secondary	doubled and at the sa ary voltage will	ame time the primary
A) Be halved		B) Be four times	as high
C) Not change		D) Be reduced to	
		m, are reduced to	11 SERVICE ASSESSMENT

27. Three resistances, are connected to a three phase generator as shown in figure. What is the voltage value across each of the resistances R₁, R₂ and R₃ which have the same values?

A) 380 V

B) 380V/2 = 190V

C) $380V \times \sqrt{3} = 657V$

D) 380V/ √3 = 220 V

28. Voltage equation of a dc motor is

A) $V = E_b + I_a R_a$

B) $E_b = V + I_a R_a$

C) $V = E_{b/} I_a R_a$

D) $V = E_b + I_a^2 R_a$

29. The starting winding of a single-phase motor is placed in

- A) Rotor
- B) Stator
- C) Armature
- D) Field

30. If the readings of the two wattmeters in the 2-wattmeter method of power measurement are 4.5 kW and 3.5 kW respectively and the latter reading has been obtained after reversing the current coil of the wattmeter. What will be the total power in kW?

A) 1

- B) 3.5
- C) 4.5
- D) 8

31. In an unbiased p-n junction, the junction current at equilibrium is

- A) Due to diffusion of minority carriers only
- B) Due to diffusion of majority carriers only
- Zero, because equal and opposite drift and diffusion currents for electrons and holes cross the junction
- D) Zero, because no charges cross the junction

32. A small increase in collector reverse bias will cause

- A) A large increase in emitter current
- B) A large increase in collector current
- C) A large decrease in collector current
- D) Very small change in collector reverse saturation current

- 33. Early effect in BJT refers to
 - A) Base narrowing
 - C) Thermal runway

- B)Avalanche breakdown
- D) Zener breakdown
- 34. The power consumption is least in CMOS circuits as compared to NMOS and PMOS circuits. This is because, in CMOS
 - A) Both the transistors remain in off-state most of the time
 - B) Both the transistors go to on-state simultaneously only for a very short time during change of states.
 - C) Small voltages are required
 - D) High value resistors are used
- 35. In the circuit shown, the output voltage, Vo, is

- A) +3V
 - B) -3V
 - C) -7V
 - D) +7V
- 36. In a CRO which of the following is not a part of electron gun
 - A) Cathode
 - C) Accelerating anode

- B) Control grid
- D) X Y deflection plates
- 37. Suppose Vx = sin(t), Vy = cos(t) are applied to the horizontal and vertical effection plates respectively in X-Y mode. Which of pattern is formed on the CRO screen?
 - A) Ellipse

B) Circle

C) Line inclined at 45deg

- D) Sine Wave
- 38. When the output Y in the circuit below is "I", it implies that data has
 - A) Changed from "0" to "1"
 - B) Changed from "1" to "0"
 - C) Changed in either direction
 - D) Not changed

- 39. The household energy meter is
 - A) Indicating instrument
 - C) Integrating instrument

- B) Recording instrument
- D) None of these
- 40. According to the International Telecommunications Union an amplitude-modulated analog TV would be classified as
 - A) A3F
- B) J3E
- C) F2D
- D) G7E

```
41. In the following 'C' program, find out the error, if any?
        main()
               int i = 1;
               for (;;)
         printf("%d", i++);
           if(i>10)
           break;
             }
       A) The condition in for loop is must
       B) The two semicolons should be dropped
       C) The for loop should be replaced by while loop
       D) No error
42. What is the output of following 'C' program?
       main ()
              const int x=5:
              int*ptrx;
              ptrx= &x;
              *ptrx=10;
              printf("%d". x);
       A) 5
                                                                        D) Garbage Value
                             B) 10
                                                  C) Error
43. Consider the following program:
       main()
              int a,b,c;
              b=2:
              a=2 * (b++);
              c=2*(++b);
       Which of the following is correct?
       A) a=4,c=6
                             B) a=3,c=8
                                                                        D) a=4,c=8
```

44. Consider the following program;

What would be the output if choice ='R'?

A) RED

B) RED ERROR

C) RED WHITE BLUE ERROR

D) RED WHITE BLUE

45. Which of the following is correct statement related to L2 cache memory?

A) The L1 cache is always faster than L2 cache.

B) The L2 cache is used to mitigate the dynamic slowdown every time a L1 cache miss occurs.

C) L2 cache comes as on board only.

- D) In modern day computer, L2 cache is considered as internal cache.
- 46. What does the following 'C' statement declare? int (*f) (int*);
 - A) A function that takes an integer pointer as argument and returns an integer.
 - B) A function that takes an integer as argument and returns an integer pointer.
 - C) A pointer to a function that takes an integer pointer as argument and returns an integer.
 - D) A function that takes an integer pointer as argument and returns a function pointer
- 47. Consider the following 'C' function

```
void swap (int a, int b)

(
int temp;
temp = a;
```

a=b;

b=temp;

In order to exchange the values of two variables x and y:

- A) Call swap(x, y)
- B) Call swap(&x, &y)
- C) swap(x, y) cannot be used as it does not return any value
- D) swap(x, y) cannot be used as parameters are passed by value

