AMIETE - ET/CS/IT (OLD SCHEME)

JUNE 2009

Code:

AE01/AC01/AT01

Subject: MATHEMATICS-I Time: 3 Hours Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following: (2×10)

A square matrix A is called orthogonal if

$$(\mathbf{A}) \quad \mathbf{A} = \mathbf{A}^2$$

(B)
$$A' = A^{-1}$$

(C)
$$AA^{-1} = I$$

(D)
$$AA' = 0$$

If every minor or order r of a matrix A is zero, then rank of A is

- (A) greater than r
- **(B)** equal to r
- (C) less than or equal to r
- (**D**) less than r

For any square matrix A, A'A is

(A) Hermitian

(B) Skew Hermitian

(C) Symmetric

(D) Skew Symmetric

If $u = x^y$, then $\overline{\partial x}$ is

(A) 0

(C) x y log x

(D) $x^{y} \log y$

 $\frac{\partial(u,v)}{\partial(x,y)} \times \frac{\partial(x,y)}{\partial(u,v)}$ equals

(A) 1

(B) -1

(C) zero

(**D**) none of these

f.
$$\int_{0}^{\pi/2} \frac{\sqrt{\sin x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx$$
 is equal to

(A)
$$\frac{\pi}{4}$$
 (B) $\frac{\pi}{2}$

(A)
$$/4$$
 (B) $/2$ (C) 1 (D) 0

h. The particular integral of
$$(D^2 + a^2)y = \sin ax$$
 is

(A)
$$-\frac{x}{2a}\cos ax$$
 (B) $\frac{x}{2a}\cos ax$ (C) $-\frac{ax}{2}\cos ax$ (D) $\frac{ax}{2}\cos ax$

(C)
$$-\frac{ax}{2}\cos ax$$
 (D) $\frac{ax}{2}\cos ax$

$$\int_{-1}^{1} P_n^2(x) dx$$
i. is equal to

(A)
$$\frac{2}{n+1}$$
 (B) $\frac{2}{2n+1}$ (C) $\frac{1}{2n+1}$ (D) $\frac{1}{2n-1}$

$$\lim_{\mathbf{i}, \quad \mathbf{n} \to \infty} \qquad \left\{ \frac{1}{\mathbf{n}} + \frac{1}{\mathbf{n}+1} + \frac{1}{\mathbf{n}+2} + \dots + \frac{1}{3\mathbf{n}} \right\}$$

(A)
$$\log_e 2$$
 (B) $2\log_e 2$ (C) $\log_e 3$ (D) $2\log_e 3$

Answer any FIVE Questions out of EIGHT Questions. Each Question carries 16 marks.

Q.2 a. Show that the given function are discontinuous at all the point (2,2).

$$f(x,y) = \begin{cases} \frac{x^2 + xy + x + y}{x + y}, & (x,y) \neq (2,-2) \\ 4, & (x,y) = (2,-2) \end{cases}$$
(8)

b. Find the percentage error in the computed areas of an ellipse when an error of 1% is made in measuring the major and minor axes.

(8)

Q.3 a. Find the minimum value of $x^2 + y^2 + z^2$ subject to the condition $xyz = a^3$.

b. Evaluate the integral
$$\stackrel{\textstyle \prod}{R}$$
 where R is the region bounded by the x axis, the line $y=2x$ and the parabola $y=\frac{x^2}{4a}$

- **Q.4** a. Solve $3 \frac{dy}{dx} + xy = xy^{-2}$. (8)
 - b. The initial value problem governing the current 'i' flowing in a series RL circuit $i\mathbb{R} + \mathbb{L}\frac{di}{dt} = t; t \geq 0, i\big(0\big) = 0$ when a voltage v(t) = t is applied, is given by and L are constants, find the current 'i' at the time t.
- Q.5 a. Find the general solution of the equation y"+3y'+2y = 2ex
 Wsing the method of variation of parameters.
 - b. Find the general solution of equation $y'' + 4y' + 3y = x \sin 2x$. (8)

Q.6 a. Find the inverse of A by Gauss-Jordan method, where
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$$
. (8)

$$A = \begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix}.$$
 (8)

- b. Find the eigen values and eigen vectors of the matrix
- Q.7 a. Given that $A = \begin{bmatrix} 0 & 1+2i \\ -1+2i & 0 \end{bmatrix}$, show that, $(I A)(I + A)^{-1}$ is a unitary matrix. (8)
 - b. Test for consistency and solve

$$5x + 3y + 7z = 4$$

 $3x + 26y + 2z = 9$
 $7x + 2y + 10z = 5$
(8)

- 9x(1-x) $\frac{d^2y}{dx^2}$ -12 $\frac{dy}{dx}$ +4y = 0 Q.8 a. Solve in the series the equation (8)
 - b. $\int J_3(x) dx = c J_2(x) \frac{2}{x} J_1(x).$ (8)

$$\int_{0}^{1} x J_{n}(\alpha x) J_{n}(\beta x) dx = \begin{bmatrix} 0, & \alpha \neq \beta \\ \frac{1}{2} [J_{n+1}(\alpha)]^{2}, & \alpha = \beta \end{bmatrix}.$$

Q.9 a. Show that

where
$$\alpha, \beta$$
 are the roots of $\operatorname{J}_{n}(x) = 0$.

 $I = \int\limits_{1}^{0} \int\limits_{-x}^{2-x} xy \ dxdy$ b. Change the order of integration in $\int\limits_{1}^{0} \int\limits_{-x}^{2-x} xy \ dxdy$ and hence evaluate the same. (8)