Qa

An Introduction to
Formal Languages
and Automata

Third Edition

Peter Linz
University of California at Davis

2] o yaloin obipiions bkt
i i ,—‘{;tma-‘m"uuwu/
] -~ hre

A 2y
MY TR

JONES AND -BARTLETT PUBLISHERS
Sudbury, Mussachusetts
BOSTON TORONTO LONDON SINGAPORE

World Headquarters Jones and Bartlett Publishers Jones and Bartlett Publishers

Jones and Bartlett Publishers Canada International

40 Tall Pine Drive 2406 Nikanna Road Barb House, Barb Mews
Sudbury, MA 01776 Mississauga, ON L5C 2W6 London W6 7PA
978-443-5000 CANADA UK

info@jbpub.com

www.jbpub.com

Copyright © 2001 by Jones and Bartlett Publishers, Inc.

All rights reserved. No part of the material protected by this copyright notice may be reproduced or
utilized in any form, electronic or mechanical, including photocopying, recording, or any information
storage or retrieval system, without written permission from the copyright owner.

Library of Congress Cataloging-in-Publication Data ' Q P‘

Linz, Peter. . .) 261 R 5

An introduction to formal languages and automata / Peter Linz.—-3" ed.

p.cm
Includes bibliographical references and index. ‘ ' L 5 é)
ISBN 0-7637-1422-4
1. Formal languages. 2. Machine theory. L Title. ZOO\

QA267.3 .L56 2000
511.3--de21 00-062546

Chief Executive Officer: Clayton Jones

Chief Operating Officer: Don W. Jones, Jr.

Executive Vice President and Publisher: Tom Manning
V.P., Managing Editor: Judith H. Hauck

V.P. College Editorial Director: Brian L. McKean
VP!, Design’ ElndeI'Odl‘lcthn \Anne pencer

V.P., Sales and” Marketmg Paul She CPardson

V.P,, Manufaetoring.and l’n‘venmry ontrol: Therese Briiuer
Senior Acquisitions Editor: Michacl §tranz
Development and Product Manager: }\my Rose
Marketing Director: Jennifer Tacobson

Production Coerdination: TrittiumProject Management
Cover Design: Night & Day Design

Composition: Northeast Compositors

Printing and Binding: Courier Westford

Cover printing: John Pow Company, Inc,

Cover Image © Jim Wehtje

This book was typeset in Textures 2.1 on a Macintosh G4. The font families used were Computer
Modern, Optima, and Futura. The first printing was printed on 50 Ib. Decision 94 Opaque.

Printed in the United States of America

04 03 02 01 'I()98765432\

l.d"'"’//."'iu‘

his book is designed for an introductory course on formal languages,

automata, computability, and related matters. These topics form

a major part of what is known as the theory of computation. A

course on this subject matter is now standard in the computer sci-
ence curriculum and is often taught fairly early in the program. Hence,
the prospective audience for this book consists primarily of sophomores and
Jjuniors majoring in computer science or computer enginecring,

Prerequisites for the material in this book are a knowledge of some
higher-level programming language (commonly C, C++, or Java) and fa-
miliarity with the fundamentals of data structures and algorithms. A course
in discrete mathematics that includes set theory, functions, relations, logic,
and elements of mathematical reasoning is essential. Such a course is part
of the standard introductory computer science curriculum.

The study of the theory of computation has several purposes, most im-
portantly (1) to familiarize students with the foundations and principles of
computer science, (2) to teach material that is useful in subsequent courses,
and (3) to strengthen students’ ability to carry out formal and rigorous
mathematical arguments. The presentation I have chosen for this text fa-

iii

iv

PREFACE

vors the first two purposes, although I would argue that it also serves the
third. To present ideas clearly and to give students insight into the material,
the text stresses intuitive motivation and illustration of ideas through ex-
amples. When there is a choice, T prefer arguments that are easily grasped
to those that are concise and elegant but difficult in concept. 1 state defini-
tions and theorems precisely and give the motivation for proofs, but often
leave out the routine and tedious details. I believe that this is desirable for
pedagogical reas®hs, Many proofs are unexciting applications of induction
or contradiction, with differences that are specific to particular problems.
Presenting such arguments in full detail is not only unnecessary, but inter-
feres with the flow of the story. Therefore, quite a few of the proofs are
sketchy and someone who insists on completeness may consider them lack-
ing in detail. 1 do not see this as a drawback. Mathematical skills are not
the byproduct of reading someone else’s arguments, but come from think-
ing about the essence of a problem, discovering ideas suitable to make the
point, then carrying them out in precise detail. The latter skill certainly
has to be learned, and I think that the proof sketches in this text provide
very appropriate starting points for such a practice.

Students in computer science sometimes view a course in the theory of
computation as unnecessarily abstract and of little practical conscquence.
To convince them otherwise, one needs to appeal to their specific interests
and strengths, such as tenacity and inventiveness in dealing with hard-to-
solve problems. Because of this, my approach emphasizes learning through
problem solving.

By a problem-solving approach, I mean that students learn the material
primarily through problem-type illustrative examples that show the moti-
vation behind the concepts, as well as their connection to the theorems and
definitions. At the same time, the examples may involve a nontrivial aspect,
for which students must discover a solution. In such an approach, homework
exercises contribute to a major part of the learning process. The exercises
at the end of each section are designed to illuminate and illustrate the ma-
terial and call on students’ problem-solving ability at various levels. Some
of the exercises are fairly simple, picking up where the discussion in the text
leaves off and asking students to carry on for another step or two. Other
exercises are very difficult, challenging even the best minds. A good mix
of such exercises can be a very effective teaching tool. To help instructors,
I have provided separately an instructor’s guide that outlines the solutions
of the exercises and suggests their pedagogical value. Students need not be
asked to solve all problems but should be assigned those which support the
goals of the course and the viewpoint of the instructor. Computer science
curricula differ from institution to institution; while a few emphasize the
theoretical side, others are almost entirely oriented toward practical appli-
cation. I believe that this text can serve either of these extremes, provided
that the exercises are sclected carefully with the students’ background and
interests in mind. At the same time, the instructor needs to inform the

PREFACE v

students about the level of abstraction that is expected of them. This is
particularly true of the proof-oriented exercises, When I say “prove that”
or “show that,” I have in mind that the student should think about how a
proof might be constructed and then produce a clear argument. How for-
mal such a proof should be needs to be determined by the instructor, and
students should be given guidelines on this early in the course.

The content of the text is appropriate for a one-semester course. Most
of the material can be covered, although some choice of emphasis will have
to be made. In my classes, I generally gloss over proofs, skimpy as they are
in the text. I usually give just enough coverage to make the result plausible,
asking students to read the rest on their own. Overall, though, little can
be skipped entirely without potential difficulties later on. A few sections,
which are marked with an asterisk, can be omitted without loss to later
material. Most of the material, however, is essential and must be covered.

The first edition of this book was published in 1990, the sccond appeared
in 1996. The need for yet another edition is gratifying and indicates that
my approach, via languages rather than computations, is still viable. The
changes for the second edition werce cvolutionary rather than revolutionary
and addressed the inevitable inaccuracies and obscurities of the first edition.
It seems, however, that the second cdition had reached a point of stability
that requires few changes, so the bulk of the third edition is identical to the
previous one. The major new feature of the third edition is the inclusion of
a set of solved exercises.

Initially, I fell that giving solutions to exercises was undesirable because
it limited the number of problems that can be assigned for homework. How-
ever, over the years I have received so many requests for assistance from
students everywhere that I concluded that it is time to relent. In this edi-
tion I have included solutions to a small number of exercises. I have also
added some new exercises to keep from reducing the unsolved problems too
much. In selecting exercises for solution, I have favored those that have
significant instructional values. For this reason, I give not only the answers,
but show the reasoning that is the basis for the final result. Many exercises
have the same theme; often I choose a representative case to solve, hoping
that a student who can follow the reasoning will be able to transfer it to a
set of similar instances. I believe that solutions to a carefully selected set
of exercises can help students increase their problem-solving skills and still
leave instructors a good set of unsolved exercises. In the text, exercises for
which a solution or a hint is given are identified with & .

Also in response to suggestions, I have identified some of the harder
exercises. This is not always easy, since the exercises span a spectrum of
difficulty and because a problem that seems easy to one student may give
considerable trouble to another. But there are some exercises that have
posed a challenge for a majority of my students. These are marked with
a single star (*). There are also a few exercises that are different from
most in that they have no clear-cut answer. They may call for speculation,

PREFACE

suggest additional reading, or require some computer programming. While
they are not suitable for routine homework assignment, they can serve as
entry points for further study. Such exercises are marked with a double star
(Fk),

Over the last ten years I have received helpful suggestions from numer-
ous reviewers, instructors, and students. While there are too many individ-
uals to mention by name, I am grateful to all of them. Their feedback has
been invaluable in my attempts to improve the text.

Peter Linz

Chapter 1
1.1

1.2

*1.3

Chapter 2
2.1

2.2

Introduction to the Theory of Computation
Mathematical Preliminaries and Notation 3
Sets 3
Functions and Relations 5
Graphs and Trees 7
Proof Techniques 9
Three Basic Concepts 15
Languages 15
Grammars 19
Automata 25
Some Applications 29

Finite Automata 35

Deterministic Finite Accepters 36
Deterministic Accepters and Transition Graphs
Languages and Dfas 38
Regular Languages 42

Nondeterministic Finite Accepters 47
Definition of a Nondeterministic Accepter 48
Why Nondeterminism? 52

vii

1

36

viii

CONTENTS

2.3

*2.4

Chapter 3
31

3.2

3.3

Chapter 4
4.1

4.2
4.3

Chapter 5
5.1

5.2

5.3

Equivalence of Deterministic and Nondeterministic Finite
Accepters 55
Reduction of the Number of States in Finite Automata 62

Regular Languages and Regular Grammars 71

Regular Expressions 71
Formal Definition of a Regular Expression 72
Languages Associated with Regular Expressions 73
Connection Between Regular Expressions and Regular
Languages 78
Regular Expressions Denote Regular Languages 78
Regular Expressions for Regular Languages 81
Regular Expressions for Describing Simple Patterns 85
Regular Grammars 89
Right- and Left-Linear Grammars 89
Right-Linear Grammars Generate Regular Languages 91
Right-Linear Grammars for Regular Languages 93
Equivalence Between Regular Languages and Regular
Grammars 95

Properties of Regular Languages 99

Closure Properties of Regular Languages 100
Closure under Simple Set Operations 100
Closure under Other Operations 103
Elementary Questions about Regular Languages 111
Identifying Nonregular Languages 114
Using the Pigeonhole Principle 114
A Pumping Lemma 115

Context-Free Languages 125

Context-Free Grammars 126
Examples of Context-Free Languages 127
Leftmost and Rightmost Derivations 129
Derivation Trees 130
Relation Between Sentential Forms and Derivation
Trees 132
Parsing and Ambiguity 136
Parsing and Membership 136
Ambiguity in Grammars and Languages 141
Context-Froe Grammars and Programming
Languages 146