48. Which of the follow	ving memories must be	refreshed many times	per second?		
A) Static RAMC) EPROM		B) Dynamic RAM D) ROM			
49. A computer progra what?	m that converts an enti	ire program into machi	ne language is called		
A) Interpreter		B) Simulator			
C) Compiler		D) Commander			
50. Kernel is that p	art of operating system	which			
A) Directly ma B) Indirectly n	kes interface with hard nakes interfaces with ha nakes interfaces with so	ware system ardware system			
51. In which cycle, cor	npression ratio is the h	ighest			
A) Diesel cycle		B) Brayton cycl	le		
C) Rankine cyc		D) Otto cycle			
52. Mollier diagram co	onsists of the following	components: -			
A) Enthalpy an C) Enthalpy an	d volume	B) Temperature D) Enthalpy and	and entropy d temperature		
53. Which of the follo	wing materials has zero	ductility?			
A) Steel	B) Brass	C) Cast iron	D) Chalk		
54. A material has Po	isson's ratio 0.25. The	ratio of its Young's m	odulus to modulus of		
A) 1.5	B) 1.25	C) 2.5	D) l		
55. Hooke's law is val	id for				
A) Ductile mat	erials	B) Brittle mate	rials		
C) Isotropic ma		 D) Isotropic and homogeneous materials 			
56. The equivalent beam of and twisting mo	nding moment in case oment T, is:	of a shaft being subject	ed to bending moment		
A) $\frac{1}{2}[M + \sqrt{M^2}]$	+ T ²]	$\mathrm{B})\tfrac{1}{2}\sqrt{M^2+T^2}$			
C) $\sqrt{M^2 + T^2}$		$D)\frac{1}{2}\big[M-\sqrt{M^2}$	$T + T^2$		
57. Stoke is the unit o	f				
A) Kinematic	viscosity	B) Dynamic vi D) Power of a			

58. Pilot tube is used to measure		
A) Pressure difference C) Velocity of flowing liquid	B) Surface tension D) Acceleration of	flowing liquid
59. For subsonic velocity, Mach number is		
A) Equal to one C) Less than one	B) Equal to zero D) Greater than one	8
60. The variation of shear stress with respect	to radius in a circular shaf	t is shown by a
A) Parabola C) Cubic curve	B) Straight line D) Hyperbola	
61. As per IS-456 Nominal Maximum size o	f coarse aggregate in no ca	se greater than:
A) One-fourth of the minimum thickne B) One-third of the minimum thickne C) One-fifth of the minimum thickne D) One-fifth of the spacing of reinfor	ss of the member	
62. The pH value of water for the construction	on purpose:	
A) Shall not be less than 6	B) Shall not be less	s than 6.5
C) Shall not be more than 8	D) Shall be equal t	0.7
63. The degree of workability of concrete concrete is:	for the pumpable condit	ion for placing of
A) High B) Medium	C) Very High	D) Low
64. Minimum Period for striking off the pro	ops of formwork to slabs s	panning over 4.5m
A) 7 days B) 3 days	C) 14 days	D) 10 days
65. Minimum cement content for M20 grade	of concrete shall be:	
A) 250 kg/m ³ of concrete C) 220 kg/m ³ of concrete	B) 260 kg/m ³ of co D) 240 kg/m ³ of co	
66. The order of booking dimensions is:		
A) Length, breadth, height	B) Breadth, length	, height
C) Height, breadth, length	D) None of these	
67. As per Indian Standard Specifications, capita per minute, is taken:	the peak discharge for dor	nestic purposes per
A) 1.80 litres for 5 to 10 users	B) 1.20 litres for 1	5 users
C) 1 35 for 20 users	D) All the above	

68. Pick up the item of w	ork not included in the	plinth area estimate:	
A) Wall thicknes	s	B) Verandah area	
C) Courtyard are	a	D) None of these	
69. Brick walls are meas	ured in sq. m if the thic	kness of the wall is:	
A) 10cm		B) 20cm	
C) 15cm		D) None of these	
70. The height of the sir	ak of wash basin above	floor level is kept:	
A) 60 cm		B) 70 to 75 cm	
C) 80cm		D) 75 to 80 cm	
71. All sources of water constitute:	such as the oceans, lak	es, rivers and undergro	und water togeth
A) Hydrosphere		B) Atmosphere	
C) Lithosphere		D) Biosphere	
72. The interdependence environment is called		nisms among themsel	ves and with t
A) Ecology	B) Ecosystem	C) Biology	(D) Antology
73. The total area of Ind	ia is classified into follo	owing number of biogeo	ographical zones
A) Six	B) Eight	C) Nine	D) Ten
74. Which of the follow	ing is a Ramsar site in I	ndia?	
A) Sambar lake		B) Dal lake	
C) Ansupa lake		D) Dimna lake	
75. Vermicomposting is	a method of compostir	ng that involves	
A) Tapeworms C) Earthworms		B) Silkworms D) Leeches	

X-X-X

Panjab University, Chandigarh P.U.L.E.E.T.-2016 ANSWERS / KEY

1	2	3	4	5	6	7	8	9	10
A	D	A	С	C	A	В	A	С	D
11	12	13	14	15	16	17	18	19	20
Α	В	Α	С	D	В	Α	Α	D	В
21	22	23	24	25	26	27	28	29	30
С	Α	C	D	C	C	 D	Α	В	A
31	32	33	34	35	36	37	38	39	40
31	32	33	34	33	30	31	30	39	40
С	D	Α	В	С	D	В	Α	С	Α
41	42	43	44	45	46	47	48	49	50
D	В	D	С	Α	С	D	В	С	Α
51	52	53	54	55	56	57	58	59	60
Α	С	D	С	D	Α	Α	С	С	В
61	62	63	64	65	66	67	68	69	70
Α	Α	В	С	Α	Α	D	С	Α	D
71	72	73	74	75					
Α	В	D	Α	С					