

B.TECH DEGREE V SEMESTER EXAMINATION IN COMPUTER SCIENCE AND ENGINEERING, APRIL 2000

CS 505 AUTOMATA LANGUAGE

Time: 3 Hours

Maximum Marks: 100

L	The strings of balanced parentheses can be defined in atleast two ways -					
	(a)	A stri	ng w over alphabet {(,)} is balanced if and only if:			
		(i)	w has an equal number of ('s and) 's and			
		(ii)	any prefix of w has atleast as many ('s as) 's.			
	(b)	(i)	∈ is balanced; where ∈ - empty string			
		(ii)	If w is a balanced string, then (w) is balanced.			
	•	(iii)	If w and x are balanced strings, then so is wx.			
		(iv)	Nothing else is a balanced string.			
	Prove	by induc	tion on the length of a string that definitions			
		-	fine the same class of strings.	(20		
			OR			
IL.	(a) Distinguish between:					
		(i)	NFA and DFA			
		(ii)	NFA with E - transition and NFA without \in - transition.	(10		
	(b)	_				
	following languages over the alphabet {0, 1}.					
	(c)	The se	et of all strings such that every block of five			
		consec	cutive symbols contain atleast two 0's.			
	(d)	The se	at of all strings such that the 10th symbol from the			
		right e	nd is 1.	(10		

Prove that the class of languages accepted by pushdown

VIIL

(a)

Ш.	(a)	Prove that if L is accepted by a 2 DFA, then L is a regular set.	(10)
	(b)	Explain the closure properties of regular sets.	(10)
		OR	
IV.	(a)	State and prove Myhill - Nerode theorem.	(15)
	(b)	Define a Moore m/c and a Mealy machine.	(5)
V.	(a)	Let G be the grammar -	
		S → aB bA	
		$A \rightarrow a aS bAA$	
		$B \rightarrow b bS aBB$	
		For the string aaabbabbba find -	
		(i) Leftmost derivation	
		(ii) Rightmost derivation	
		(iii) Parse tree.	(6)
	(b)	Show that conversion to chomsky normal form can so	luare the
		number of productions in a grammar.	(10)
	(c)	What are the applications of a context-free language?	(4)
		OR	
VL	(a)	State and prove Greibach Normal Form.	(10)
	(b)	Explain the simplifications of context-free grammars.	(10)
VII.	(a)	Construct a PDA that accepts the language (ww ^R /wi	
	(b)	Explain the decision algorithms for CFL's.	(10)
		OR	(Contd3)

	(b)		ctly the class of context-free languages. Inditions for a PDA to be deterministic?	(1		
IX.	(a)	Design a Turing machine to recognise the language				
		$\{0^n 1^n 0^n \mid n \mid \geq 1$	} .	(1		
	(b)	Explain the model of a Turing machine.				
			OR			
X.	(a)	Explain the 'subroutine' simulation of a Turing machine.				
	(b)	Write short notes on the following:-				
		(i)	Multitape Turing Machine.			
		(ii)	Non-deterministic Turing Machine.			
		(iii)	Linear bounded automata.			
		(iv)	Multitrack Turing Machine.	(