CONTENTS ix

Chapter 6 Simplification of Context-Free Grammars 149

6.1 Methods for Transforming Grammars 150
A Useful Substitution Rule 150
Removing Useless Productions 152
Removing A-Productions 156
Removing Unit-Productions 158

6.2 Two Important Normal Forms 165
Chomsky Normal Form 165
Greibach Normal Form 168

*6.3 A Membership Algorithm for Context-Free Grammars 172

Chapter 7 Pushdown Automata 175

7.1 Nondeterministic Pushdown Automata 176
Definition of a Pushdown Automaton 176
A Language Accepted by a Pushdown Automaton 179

7.2 Pushdown Automata and Context-Free Languages 184
Pushdown Automata for Context-Free Languages 184
Context-Free Grammars for Pushdown Automata 189

7.3 Deterministic Pushdown Automata and Deterministic Context-

Free Languages 195
*7.4 QGrammars for Deterministic Context-Free Languages 200

Chapter 8 Properties of Context-Free Languages 205

8.1 Two Pumping Lemmas 206
A Pumping Lemma for Context-Free Languages 206
A Pumping Lemma for Linear Languages 210
8.2 Closure Properties and Decision Algorithms for Context-
Free Languages 213
Closure of Context-Free Languages 213
Some Decidable Properties of Context-Free
Languages 218 :

Chapter 9 Turing Machines 221

9.1 The Standard Turing Machine 222

Definition of a Turing Machine 222

Turing Machines as Language Accepters 229

Turing Machines as Transducers 232
9.2 Combining Turing Machines for Complicated Tasks 238
9.3 Turing’s Thesis 244

(CONTENTS

Chapter 10 Other Models of Turing Machines 249

10.1 Minor Variations on the Turing Machine Theme 250
Equivalence of Classes of Antomata 250
Turing Machines with a Stay-Option 251
Turing Machines with Semi-Infinitc Tape 253
The Off-Line Turing Machine 255

10.2 Turing Machines with More Complex Storage 258
Multitape Turing Machines 258
Multidimensional Turing Machines 261

10.3 Nondeterministic Turing Machines 263

10.4 A Universal Turing Machine 266

10.5 Lincar Bounded Automata 270

Chapter 11 A Hierarchy of Formal Languages and Automata 275

11.1 Recursive and Recursively Enumerable Languages 276
Languages That Are Not Recursively Enumerable 278
A Language That Is Not Recursively Enumerable 279
A Langunage That Is Recursively Enumerable But Not
Recursive 281
11.2 Unrestricted Grammars 283
11.3 Context-Sensitive Grammars and Languages 289
Context-Sensitive Languages and Linear Bounded
Automata 290
Relation Between Recursive and Context-Sensitive
Languages 292
114 The Chomsky Hierarchy 295

Chapter 12 Limits of Algorithmic Computation 299
12.1 Some Problems That Cannot Be Solved By Turing
Machines 300
The Turing Machine Halting Problem 301
Reducing One Undecidable Problem to Another 304
12.2 Undecidable Problems for Recursively Tinumerable
Languages 308
12.3 The Post Correspondence Problem 312
12.4 Undecidable Problems for Context-Free Languages 318

CONTENTS xi

Chapter 13 Other Models of Computation 323
13.1 Recursive Functions 325
Primitive Recursive Functions 326
Ackermann’s Function 330
13.2 Post Systems 334
13.3 Rewriting Systems 337
Markov Algorithms 339
L-Systems 340

Chapter 14 An Introduction to Computational Complexity 343

14.1 Efficiency of Computation 344

14.2 Turing Machines and Complexity 346

14.3 Language Families and Complexity Classes 350
14.4 The Complexity Classes P and NP 353

Answers to Selected Exercises 357
References 405

Index 407

INTRODUCTION TO
THE THEORY OF
COMPUTATION

ten have a marked preference for useful and tangible problems over
theoretical speculation. This is certainly true of computer science
students who are interested mainly in working on difficult applica-
tions from the real world. Theoretical questions are interesting to them only
if they help in finding good solutions. This attitude is appropriate, since
without applications there would be little interest in computers. But given
this practical orientation, one might well ask “why study theory?”

The first answer is that theory provides concepts and principles that
help us understand the general nature of the discipline. The field of com-
puter science includes a wide range of special topics, from machine design
to programming. The use of computers in the real world involves a wealth
of specific detail that must be learned for a successtul application. This
makes computer science a very diverse and broad discipline. But in spite
of this diversity, there are some common underlying prineiples. To study
these basic principles, we construct abstract models of computers and com-
putation. These models embody the important features that are common
to both hardware and software, and that are essential to many of the special
and complex constructs we encounter while working with computers. Even

C omputer science is a practical discipline. Those who work in it of-

LoV

Chapter 1 INTRODUCTION TO THE THEORY OF COMPUTATION
P

when such models are too simple to be applicable immediately to real-world
situations, the insights we gain from studying them provide the foundations
on which specific development is based. This approach is of course not
unique to computer science. The construction of models is one of the es-
sentials of any scientific discipline, and the usefulness of a discipline is often
dependent on the existence of simple, yet powerful, theories and laws,

A second, and perhaps not so obvious answer, is that the ideas we will
discuss have some immediate and important applications. The fields of
digital design, programming languages, and compilers are the most obvious
examples, but there are many others. The concepts we study here run
like a thread through much of computer science, from operating systemns to
pattern recognition.

The third answer is one of which we hope to convince the reader. The
subject matter is intellectually stimulating and fun. It provides many chal-
lenging, puzzle-like problems that can lead to some sleepless nights. This is
problem-solving in its pure essence. \

In this book, we will look at models that represent features at the core
of all computers and their applications. To model the hardware of a com-
puter, we introduce the notion of an automaton (plural, automata). An
automaton is a construct that possesses all the indispensable features of a
digital computer. It accepts input, produces output, may have some tem-
porary storage, and can make decisions in transforming the input into the
output. A formal language is an ahstraction of the general characteristics
of programming languages. A formal language consists of a set of symbols
and some rules of formation by which these symbols can be combined into
cntities called sentences. A formal language is the set of all strings per-
mitted by the rules of formation. Although some of the formal languages
we study here are simpler than programming languages, they have many of
the same essential features. We can learn a great deal about programming
languages from formal languages. Finally, we will formalize the concept
of a mechanical computation by giving a precise definition of the term al-
gorithm and study the kinds of problems that are (and are not) suitable
for solution by such mechanical means. In the course of our study, we will
show the close connection between these abstractions and investigate the
conclusions we can derive from them.

In the first chapter, we look at these basic ideas in a very broad way to
set the stage for later work. In Section 1.1, we review the main ideas from
mathematics that will be required. While intuition will frequently be our
guide in exploring ideas, the conclusions we draw will be based on rigor-
ous arguments. This will involve some mathematical machinery, although
these requirements are not cxtensive. The reader will need a reasonably
good grasp of the terminology and of the elementary results of set theory,
functions, and relations. Trees and graph structures will be used frequently,
although little is needed beyond the definition of a labeled, directed graph.
Perhaps the most stringent requirement is the ability to follow proofs and

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION 3

an understanding of what constitutes proper mathematical reasoning. This
includes familiarity with the basic proof techniques of deduction, induc-
tion, and proof by contradiction. We will assume that the reader has this
necessary background. Section 1.1 is included to review some of the main
results that will be used and to establish a notational common ground for
subsequent discussion.

In Section 1.2, we take a first look at the central concepts of languages,
grammars, and automata, These concepts occur in many specific forms
throughout the book. In Section 1.3, we give some simple applications of
these general ideas to illustrate that these concepts have widespread uses
in computer science. The discussion in these two sections will be intuitive
rather than rigorous. Later, we will make all of this much more precise; but
for the moment, the goal is to get a clear picture of the concepts with which
we are dealing.

w354 Mathematical Preliminaries and Notation

Sets

A set is a collection of clements, without any structure other than mem-
bership. To indicate that x is an clement of the set S, we write 2 € §S.
The statement that x is not in & is written z ¢ 5. A set is specified by
cnclosing some description of its elements in curly braces; for example, the
set of integers 0, 1, 2 is shown as

$=1{0,1,2}.

Ellipses are used whenever the meaning is clear. Thus, {a, b, ..., 2} stands for
all the lower-case letters of the English alphabet, while {2,4,6,...} denotes
the set of all positive even integers. When the need arises, we use more
explicit notation, in which we write

S={i:i>0,11is even} (1.1)

for the last example. We read this as “S is sct of all 4, such that 7 is greater
than zero, and 7 is even,” implying of course that 7 is an integer.

The usual set operations arc union (U), intersection (N), and differ-
ence (—), defined as

SiUS;={z:xe 8 orxelS},
S1NS;={x:z€ 8 and x € S},
S1—8Sy={x:rxeS andz ¢ S,}.

Another basic operation is complementation. The complement of
a set S, denoted by S, consists of all elements not in 5. To make this

Chapter 1 INTRODUCTION TO THE THEORY OF COMPUTATION

meaningful, we need to know what the universal set U of all possible
elements is. If U is specified, then

S={z:zeU, x¢8}.

The set with no elements, called the empty set or the null set is
denoted by &. From the definition of a set, it is obvious that

SUus=5—-@=2>_,

SNe =g,
B =1U,
5=25.
The following useful identities, known as the DeMorgan’s laws,
S1USz = 81N 8, (1.2)
S51NS;=8;US;, (1.3)

are needed on several occasions.
A set 97 is said to be a subset of S if every element of S is also an
element of §. We write this as

S C 8.

If S$; € S, but § contains an element not in 5, we say that $; is a proper
subset of §; we write this as

5. CS&S.

If $; and &5 have no common element, that is, 5; N 82 = @, then the sets
are said to be disjoint.

A set is said to be finite if it contains a finite number of elements;
otherwise it is infinite. The size of a finite set is the number of elements in
it; this is denoted by |5].

A given set normally has many subsets. The set of all subsets of a set
S is called the powerset of § and is denoted by 2%. Observe that 2° is a
set. of sets.

If 9 is the set {a, b, ¢}, then its powerset is

2% = {@7 {a’}) {b} ek, {(1'7 b}) {(L, (:} y {b) C} s {a’ b, C}} :

Here |S| = 3 and |2%| = 8. This is an instance of a general result; if S is
finite, then

25| = 2191,

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION 5

In many of our examples, the elements of a sct are ordered sequences of
elements from other sets. Such sets arc said to be the Cartesian product
of other sets. For the Cartesian product of two sets, which itself is a set of
ordered pairs, we write

S=5 x5y = {(:I:,y):wESl,yGSQ}.

\\\\\\\\\\\M\M\\Q{\\\Q\\\\W&\\\W T

LExample 1. Let S = {2,4} and S, = {2,3,5,6}. Then

81 x 8, =1{(2,2),(2,3),(2,5),(2,6),(4,2),(4,3),(4,5),(4,6)}.
Note that the order in which the elements of a pair are written matters.
The pair (4,2) is in 57 x Sz, but (2,4) is not.
The notation is extended in an obvious fashion to the Cartesian product

of more than two sets; generally

S1 xSy %x-x8,= {(.’[71,.’132,...,:137:,) ;€ 51}

Functions and Relations

A function is a rule that assigns to elements of one set a unique clement of
another set. If f denotes a function, then the first set is called the domain
of f, and the second sct is its range. We write

f:Sl—>SQ

to indicate that the domain of f is a subsct of S; and that the range of f
is a subset of S5. If the domain of f is all of 5}, we say that f is a total
function on S7; otherwise f is said to be a partial function.

In many applications, the domain and range of the functions involved
are in the set of positive integers. Furthermore, we are often interested only
in the behavior of these functions as their arguments become very large. In
such cases an understanding of the growth rates is often sufficient and a
common order of magnitude notation can be used. Let f(n) and g (n) be
functions whose domain is a subset of the positive integers. If there exists
a positive constant ¢ such that for all n

fn)<cg(n),

we say that f has order at most g. We write this as

f(n)=0(g(n)).

Chapter 1 INTRODUCTION TO THE THEORY OF COMPUTATION

If
[f (n)] z clg (n)],

then f has order at least ¢, for which we use
fFn)=Q(g(n)).
Finally, if there exist constants ¢; and ¢ such that
crlg ()] < 1f ()] € ezlg (n)],
f and g have the same order of magnitude, expressed as
fF(n)=0©(g(n).

In this order of magnitude notation, we ignore multiplicative constants
and lower order terms that become negligible as n increases.

Let

Then

fn)=0(g(n),
g(n) = (h(n)),
fn)y=0(h(n).
In order of magnitude notation, the symbol = should not be interpreted

as cquality and order of magnitude expressions cannot be treated like ordi-
nary cxpressions. Manipulations such as

O (n)+ O (n) =20 (n)

are not sensible and can lead to incorrect conclusions. Still, if used properly,
the order of magnitude arguments can be effective, as we will see in later
chapters on the analysis of algorithins.

Some functions can be represented by a set of pairs

{(f[/'hyl) (@2, y2) 50},

where x; is an element in the domain of the function, and y; is the corre-
sponding value in its range. For such a set to define a function, each z; can
occur at most once as the first element of a pair. If this is not satisfied, the

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION 7

set is called a relation. Relations are more general than functions: in a
function each element of the domain has exactly one associated element in
the range; in a relation there may be scveral such elements in the range.

One kind of relation is that of equivalence, a generalization of the
concept of equality (identity). To indicate that a pair (z, y) is an equivalence
relation, we write

x=y.

A relation denoted by = is considered an equivalence if it satisfies three
rules: the reflexivity rule

3]
i

z for all z,
the symmetry rule

if £ =y then y =z,
and the transitivity rule

ifz=yand y = z, then z = 2.

Consider the relation on the set of nonnegative integers defined by
=y,
if and only if
zmod 3 = ymod 3.

Then 2 =5, 12 =0, and 0 = 36. Clearly this is an equivalence relation, as
it satisfies reflexivity, symmetry, and transitivity.
|

Graphs and Trees

A graph is a construct consisting of two finite sets, the set V = {v1, va, ..., vn}
of vertices and the set E = {e1,¢a, ..., &, } of edges. Kach edge is a pair
of vertices from V, for instance

e; = (v5, Vk)

is an edge from v; to vy. We say that the edge e; is an outgoing edge for
v; and an incoming edge for vy. Such a construct is actually a directed
graph (digraph), since we associate a direction (from v; to vg) with each
edge. Graphs may be labeled, a label being a name or other information
associated with parts of the graph. Both vertices and edges may be labeled.

Figure 1.1

Chapter 1 INTRODUCTION 10 THE THEORY OF COMPUTATION

Graphs are conveniently visualized by diagrams in which the vertices
are represented as circles and the edges as lines with arrows connecting the
vertices. The graph with vertices {vy, v, v3} and edges {(v1,v3), (vs,v1),
(vs,v2), (v3,v3)} is depicted in Figure 1.1.

A sequence of edges (v, v;), (vj, 0x), . s (U, Un) 18 said to be a walk
from v; to v,. The length of a walk is the total number of edges traversed

in going from the initial vertex to the final one. A walk in which no edge

is repeated is said to be a path; a path is simple if no vertex is repeated.
A walk [rom v; to itself with no repeated edges is called a cycle with base
v;. If no vertices other than the base are repeated in a cycle, then it is said
to be simple. In Figure 1.1, (v1,v3), (v3, v2) is a simple path from v to vs.
The sequence of edges (vy,vs), (vs,v3), (v, v1) i8 a eycle, but not a simple
one. If the edges of a graph are labeled, we can talk about the label of &
walk. This label is the sequence of edge labels encountered when the path
is traversed. Finally, an edge from a vertex to itself is called a loop. In
Figure 1.1 there is a loop on vertex vs.

On several occasions, we will refer to an algorithm for finding all simple
paths between two given vertices (or all simple cycles based on a vertex).
If we do not concern ourselves with efficiency, we can use the following
obvious method. Starting from the given vertex, say v, list all outgoing
edges (vi,vg), (vi,m),.... At this point, we have all paths of length one
starting at v;. For all vertices vy, v, ... 80 reached, we list all outgoing edges
as long as they do not lead to any vertex already used in the path we are
constructing. After we do this, we will have all simple paths of length two
originating at v;,. We continue this until all possibilities are accounted for.
Since there are only a finite number of vertices, we will eventually list all
simple paths beginning at v;. From these we select those ending at the
desired vertex.

Trees are a particular type of graph. A tree is a directed graph that
has no cycles, and that has one distinct vertex, called the root, such that
there is exactly one path from the root to every other vertex. This defini-
tion implies that the root has no incoming edges and that there are some
vertices without outgoing edges. These are called the leaves of the tree. If
there is an edge from v; to v;, then v; is said to be the parent of v;, and
vj the child of v;. The level associated with each vertex is the number of
edges in the path from the root to the vertex. The height of the tree is the
largest level number of any vertex. These terms are illustrated in Figure 1.2.

Figure 1.2

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION 9

Root

—

yurs Height - 3

[)-Level3-Y

At times, we want to associate an ordering with the nodes at each level;
in such cases we talk about ordered trees.

More details on graphs and trees can be found in most books on discrete
mathematics.

Proof Techniques

An important requirement for reading this text is the ability to follow proofs.
In mathematical arguments, we employ the accepted rules of deductive rea-
soning, and many proofs arc simply a sequence of such steps. Two special
proof techniques are used so frequently that it is appropriate to review them
briefly. These are proof by induction and proof by contradiction.

Induction is a technique by which the truth of a number of statements
can be inferred from the truth of a few specific instances. Suppose we have a
sequence of statements P, Fs, ... we want to prove to be true. Furthermore,
suppose also that the following holds:

1. For some k > 1, we know that Py, Fs, ... , P, are true.

2. The problem is such that for any n > k, the truths of P, %, ... , B,
imply the truth of P,.4.1.

We can then use induction to show that every statement in this sequence is
true.

In a proot by induction, we argue as follows: From Condition 1 we know
that the first k statements are true. Then Condition 2 tells us that P41
also must be true. But now that we know that the first £+ 1 statements are
true, we can apply Condition 2 again to claim that Pri» must be true, and
so on. We need not explicitly continue this argument because the pattern is
clear. The chain of reasoning can be extended to any statement. Therefore,
every statement is true.

FINITE
AUTOMATA

& ur introduction in the first chapter to the basic concepts of computa-
* tion, particularly the discussion of automata, was brief and informal.
| At this point, we have only a general understanding of what an au-
tomaton is and how it can be represented by a graph. To progress,
we must be more precise, provide formal definitions, and start to develop
"'hourw(yl = rigorous results. We begin with finite accepters, which are a simple, spe-
cial case of the general scheme introduced in the last chapter. This type
of automaton is characterized by having no temporary storage. Since an
input file cannot be rewritten, a finite automaton is severely limited in its
capacity to “remember” things during the computation. A finite amount of
information can be retained in the control unit by placing the unit into a
specific state. But since the number of such states is finite, a finite automa-
ton can only deal with situations in which the information to be stored at
any time is strictly bounded. The automaton in Example 1.16 is an instance

of a finite accepter.

T

36

Chapter 2 FiniTE AUTOMATA

Deterministic Finite Accepters
The first type of automaton we study in detail are finite accepters that are

deterministic in their operation. We start with a precise formal definition
of deterministic accepters.

Deterministic Accepters and Transition Graphs

“\

SR

A deterministic finite accepter or dfa is defined by the quintuple

M= (sz’ 57 QOa-F))

where

Q is a finite sct of internal states,

¥ is a finite set of symbols called the input alphabet,

§:Q x ¥ — @ is a total function called the transition function,
go € @ is the initial state,

F C Q is a set of final states.

A deterministic finitc accepter operates in the following manner. Af
the initial time, it is assumed to be in the initial state ¢y, with its input
mechanism on the leftmost symbol of the input string. During each move
of the automaton, the input mechanism advances one position to the right,
so each move consumes one input symbol. When the end of the string is
reached, the string is accepted if the automaton is in one of its final states.
Otherwise the string is rejected. The input mechanism can move only from
left to right and reads exactly onc symbol on each step. The transitions
from one internal state to another are governed by the transition function
4. For example, if

(5((103(1) = {1,

then if the dfa is in state gy and the current input symbol is a, the dfa will
go into state ¢.

In discussing automata, it is essential to have a clear and intuitive
picture to work with. To visualize and represent finite automata, we use
transition graphs, in which the vertices represent states and the edges
represent transitions. The labels on the vertices are the names of the states,
while the labels on the edges arc the current values of the input symbol.
For example, if qp and ¢; are internal states of some dfa M, then the graph
associated with M will have one vertex labeled gy and another labeled g .
An edge (gg, ¢1) labeled a represents the transition § (go, @) = ¢1. The initial

Figure 2.1

Example 2.1

2.1 DETERMINISTIC FINITE ACCEPTERS 37

' e T
”\1;//

1

state will be identified by an incoming unlabcled arrow not originating at
any vertex. Final states are drawn with a double circle,

More formally, it M = (Q, %, §, o, F) is a deterministic finite accepter,
then its associated transition graph Gps has exactly || vertices, cach one
labeled with a different ¢; € . For every transition rule d (¢;, a) = g;, the
graph has an edge (g;, ¢;) labeled a. The vertex associated with go is called
the initial vertex, while those labeled with ¢ € F' are the final vertices.
It is a trivial matter to convert from the (@, %, 4, gu, F) definition of a dfa
to its transition graph representation and vice versa.

The graph in Figure 2.1 represents the dfa

M = ({QO»QlaQQ} » {03 1} 3 53 qo, {QI}) 3

where § is given by

6(q,0) =4qo, (g0, 1) =qu,
5((1170)2(10) 5((113):q27
(s(quO) = {2, 5((12’1) =ar-

This dfa accepts the string 01. Starting in state gp, the symbol 0 is read
first. Looking at the edges of the graph, we see that the automaton remains
in state gg. Next, the 1 is read and the automaton goes into state g1, We
are now at the end of the string and, at the same time, in a final state g;.
Therefore, the string 01 is accepted. The dfa does not accept the string 00,
since after reading two consecutive 0’s, it will be in state go. By similar
reasoning, we see that the automaton will accept the strings 101, 0111, and
11001, but not 100 or 1100, -

1
1

It is convenient to infroduce the extended transition function §* : @ x
¥* — Q. The second argument of §* is a string, rather than a single
symbol, and its value gives the state the automaton will be in after reading
that string. For example, if

§ (q07 a’) =M

38

Chapter 2 FINITE AUTOMATA

and
8 (q1,b) = g2,
then
&% (go, ab) = go.

Formally, we can define §* recursively by

'5*(q,/\)—q,. V1 (z.1)
(6% (g, wa) =& (67 rq w) , a). (2.2)

forallg € @, w €3, a €. Tosee why this is appropriate, let us apply
these definitions to the simple case above. First, we use (2.2) to get

0" (qo, ab) =9 (0" (q0,a),b). (2.3)
But -

6" (g0, a) = 6 (8" (g0, A) , @)
=4 (qO, a)
= g_l,:
Substituting this into (2.3), we get
9" (Q(ha'b) z5(1sb) Q2,

as expected.

Languages and Dfa’s

Having made a precise definition of an accepter, we are now ready to define
formally what we mean by an associated language. The association is ob-
vious: the language is the set of all the strings accepted by the automaton.

Pefinition;

The language accepted by a dfa M = (Q, %, 4, g, F') is the set of all strings
on X accepted by M. In formal notation,

L(M)={weX*:6(q,w) € F}.

2.1 DETERMINISTIC FINITE ACCEPTERS 39

Note that we require that §, and consequently §*, be total [unctions.
At each step, a unique move is defined, so that we arc justified in calling
such an automaton deterministic. A dfa will process cvery string in £* and
either accept it or not accept it. Nonacceptance means that the dfa stops
in a nonfinal state, so that

LM)y={wex*:§ (qg,'w)gé.F‘}.

Example 2.2

Figure 2.2

Consider the dfa in Figure 2.2

In drawing Figure 2.2 we allowed the use of two labels on a single
edge. Such multiply labeled edges are shorthand for two or more distinct
transitions: the transition is taken whenever the input symbol matches any
of the edge labels.

The automaton in Figure 2.2 remains in its initial state go until the
first b is encountered. If this is also the last symbol of the input, then the
string is accepted. Tf not, the dfa goes into state gz, from which it can never
escape. The state qu is a trap state. We see clearly from the graph that
the automaton accepts all strings consisting of an arbitrary number of a’s,
followed by a single b. All other input strings are rejected. In set notation,
the language accepted by the automaton is

L= {a"b:n>0}.

These examples show how convenient transition graphs are for working
with finite automata. While it is possible to base all arguments strictly on
the properties of the transition function and its extension through (2.1) and
(2.2), the results are hard to follow. In our discussion, we use graphs, which
are more intuitive, as far as possible. To do so, we must of course have some
assurance that we are not misled by the representation and thal arguments
based on graphs are as valid as those that use the formal properties of 4.
The following preliminary result gives us this assurance.

40

Theorem 2.1 |

Chapter 2 Finirre AUTOMATA

Let M = (Q,%,6,q0, F) be a deterministic finite accepter, and let Gas be
its associated transition graph. Then for every ¢;, ¢; € @, and w € 7,
6" (gi,w) = ¢; if and only if there is in Gy a walk with label w from g
to q;.

Proof: This claim is fairly obvious from an examination of such simple
cases as ixample 2.1. It can be proved rigorously using an induction on the
length of w. Assume that the claim is true for all strings v with |v| < n.
Consider then any w of length n + 1 and write it as

w = vaq.

Suppose now that 6* (g;,v) = . Since |v| = n, there must be a walk in
G labeled v from ¢; to gg. But if §* (¢;,w) = q;, then M must have a
transition & (g, @) = ¢;, so that by construction Gas has an edge (gx, g;)
with label a. Thus there is a walk in Gy labeled va = w between ¢; and
gj- Since the result is obviously true for n = 1, we can claim by induction
that, for every w € &7,

5 (g w) = g5 (2.4)

implies that there is a walk in G from ¢; to ¢; labeled w.

The argument can be turned around in a straightforward way to show
that the existence of such a path implies (2.4), thus completing the
proof. m

L STy E T
Sz

Again, the result of the theorem is so ir(l-‘r:uitively obvious that a formal
proof seems unnecessary. We went through the details for two reasons. The
first is that it is a simple, yet typical example of an inductive proof in con-
nection with automata. The second is that the result will be used over and
over, so stating and proving it as a theorem lets us argue quite confidently
using graphs. This makes our examples and proofs more transparent than
they would be if we used the properties of §*.

While graphs are convenient for visualizing automata, other represen-
tations are also useful. For example, we can represent the function § as a
table. The table in Figure 2.3 is equivalent to Figure 2.2. Here the row la-
bel is the current state, while the column label represents the current inpust
symbol. The entry in the table defines the next state.

It is apparent from this example that a dfa can easily be implemented as
a computer program; for example, as a simple table-lookup or as a sequence
of “if” statements. The best implementation or representation depends
on the specific application. Transition graphs are very convenient for the
kinds of arguments we want to make here, so we use them in most of our
discussions.

In constructing automata for languages defined informally, we employ
reasoning similar to that for programming in higher-level languages. But the

2.1 DETERMINISTIC FINITE ACCEPTERS 41

Figure 2.3 g | 4 i
9o 9o 7;
9 9, 93
9z 92 92

oo

TN
programming of a dfa is tedious and sometimes conceptually complicated
by the fact that such an automaton has few powerful features.

Find a deterministic finite accepter that recognizes the set of all strings on
% = {a, b} starting with the prefix ab.

The only issue here is the first two symbols in the string; after they
have been read, no further decisions need to be made. We can therefore
solve the problem with an automaton that has four states; an initial' state,
'two states:for recognizing ab ending in a final trap state, and one nonfinal
trap state. If the first symbol is an @ and the second is a b, the automaton
goes to the final trap state, where it will stay since the rest of the input
does not matter. On the other hand, if the first symbol is not an o or the
second one is not g b, the automaton enters the nonfinal trap state. The
simple solution is shown in Figure 2.4, -

Figure 2.4

—(LT

-

42

Figure 2.5

Chapter 2 FiNITE AUTOMATA

R,

8] o f Y 'S
) ol 00% \7(0\)00’(

Find a dfa that accepts all the strings on {0, 1}, except those containing the
substring 001.

In deciding whether the substring 001 has occurred, we need to know
not only the current input symbol, but we also need to remember whether
or not it has been preceded by one or two 0s. We can keep track of this by
putting the automaton into specific states and labeling them accordingly.
Like variable names in a programming language, state names are arbitrary
and can be chosen for mnermonic reasons. For example, the state in which
two (s were the immediately preceding symbols can be labeled simply 00.

If the string starts with 001, then it-must be rejected. This implies
that there must be a path labeled 001 from the initial state to a nonfinal
state. For convenience, this nonfinal state is labeled 001. This state must
be a trap state, because later symbols do not matter. All other states are
accepting states.

This gives us the basic structure of the solution, but we still must add
provisions for the substring 001 occurring in the middle of the input. We
must define ¢ and § so that whatever we need to make the correct decision
is remembered by the automaton. In this case, when a symbol is read, we
need to know some part of string to the left, for example, whether or not
the two previous symbols were 00. If we label the states with the relevant
symbols, it is very easy to see what the transitions must be. For example,

5(00,0) = 00,

because this situation arises only if there are three consecutive 0s. We are
only interested in the last two, a fact we remember by keeping the dfa in
the state 00. A complete solution is shown in Figure 2.5, We see from this
example how useful mnemonie labels on the states are for keeping track of
things. Trace a few strings, such as 100100 and 1010100, to see that the
solution is indeed correct. =

Regular Languages

Every finite automaton accepts some language. If we consider all possible
finite automata, we get a set of languages associated with them. We will call
such a set of languages a family. The family of languages that is accepted by
deterministic finite accepters is quite limited. The structure and properties

reaol e La/,‘

2.1 DETERMINISTIC FINITE ACCEPTERS 43

of the languages in this family will become clearer as our study proceeds;
for the moment we will simply attach a name to this family.

Defin i
R \\\M\w\\m k B

A language L is called regular if and only if there exists some deterministic
finite accepter M such that

L=L(M).

\\\\ \v\E\:\W \ e \‘5 i “@ﬁ\\y\
Example 2:

Show that the language
L= {(L'wa cw € {a, b}*}

is regular. To show that this or any other language is regular, all we have
to do is find a dfa for it. The construction of a dfa for this language is
similar to Example 2.3, but a little more complicated. What this dfa must
do is check whether a string begins and ends with an a; what is between is
immaterial. The solution is complicated by the fact that there is no explicit
way of testing the end of the string. This difficulty is overcome by simply
putting the dfa into a final state whenever the second a is encountered. If
this is not the end of the string, and another b is found, it will take the
dfa out of the final state. Scanning continues in this way, each a taking the
automaton back to its final state. The complete solution is shown in Figure
2.6. Again, trace a few examples to see why this works. After one or two
tests, it will be obvious that the dfa accepts a string if and only if it begins
and ends with an a. Since we have constructed a dfa for the language, we
can claim that, by definition, the language is regular. -

Example 2.6

Let L be the language in Example 2.5. Show that L? is regular. Again we
show that the language is regular by constructing a dfa for it. We can write
an explicit expression for L?, namely,

2= {awlaawga Twy,wa € {a, b}*} .

Therefore, we need a dfa thal recognizes two consecutive strings of essen-
tially the same form (but not necessarily identical in value). The diagram

44 Chapter 2 FINITE AUTOMATA ; /

Figure 2.6
\ A R

o \ (4 rﬁ

L4

a, &

in Figure 2.6 can be used as a starting point, but the vertex ¢g; has to be
modified. This state can no longer be final since, at this point, we must
start to look for a second substring of the form awa. To recognize the sec-
ond substring, we replicate the states of the first part (with new names),
with g3 as the beginning of the second part. Since the 'complete string can
be broken into its constituent parts wherever aa occurs, we let the first oc-
currence of two consecutive a’s be the trigger that gets the automaton into
its second part. We can do this by making § (g3,a) = g4- The complete
solution is in Figure 2.7. This dfa accepts L2, which is therefore regular.

)y
{ Lp——«—a .

- -

b Ga babg) 20 e e ' S
aa b7a ;)r'/'(_ﬁr\oa _‘,,,,,Cz___,.a :.u'- r‘fl) r,’._./___;/q rC)””

AL o& L
5 4 @

@b

2.1 DETERMINISTIC FINITE ACCEPTERS 45

The last example suggests the conjecture that if a language L is regular,
so are L2, L3, We will see later that this is indeed correct.

EXERCISES

1. Which of the strings 0001, 01001, 0000110 are accepted by the dfa in Figure
2.17

@For T = {a, b}, construct dfa’s that accept the sets consisting of
(a) all strings with exactly one a,
(b) all strings with at least one a,
(¢) all strings with no more thlam three a’s, #
(d) all strings with at least one a and exactly two b’s.
(e) all the strings with exactly two a’s and more than two b’s,

3. Show that if we change Figure 2.6, making g3 _a nonfinal state and making

go, q1, q2 final states, the resulting dfa accepts L.

4. Generalize the observation in the previous exercise. Specifically, show that if
M= (Q,%.,6,q0,F) and M = (Q, %, 6, g0, @ — F) are two dfa’s then L (M) =

L ().
&_;_ @ Give dfa’s for the languages
(a) L= {ab’wb* : w € {a,b}*} @
(b) L = {wiabws : w1 € {a,b}" , w2 € {a,b}"}

\Ei) Give a set notation description of the language accepted by the automaton
depicted in the following diagram. Can you think of a simple verbal charac-
terization of the language? ‘

@ Find dfa’s for the following languages on T = {a, b}.
(a) L={w: |w/mod3 =0} ®
(b) L = {w: |w|mod5 # 0}
(¢) L ={w:n,(w)mod3 > 1}
(d) L ={w: ng (w)mod3 > np (w) mod 3} ®

46 Chapter 2 FINITE AUTOMATA

"

*10.

11.
12.
13.

D
15.

16.
@

(©) L= {w: (na () —mp (w)) mod3 > 0} Note Fhat - jmas 2y
(f) L ={w: |n. (w) —np (w)| mod 3 < 2}

A run in a string is a substring of length at least two, as long as possible
and consisting entirely of the same symbol. For instance, the string abbbaab
contains a run of b's of length three and a run of a’s of length two. Find dfa’s
for the following languages on {a, b}.

(a) L = {w : w contains no runs of length less than four}

(b) L ={w: every run of a’s has length either two or three}

(¢) L ={w: there are at most two runs of a's of length three}

(d) L = {w: there are exactly two runs of a’s of length 3}

Consider the set of strings on {0, 1} defined by the requirements below. For
each construct an accepting dfa.

(a) Every 00 is followed immediately by a 1. For cxample, the strings
101, 0010, 0010011001 are in the language, but 0001 and 00100
are not. W

(b} all strings containing 00 but not 000.
(¢) The leftmost symbol differs from the rightmost one.

(d) Every substring of four symbols has at most two ()'s. For example,
001110 and 011001 are in the language, but 10010 is not since one
of its substrings, 0010, contains three zeros. &

(e) All strings of length five or more in which the fourth symbol from
the right end is different from the leftmost symbol.

(f) All strings in which the leftmost two symbols and the rightmost
two symbols are identical.

Construet a dfa that accepts strings on {0,1} if and only if the value of the
string, interpreted as a binary representation of an integer, is zero modulo five.
For example, 0101 and 1111, representing the integers 5 and 15, respectively,
are to be accepted.

Show that the language L = {vwv : v,w € {a,b}", |v| = 2} is regular.
Show that L = {a" : n > 4} is regular.
Show that the language L = {a™ : n 2 0,n # 4} is regular. ®

Show that the language L = {a™ : n =i + jk, i,k fixed, j =0,1,2,...} is reg-
ular.

Show that the set of all real numbers in C is a regular language.
Show that if L is regular, so is L — {A}.
Use (2.1) and (2.2) to show that

6" (g, wv) = 8" (8" (¢, w) ,v)

for all w,v € &".

18.

19.

20.
21.

22.

24.

2.2 NONDETERMINISTIC FINITE ACCEPTERS 47

Let L be the language accepted by the automaton in Figure 2.2, Find a dfa
that accepts L2,

let L be the language accepted by the automaton in Figure 2.2. Find a dfa
for the language L? — L.

Let I be the language in Example 2.5. Show that L* is regular.

Let GGum be the transition graph for some dfa M. Prove the following.

(a) If L (M) is infinite, then Gar must have at least one cycle for
which there is a path from the initial vertex to some vertex in

the cycle and a path from some vertex in the cycle to some final
vertex.

(b) If L (M) is finite, then no such cycle exists. @
Let us define an operation ¢runcate, which removes the rightmost symbol

from any string. Vor example, truncate (adiba) is aaab. The operation can
be extended to languages by

truncate (L) = {truncate (w) : w € L}.

Show how, given a dfa for any regular language L, one can construct a dfa for
truncate (L). From this, prove that if L is a regular language not containing
A, then truncate (L) is also regular.

- Let ¢ = apar++ Gn,y = bobi---bn,z2 = cpe1 -+ cn be binary numbers as

defined in Example 1.17. Show that the set of strings of triplets

an ai (2%
bo b T b s
<o (] Cn

where the a;, b;, ¢; are such that & 4+ y = 2 is a regular language.

While the language accepted by a given dfa is unigue, there are normally
many dfa’s that accept a language. Find a dfa with exactly six states that
accepts the same language as the dfa in Figure 2.4. &

Nondeterministic Finite Accepters

Finite accepters are more complicated if we allow them to act nondetermin-
istically. Nondeterminism is a powerful, but at firstsi mgh, unusual idea. We
normally think of computers as completely determlmstlc and the element of
choice séens out of place. Nevertheless, nondotormmism is a useful notion,
as we shall see as we proceed.

48

Chapter 2 FINITE AUTOMATA

Definition of a Nondeterministic Accepter

Nondeterminism means a choice of moves for an automaton. Rather than
prescribing a unique move in each situation, we allow a set of possible moves.
Formally, we achieve this by defining the transition function so that its range
is a set of possible states.

Dufinitiomdnim

A nondeterministic finite accepter or nfa is defined by the quintuple
M = (Q,E,ﬁ,(](),F),
where Q, %, qy, F' are defined as for deterministic finite accepters, but

5:Qx (ZU{A}) — 29,

Note that there are three major differences between this definition and
the definition of a dfa. In a nondeterministic accepter, the range of § is in
the powerset 29, so that its value is not a single element of @, but a subset
of it. This subset defines the set of all possible states that can be reached
by the transition. If, for instance, the current state is g;, the symbol a is
read, and

6 (q1,a) = {qo, g2} »

then either go or g could be the next state of the nfa. Also, we allow A
as the second argument of §. This means that the nfa can make a tran-
sition without consuming an input symbol. Although we still assume that
the input mechanism can only travel to the right, it is possible that it is
stationary on some moves. Finally, in an nfa, the set 4 (g;, a) may be empty,
meaning that there is no transition defined for this specific situation,

Like dfa’s, nondeterministic accepters can be represented by transition
graphs. The vertices are determined by @, while an edge (g;, ¢;) with label
a is in the graph if and only if § (¢;, @) contains g;. Note that since a may
be the empty string, there can be some edges labeled A.

A string is accepted by an nfa if there is some sequence of possible moves
that will put the machine in a final state at the end of the string. A string
is rejected (that is, not accepted) only if there is no possible sequence of
moves by which a final state can be reached. Nondeterminism can therefore
be viewed as involving “intuitive” insight by which the best move can be
chosen at every state (assuming that the nfa wants to accept every string).

Figure 2.8

\\\u \\W\W \\b\\m\\ \va \“’m i

“W\WW\WWW W

,/f(

2.2 NONDETERMINISTIC FINITE ACCEPTERS 49

A \N\\ o \\\

b \\\

i
\ e

\v\\ \\\\\

Consider the transition graph in Figure 2.8. It describes a nondeterministic
accepter since there are two transitions labeled a out of gg.

\\“\\\

R
\%& i

Figure 2.9

A nondeterministic automaton is shown in Figure 2.9. It is nondeterministic
not only because several edges with the same label originate from one vertex,
but also because it has a A-transition. Some transition, such as § (g2, 0) are
unspecified in the graph. This is to be interpreted as a transition to the
empty set, that is, d (¢2,0) = @. The automaton accepts strings), 1010, and
101010, but not 110 and 10100. Note that for 10 there are two alternative
walks, one leading to qg, the other to g;. Even though ¢- is not a final state,
the string is accepted because one walk leads to a final state.

Again, the transition function can be extended so its second argument
is a string. We require of the extended transition function §* that if

3 (Qiﬁ'w) = Qj7

then @; is the set of all possible states the automaton may be in, having
started in state ¢; and having read w. A recursive definition of §*, analogous
to (2.1) and (2.2), is possible, but not particularly enlightening. A more
easily appreciated definition can be made through transition graphs.

0
e A W L
\:o,) %1 [72)
_A/ p- S

50

Example 2.9

Figurc 2.10

Chapter 2 FINITE AUTOMATA

| Definitio

For an nfa, the extended transition function is defined so that &* (g;,w)
contains ¢; if and only if there is a walk in the transition graph from ¢; to
q; labeled w. This holds for all ¢;,¢; € Q and w € X*.

Figure 2.10 represents an nfa. It has several M-transitions and some unde-
fined transitions such as d (go, a).

Suppose we want to find 6* (g, a) and 6* (g2, A). There is a walk labeled
@ involving two A-transitions from ¢; to itself. By using some of the A-edges
twice, we see that there are also walks involving A-transitions to go and go.
Thus

8" (g1,0) = {q0,q1, G2} -

Since there is a A-edge between g2 and gy, we have immediately that 6* (g2, A)

contains qp. Also, since any state can be reached from itself by making no

move, and consequently using no input symbol, §* (g2, A) also contains g;.
Therefore

6% (g2,) = {av, a2} -
Using as many A-transitions as needed, you can also check that
6" (g2,00) = {q0, 91, 42} -
_n

The definition of §* through labeled walks is somewhat informal, so it
is useful to look at it a little more closely. Definition 2.5 is proper, since
between any vertices v; and v; there is either a walk labeled w or there
is not, indicating that §* is completely defined. What is perhaps a little
harder to sce is that this definition can always be used to find ¢* (g;, w).

In Section 1.1, we described an algorithm for finding all simple paths
between two vertices. We cannot use this algorithm directly since, as Ex-
ample 2.9 shows, a labeled walk is not always a simple path. We can modify
the simple path algorithm, removing the restriction that no vertex or edge

A

7o 4 L = 7

2.2 NONDETERMINISTIC FINITE ACCEPTERS 51

can be repeated. The new algorithm will now generate successively all walks
of length one, length two, length three, and so on.

There is still a difficulty. Given a w, how long can a walk labeled w
be? This is not immediately obvious. In Example 2.9, the walk labeled
a between ¢; and g has length four. The problem is caused by the -
transitions, which lengthen the walk but do not contribute to the label.
The situation is saved by this observation: If between two vertices v; and
v; there is any walk labeled w, then there must be some walk labeled w
of length no more than A + (1 + A) jw|, where A is the number of A-edges
in the graph. The argument for this is: While A-edges may be repeated,
there is always a walk in which every repeated A-edge is separated by an
edge labeled with a nonempty symbol. Otherwise, the walk contains a cycle
labeled A, which can be replaced by a simple path without changing the
label of the walk. We leave a formal proof of this claim as an exercise.

With this observation, we have a method for computing 6* (g;, w). We
evaluate all walks of length at most A 4+ (1 4+ A) |w| originating at v;,. We
gelect from them those that are labeled w. The terminating vertices of the
selected walks are the elements of the set 6* (¢;, w).

As we have remarked, it is possible to define §* in a recursive fashion
as was done for the deterministic case. The result is unfortunately not very
transparent, and arguments with the extended transition function defined
this way are hard to follow. We prefer to use the more intuitive and more
manageable alternative in Definition 2.5.

As for dfa’s, the language accepted by an nfa is defined formally by the
extended transition function.

The language L accepted by an nfa M = (Q,%,4,qg, F) is defined as the
set of all strings accepted in the above sense. Formally,

L(M)={weX" 6" (q,w)NF+#a}.

In words, the language consists of all strings w for which there is a walk
labeled w from the initial vertex of the transition graph to some final vertex.

What is the language accepted by the automaton in Figure 2.97 It is casy
to see from the graph that the only way the nfa can stop in a final state
is if the input is either a repetition of the string 10 or the empty string.
Therefore the automaton accepts the language L = {(10)" : n > 0}.

Example

52

Chapter 2 FINITE AUTOMATA

What happens when this automaton is presented with the string w =
1107 After reading the prefix 11, the automaton finds itself in state g2, with
the transition ¢ (g2, 0) undefined. We call such a situation a dead configu-
ration, and we can visualize it as the automaton simply stopping without
further action. But we must always keep in mind that such visualizations
are imprecise and carry with them some danger of misinterpretation. What
we can say precisely is that

5* (g, 110) = @.

Thus, no final state can be reached by processing w = 110, and hence the
string is not accepted.
—

Why Nondeterminism?

In reasoning about nondeterministic machines, we should be quite cautious
in using intuitive notions. Intuition can easily lead us astray, and we must
be able to give precise arguments to substantiate our conclusions. Nonde-
terminism is a difficult concept. Digital computers are completely deter-
ministic; their state at any time is uniquely predictable from the input and
the initial state. Thus it is natural to ask why we study nondeterministic
machifies at all. We are trying to model real systems, so why include such
nonmechanical features as choice? We can answer this question in various
ways.

Many deterministic algorithms require that one make a choice at some
stage. A typical example is a game-playing program. Frequently, the best
move is not known, but can be found using an exhaustive search with back-
tracking, When several alternatives are possible, we choose one and follow
it until it becomes clear whether or not it was best. If not, we retreat to
the last decision point and explore the other choices. A nondeterministic
algorithm that can make the best choice would be able to solve the problem
without backtracking, but a deterministic one can simulate nondeterminism
with some extra work. For this reason, nondeterministic machines can serve
as modcls of search-and-backtrack algorithms.

Nondeterminism is sometimes heipful in solving problems easily. Look
at the nfa in Figure 2.8. It is clear that there is a choice to be made. The
first alternative leads to the acceptance of the string a*, while the second
accepts all strings with an even number of a’s. The language accepted by
the nfa is {a®} U {a® :n > 1}. While it is possible to find a dfa for this
language, the nondeterminism is quite natural. The language is the union
of two quite different sets, and the nondeterminism lets us decide at the
outset which case we want. The deterministic solution is not as obviously

2.2 NONDETKRMINISTIC FINITE ACCEPTERS b3

related to the definition. As we go on, we will see other and more convincing
examples of the usefulness of nondeterminisim.

In the same vein, nondeterminism is an effective mechanism for describ-
ing some complicated languages concisely. Notice that the definition of a
grammar involves a nondeterministic element. In

S — aSb|A

we can at any point choose either the first or the second production. This
lets us specify many different strings using only two rules,

Finally, there is a technical reason for introducing nondeterminism. As
we will see, certain results are more easily established for nfa’s than for
dfa’s. Our next major result indicates that there is no essential diffcrence
between thesc two types of automata. Consequently, allowing nondetermin-
ism often simplifies formal arguments without affecting the generality of the
conclusion.

EXERCISES

1. Prove in detail the claim made in the previous section that if in a transition
graph there is a walk labeled w, there must be some walk labeled w of length
no more than A + (1 + A) jw|.

. Find a dfa that accepts the language defined by the nfa’in Figure 2.8.
. In Figure 2.9, find 6" (go, 1011) and 8" (g, 01).

In Figure 2.10, find 6* (g0, a) and 6" (q1,)). @

For the nfa in Figurc 2.9, find §* (g0, 1010) and §* (g1, 00).

Design an nfa with no more than five states for the sct {abab™ : n > 0} U
{aba™ : n > 0}.

2
3
4
5.
©
@ Construct an nfa with three states that accepts the language {ab, abe}”. ®
8. Do you think Exercise 7 can be solved with fewer than three states? &
9.

(a) Find an nfa with three states that accepts the language
L={a":n> l}U{bmak‘ cm >0,k 20} ;

(b) Do you think the language in part (a) can be accepted by an nfa
with fewer than three states?

@ Find an nfa with four states for L = {a" : n 2 0} U {b"a : n = 1}.

@ Which of the strings 00, 01001, 10010, 000, 0000 are accepted by the following
nfa?

54

Chapter 2 FINITE AUTOMATA

12. What is the complement of the language accepted by the nfa in Figure 2,107

13. Let L be the language accepted by the nfa in Figure 2.8. Find an nfa that
accepts L U {a5}.

14. Give a simple description of the language in Exercise 12.

@Find an nfa that accepts {a}* and is such that if in its transition graph a
single edge is removed (without any other changes), the resulting automaton
accepts {a}. ®

16. Can Exercise 15 be solved using a dfa? If so, give the solution; if not, give
convincing arguments for your conclusion.

17. Consider the following modification of Definition 2.6, An nfa with multiple
initial states is defined by the quintuple

M= (Q7Ea57QU7F)7

where Qo C Q is a set of possible initial states. The language accepted by
such an automaton is defined as

L(M)={w:é" (go,w) contains gr, for any go € Qo,qy € F}.

Show that for every nfa with multiple initial states there exists an nfa with a
single initial state that accepts the same language. ®

18. Suppose that in Exercise 17 we made the restriction Qo NF = &, Would this
affect the conclusion?

e
k@ Use Definition 2.5 to show that for any nfa

s gw)= | 5 @),

pES* (¢,w)

for all ¢ € @ and all w,v € X*,

20. An nfain which (a) there are no A-transitions, and (b) forallg € Q and alla €
¥, d(q,a) contains at most one element, is sometimes called an incomplete
dfa. This is reasonable since the conditions make it such that there is never
any choice of moves.:

2.3 EQUIVALENCE OF DETERMINISTIC AND NONDETERMINISTIC FINITE ACCEPTERS 55

For ¥ = {a, b}, convert the incomplete dfa below into a standard dfa.

Equivalence of Deterministic and
Nondeterministic Finite Accepters

We now come to a fundamental question. In what sense are dfa’s and nfa’s
different? Obviously, there is a difference in their definition, but this does
not imply that there is any essential distinction between them. To explore
this question, we introduce the notion of equivalence between automata.

Dafi W A

b Nﬁ%@“&m\\w

Two finite accepters My and M- are said to be equivalent if
L(M,) =L (M),

that is, if they both accept the same language.

As mentioned, there are generally many accepters for a given language,
so any dfa or nfa has many equivalent accepters.

TS F— S - .
Wmmﬂ i mrmmw The dfa shown in Figure 2.11 is equivalent to the nfa in Figure 2.9 since
they both accept the language {(10)" : n > 0}.

Figure 2.11 0,1

56

Example 2.12

Chapter 2 FINITE AUTOMATA

When we compare different classes of automata, the question invariably
arises whether one class is more powerful than the other. By more powerful
we mean that an automaton of one kind can achieve something that cannot
be done by any automaton of the other kind. Let us look at this question
for finite accepters. Since a dfa is in essence a restricted kind of nfa, it is
clear that any language that is accepted by a dfa is also accepted by some
nfa. But the converse is not so obvious. We have added nondeterminism,
so it is at least conceivable that there is a language accepted by some nfa
for which we cannot find a dfa. But it turns out that this is not so. The
classes of dfa’s and nfa’s are equally powerful: For every language accepted
by some nfa there is a dfa that accepts the same language.

This result is not obvious and certainly has to be demonstrated. The
argument, like most arguments in this book, will be constructive. This
means that we can actually give a way of converting any nfa into an equiv-
alent dfa. The construction is not hard to understand; once the principle iy
clear it becomes the starting point for a rigorous argument. The rationale
for the construction is the following. After an nfa has read a string w, we
may not know exactly what state it will be in, but we can say that it must
be in one state of a set of possible states, say {g;, g;, ...,qx}. An equivalent
dfa after reading the same string must be in some definite state. How can
we make these two situations correspond? The answer is a nice trick: label
the states of the dfa with a set of states in such a way that, after reading
w, the equivalent dfa will be in a single state labeled {q;, g;,...,qx}. Since
for a set of || states there are exactly 2/2| subsets, the corresponding dfa
will have a finite number of states.

Most of the work in this suggested construction lies in the analysis of the
nfa to get the correspondence between possible states and inputs. Before
getting to the formal description of this, let us illustrate it with a simple
example.

Convert the nfa in Figure 2.12 to an equivalent dfa. The nfa starts in state
qo, so the initial state of the dfa will be labeled {¢gp}. After reading an a, the
nfa can be in state q; or, by making a A-transition, in state g». Therefore
the corresponding dfa must have a state labeled {q1, ¢z} and a transition

6({[.10} va) = {QlaQ2} .

In state gg, the nfa has no specified transition when the input is b, therefore

§({go},b0) = 2.

A state labeled @ represents an impossible move for the nfa and, therefore,
means nonacceptance of the string. Consequently, this state in the dfa must
be a nonfinal trap state.

2.3 EQUIVALENCE OF DETERMINISTIC AND NONDETERMINISTIC FINITE ACCEPTERS 57

Figure 2.12

Figure 2.13

We have now introduced into the dfa the state {g1,¢2}, so we need to
find the transitions out of this state. Remember that this state of the dfa
corresponds to two possible states of the nfa, so we must refer back to the
nfa. If the nfa is in state ¢; and reads an q, it can go to ¢;. Furthermore,
from ¢; the nfa can make a A-transition to go. If, for the same input, the
nfa is in state ¢s, then there is no specified transition. Therefore

5({(11aQZ},a) = {Q1,€I2} .

Similarly,

6 ({g1,42},b) = {0} -

At this point, every state has all transitions defined. The result, shown
in Figure 2.13, is a dfa, equivalent to the nfa with which we started. The nfa
in Figure 2.12 accepts any string for which * (g, w) contains ¢;. For the
corresponding dfa to accept every such w, any state whose label includes ¢;
must be made a final state. -

58

Chapter 2 FINITE AUTOMATA

Let L be the language accepted by a nondeterministic finite accepter My =
(Qn,%, 6N, o, Fiv). Then there exists a deterministic finite accepter Mp =
(QD, 2, 5D’ {qo} ’ FD) such that

L=L(Mp).

Proof: Given My, we use the procedure nfa_to_dfe below to construct the
transition graph Gp for Mp. To understand the construction, remember
that Gp has to have certain properties. Every vertex must have exactly
%3] outgoing edges, each labeled with a different element of 3. During the
construction, some of the edges may be missing, but the procedure continues
until they are all there.

procedure: nfa_to_dfa

1. Create a graph Gp with vertex {qo}. Identify this vertex as the initial
vertex.

2. Repeat the following steps until no more edges are missing.

Take any vertex {g;,g;, .., ¢x} of Gp that has no outgoing edge for some
a€ L.

Compute §* (g5,a),0* (gj,a) .., 6" (g, @).
Then form the union of all these §*, yielding the set {qi, gm,--- dn}-

Create a vertex for Gp labeled {g;,gm,...,qn} if it does not already
exist.

Add to Gp an edge from {gi,qj,...,qk} t0 {qt,qm, -+ qn} and label it
with a.

3. Every state of Gp whose label contains any gy € Fy is identified as a
final vertex.

4. If My accepts), the vertex {go} in Gp is also made a final vertex.

It is clear that this procedure always terminates. Each pass through the
loop in Step 2 adds an edge to Gp. But Gp has at most 219~ x| edges,
so that the loop eventually stops. To show that the construction also gives
the correct answer, we argue by induction on the length of the input string.

Assume that for every v of length less than or equal to n, the presence
in G of a walk labeled v from g to g; implies that in Gp there is a walk
labeled v from {go} to a state Q; = {...,q;,...}. Consider now any w = va
and look at a walk in Gy labeled w from go to ¢. There must then be a
walk labeled v from go to ¢; and an edge (or a sequence of edges) labeled
a from ¢; to g. By the inductive assumption, in Gp there will be a walk
labeled v from {go} to Q;. But by construction, there will be an edge from
Q; to some state whose label contains ¢;. Thus the inductive assumption

2.3 EQUIVALENCE OF DETERMINISTIC AND NONDETERMINISTIC FINITE ACCEPTERS 59

\\Qmw\w\\w\g

AR
&\W\M Vi
ot

T

Figure 2.14

R
P \\\w

holds for all strings of length n 4+ 1. As it is obviously true for n = 1, it is
true for all n. The result then is that whenever 6% (go, w) contains a final
state ¢y, so does the label of 87, (gy, w). To complete the proof, we reverse
the argument to show that if the label of 7, (o, w) contains gy, so must

5 (o, w). m
[TR B

The arguments in this proof, although correct, are admittedly somewhat
terse, showing only the major steps. We will follow this practice in the rest
of the book, emphasizing the basic ideas in a proof and omitting minor
details, which vou may want to fill in yourself.

The construction in the above proof is tedious but important. Let us
do another example to make sure we understand all the steps.

R
A

iy \
i

AN
\“\ h
2

it \\Q«WA\‘

Convert the nfa in Figure 2.14 into an equivalent deterministic machine.
Since dn (go,0) = {qv, 1}, we introduce the state {go,q1} in Gp and add
an edge labeled 0 between {go} and {gp,¢:1}. In the same way, considering
On (g0, 1) = {1} gives us the new state {g1} and an edge labeled 1 between
it and {qu}.

There are now a number of missing edges, so we continue, using the
construction of Theorem 2.2. With e =0, 7 =0, j = 1, we compute

On (90,0) U b (¢1,0) = {0, q1, g2} -

This gives us the new state {qu, q1, g2} and the transition

dp ({90, 01 },0) = {q0, 91,92} -

Then, usinga=1,i=0,7=1,k =2,

On (90, 1) UdN (@1, 1) U Sy (g2, 1) = {q1, g2}

makes it necessary to introduce yet another state {¢i,¢z}. At this point,
we have the partially constructed automaton shown in Figure 2.15. Since
there are still some missing edges, we continue until we obtain the complete
golution in Figure 2.16. -

'
2 0,1 0,1

-

60 = Chapter 2 FiNITE AUTOMATA
| Figure 2.15 o {g) |
>~
0 1
Iy ¥ £y
({900 7)) { (g,)
0/ '
s _
'.' . } \ ."/-) -\-..'\
\ g 7109} —lg1: 9})
kN -/ 1 .‘_q___/".

Figure 2.16

o~

-~

2.3 EQUIVALENCE OF DETERMINISTIC AND NONDETERMINISTIC FINITE ACCEPTERS 61

One important conclusion we can draw from Theorem 2.2 is that every
language accepted by an nfa is regular.

EXERCISES

1. Use the construction of Theorem 2.2 to convert the nfa in Figure 2.10 to a
dfa. Can you see a simpler answer more directly?
2. Convert the nfa in Exercise 11, Section 2.2 into an equivalent dfa. &

@Jonvert the following nfa into an equivalent dfa.

1%
e,
J&

Carefully complete the arguments in the proof of Theorem 2.2. Show in detail
that if the label of 3}, (go, w) contains ¢y, then 8k (go,w) also contains g;.

Is it true that for any nfa M = (Q,X,5,qo, F) the complement of L (M) is
equal to the set {w € T* : §* (qo,w) N F = @}7? If 50, prove it. If not, give a
counterexample.

Is it true that for every nfa M = (@, X, 8, qo, F') the complement of L (M) is
equal to the set {w € X* : 8" (qo,w) N (Q — F) # @}7? If so, prove it; if not,
give a counterexample.

Prove that for every nfa with an arbitrary number of final states there is an

equivalent nfa with only one final state. Can we make a similar claim for
dfa’s? @

@Find an nfa without A-transitions and with a single final state that accepts

" the set {a} U{b" :n > 1}. @

*@ Let L be a regular language that does not contain A. Show that there exists

10.

i

] 1

:Z 12.
13.

an nfa without A-transitions and with a single final state that accepts L.

Define a dfa with multiple initial states in an analogous way to the correspond-
ing nfa in Exercise 17, Section 2.2, Does there always exist an equivalent dfa
with a single initial state?

Prove that all finite languages are regular. @
Show that if L is regular, so is LT,

Give a simple verbal description of the language accepted by the dfa in Figure
2.16. Use this to find another dfa, equivalent o the given one, but with fewer
states.

62

Example 2.14

Chapter 2 FINITE AUTOMATA

14) Let L be any language. Define even (w) as the string obtained by extracting
from w the letters in even-numbered positions; that is, if

= a1a20304...,
then
even (w) = azaq....
Corresponding to this, we can define a language
even (L) = {even(w) :w e L}.

Prove that if L is regular, so is even (L), @

15. From a language L we create a new language chop2 (L) by removing the two
leftmost symbols of every string in L. Specifically,

chop2 (L) = {w : vw € L, with |v| =2}.

Show that if L is regular then chop2 (L) is also regular. @&

Reduction of the Number of States in
Finite Automata*

Any dfa defines a unique language, but the converse is not true. For a given
language, there are many dfa’s that accept it. There may be a considerable
difference in the number of states of such equivalent automata. In terms of
the questions we have considered so far, all solutions are equally satisfactory,
but if the results are to be applied in a practical setting, there may be
reasons for preferring one over another.

The two dfa’s depicted in Figure 2.17(a) and 2.17(b) are equivalent, as a
few test strings will quickly reveal. We notice some obviously unnecessary
features of Figure 2.17(a). The state g5 plays absolutely no role in the
automaton since it can never be reached from the initial state gy. Such
a statc is inaccessible, and it can be removed (along with all transitions
relating to it) without affecting the language accepted by the automaton.
But even after the removal of ¢5, the first automaton has some redundant
parts. The states reachable subsequent to the first move 6 (go,0) mirror
those reachable from a first move & (gg, 1). The second automaton combines
these two options.

n

2.4 REDUCTION OF THE NUMBER OF STATES IN FINITE AUTOMATA 63

Figure 2.17 91
| =
| l *.r‘: %
A -2
0
—{ 7 0
1 — —.
[gy L (o) —{(20y Y2 o(2)
— SN — S 1 N
A v st | Fi
| P [| /
0 0,1 0 0 0,1
(a) (b)

From a strictly theoretical point of view, there is little reason for prefer-
ring the automaton in Figure 2.17(b) over that in Figure 2.17(a). However,
in terms of simplicity, the second alternative is clearly preferable. Repre-
sentation of an automaton for the purpose of computation requires space
proportional to the number of states. For storage efficiency, it is desirable
to reduce the number of states as far as possible. We now describe an
algorithm that accomplishes this.

o 3
B e
R A RO AR SR

Definition:

Two states p and q of a dfa are called indistinguishable if
5* (p,w) € F implies §* (q,w) € F,

and
8* (p,w) ¢ F implies 6* (¢, w) ¢ F,

for all w € £*. If, on the other hand, there exists some string w € £* such
that

5* (p,w) € F and 6" (q,w) ¢ F,

or vice versa, then the states p and ¢ are said to be distinguishable by a
string w.

64

Chopter 2 FINITE AUTOMATA

Clearly, two states are either indistinguishable or distinguishable. In-
distinguishability has the properties of an equivalence relations: if p and ¢
are indistinguishable and if ¢ and r are also indistinguishable, then so are
p and 7, and all three states are indistinguishable.

One method for reducing the states of a dfa is based on finding and
combining indistinguishable states. We first describe a method for finding
pairs of distinguishable states.

procedure: mark

1. Remove all inaccessible states. This can be done by enumerating all
simple paths of the graph of the dfa starting at the initial state. Any
state not part of some path is inaccessible.

2. Consider all pairs of states (p,q). i p € F and ¢ ¢ F or vice versa,
mark the pair (p,q) as distinguishable.

3. Repeat the following step until no previously unmarked pairs are marked.

For all pairs (p,q) and all a € £, compute § (p,a) = p, and d(g,a) =
ga. If the pair (pg,q,) is marked as distinguishable, mark (p,q) as
distinguishable.

We claim that this procedure constitutes an algorithm for marking all dis-
tinguishable pairs.

The procedure mark, applied to any dfa M = (Q, %, 6, go, F), terminates
and determines all pairs of distinguishable states.

Proof: Obviously, the procedure terminates, since there are only a finite
number of pairs that can be marked. It is also easy to see that the states
of any pair so marked are distinguishable. The only claim that requires
elaboration is that the procedure finds all distinguishable pairs.

Note first that states g; and ¢; are distinguishable with a string of length
n, if and only if there are transitions

4 (qi’ a) =Gk (2-5)

§(gj>a) = qu, (2.6)

for some a € X, with g; and ¢, distinguishable by a string of length n — 1.
We use this first to show that at the completion of the nth pass through the
loop in step 3, all states distinguishable by strings of length n or less have
been marked. In step 2, we mark all pairs indistinguishable by A, so we have
a basis with n = 0 for an induction. We now assume that the claim is true

2.4 REDUCTION OF THE NUMBER OF STATES IN FINITE AUTOMATA 65

for all: =0,1,...,n — 1. By this inductive assumption, at the beginning of
the nth pass through the loop, all states distinguishable by strings of length
up to n — 1 have been marked. Because of (2.5) and (2.6) above, at the end
of this pass, all states distinguishable by strings of length up to n will be
marked. By induction then, we can claim that, for any n, at the completion
of the nth pass, all pairs distinguishable by strings of length n or less have
been marked.

To show that this procedure marks all distinguishable states, assume
that the loop terminates after n passes. This means that during the nth
pass no new states were marked. From (2.5) and (2.6), it then follows that
there cannot be any states distinguishable by a string of length n, but not
distinguishable by any shorter string. But if there are no states distinguish-
able only by strings of length n, there cannot be any states distinguishable
only by strings of length n+ 1, and so on. As a consequence, when the loop
terminates, all distinguishable pairs have been marked. =

[P R T

After the marking algorithm has been executed, we use the results to
partition the state set Q of the dfa into disjoint subsets {g;,q;,...,qr},
{41, @my s s ---, such that any ¢ € Q occurs in exactly one of these
subsets, that elements in each subset are indistinguishable, and that any
two elements from different subsets are distinguishable. Using the results
sketched in Exercise 11 at the end of this section, it can be shown that such
a partitioning can always be found. From these subsets we construct the
minimal automaton by the next procedure.

procedure: reduce
Given a dfa M = (Q,%,d,q0,F), we construct a reduced dfa
M= (@,E,g, é}),ﬁ) as follows.

1. Use procedure mark to find all pairs of distinguishable states. Then
from this, find the sets of all indistinguishable states, say {g:, q;, ..., gk},
{a1, @my -1 @n ', €tc., as described above.

2. For each set {gi, ¢;, .--, gx } of such indistinguishable states, create a state
labeled ij - - - k for M.

3. For each transition rule of M of the form
o (QN (1) = dp,

find the sets to which g, and g, belong. If ¢ € {¢;,q;,---,qx} and
dp € {@,9m, - qn}, add to § a rule

o~

5(j---k,a)=1Im- . n.

66 Chapter 2 FiNITE AUTOMATA

4. The initial state gy is that state of M whose label includes the 0.

5. F is the set of all the states whose label contains i such that g, € F.

Example 2.15 Consider the automaton depicted in Figure 2.18.
In step 2, the procedure mark will identify distinguishable pairs (qg, 4),
(g1,94), (g2,94), and (g3, qs). In some pass through the step 3 loop, the
procedure computes

5((11,1)=Q4

and

6((']07 1) = q3.

Since (ga, q4) is a distinguishable pair, the pair (go,q1) is also marked.
Continuing this way, the marking algorithm eventually marks the pairs
(90, 91), (90, 92), (90, 93), (90, 44), (1,94), (42, 94) and (g3, g4) as distinguish-
able, leaving the indistinguishable pairs (g1, ¢2), (q1,43) and (gs, ga). There-
fore, the states g;, ¢z, g3 are all indistinguishable, and all of the states have
been partitioned into the sets {go}, {g1,¢2,93} and {q4}. Applying steps 2
and 3 of the procedure reduce then yields the dfa in Figure 2.19.

Figure 2.18 N 0,1
L f
o "..': e
0 ol
—-[: To 3 (2
1 o 1
N
!\. g3)
Figure 2.19 _'_‘.] ﬂl

2.4 REDUCTION OF THE NUMBER OF STATES IN FINITE AUTOMATA 67

Given any dfa M, application of the procedure reduce yields another dfa
M such that

L(M)=L(fv_r“‘).

Furthermore, M is minimal in the sense that there is no other dfa with a
smaller number of states which also accepts L (M). :

Proof: There are two parts. The first is to show that the dfa created by
reduce is equivalent to the original dfa. This is relatively easy and we can
use inductive arguments similar to those used in establishing the equivalence
of dfa’s and nfa’s. All we have to do is to show that 6* (¢;,w) = ¢; if and
only if the label of §* (¢;,w) is of the form ...j.... We will leave this as an
exercise. . .

The second part, to show that M is minimal, is harder. Suppose M has
states {po,P1,P2, ---» Pm }, With po the initial state. Assume that there is an
equivalent dfa M;, with transition function 41 and initial state go, equivalent
to M, but with fewer states. Since there are no inaccessible states in M,
there must be distinet strings wy, ws, ..., Wy, such that

0* (po,w;) =pi, i =1,2,...,m

But since M, has fewer states than M , there must be at least two of these
strings, say wy and wy, such that

87 (go, wr) = 67 (o, wy) -

Since py and p; are distinguishable, there must be some string such that
* (po, wkx) = 6* (Pk,x) is a final state, and 5 (qo, wiz) = 6* (py,x) is a
nonfinal state (or vice versa). In other words, wix is accepted by M and
wyx is not. But note that

o1 (qo, wrx) = 67 (61 (o, wk) ,)
= 03 (07 (g0, w1) ,)
= 6; (QOa 'UJII') .

Thus, M; either accepts both wixz and wyz or rejects both, contradicting
the assumption that M and M 1 are equivalent. This contradiction proves
that M, cannot exist. =m

I i el

.

68 Chapter 2 FINITE AUTOMATA

EXERCISES

1. Minimize the number of states in the dfa in Figure 2.16.
? @ Find minimal dfa’s for the languages below. In each case prove that the result
is minimal.
(a) L={a"b":n>2,m =1}
(b) L={a"b:n>0}U{d"a:n >1}
(¢) L={a":n>0,n#3} @
(d) L={a":n#2and n #4}.

3. Show that the automaton generated by procedure reduce is deterministic.

@ Minimize the states in the dfa depicted in the following diagram.

CB) Show that if L is a nonempty language such that any w in L has length at
least n, then any dfa accepting L must have at least n + 1 states.

6. Prove or disprove the following conjecture. If M = (Q, %, 8, qo, F) is a minimal

dfa for a regular language L, then M= (Q,%,6,q0,Q — F) is a minimal dfa
for L. &

7.) Show that indistinguishability is an equivalence relation but that distinguisha-
bility is not.

8. Show the explicit steps of the suggested proof of the first part of Theorem
2.4, namely, that M is equivalent to the original dfa.

% 9, Write a computer program that produces a minimal dfa for any given dfa.

10. Prove the following: If the states g, and ¢ are indistinguishable, and if ¢,
and q. arc distinguishable, then ¢; and q. must be distinguishable. B

11.

2.4 REDUCTION OF THE NUMBER OF STATES IN FINITE AUTOMATA 69

Consider the following process, to be done after the completion of the pro-
cedure mark. Start with some state, say, go- Put all states not marked
distinguishable from gy into an equivalence set with go. Then take another
state, not in the preceding equivalence set, and do the same thing. Repeat
until there are ne more states available. Then formalize this suggestion to
make it an algorithm, and prove that this algorithm does indeed partition
the original state set into equivalence sets.

Regular Languages
and Regular
Grammars

accepter for it, Therefore, every regular language can be described

by some dfa or some nfa. Such a description can be very useful,

for example, if we want to show the logic by which we decide if a
given string is in a certain language. But in many instances, we need more
concise ways of describing regular languages. In this chapter, we look at
other ways of representing regular languages. These representations have
important practical applications, a matter that is touched on in some of the
examples and exercises.

q ccording to our definition, a language is regular if there exists a finite

Regular Expressions

One way of deseribing regular languages is via the notation of regular
expressions. This notation involves a combination of strings of symbols
from some alphabet ¥, parentheses, and the operators +, :, and =. The
simplest case is the language {a}, which will be denoted by the regular
expression a. Slightly more complicated is the language {a, b, c}, for which,

71

72

Example 3.1

Chapter 3 ReGULAR LANGUAGES AND REGULAR GRAMMARS

using the + to denote union, we have the regular expression a+b+c. We use
. for concatenation and * for star-closure in a similar way. The expression
(a+b-¢)" stands for the star-closure of {a} U {bc}, that is, the language
{\, a,be, aa, abe, bea, bebe, aaa, aabe, ... }.

Formal Definition of a Regular Expression

We construct regular expressions from primitive constituents by repeatedly
applying certain recursive rules. This is similar to the way we construct
familiar arithmetic expressions.

Let X be a given alphabet. Then

1. &, A and a € 3 are all regular expressions. These are called primitive
regular expressions.

2. If r; and 7o are regular expressions, so are 71 +ra, 71 - T2, 71, and (r1).
3. A string is a regular expression if and only if it can be derived from the

primitive regular expressions by a finite number of applications of the
rules in (2).

For £ = {a,b,c}, the string

(a+b-¢)" - (c+ @)

is a regular expression, since it is constructed by application of the above
rules. For example, if we take r; = ¢ and ro = &, we find that ¢+ @
and (¢+ @) are also regular expressions. Repeating this, we eventually
generate the whole string. On the other hand, (a + b+) is not a regular
expression, since there is no way it can be constructed from the primitive
regular expressions.

_n

3.1 REGULAR EXPRESSIONS 73

Languages Associated with Regular Expressions

Regular expressions can be used to describe some simple languages. If 7 is
a regular expression, we will let L (r) denote the language associated with
r. This language is defined as follows:

Definition 3.2

The language L (r) denoted by any regular expression r is defined by the
following rules.

1. @ is a regular expression denoting the empty set,

2. A is a regular expression denoting {\},

3. for every a € X, a is a regular expression denoting {a}.
If and ro are regular expressions, then

4. L(ry+r2) = L(r1) U L(r2),

5. L(ry-7re) =L(r1)L(rs),

6. L((r1)) =L (r),

7. L(r}) = (L(r))".

The last four rules of this definition are used to reduce L (r) to simpler
components recursively; the first three are the termination conditions for
this recursion. To see what language a given expression denotes, we apply
these rules repeatedly.

Exhibit the language L (a* - (a + b)) in set notation.

La*-(a+b)=L(@)L(a+b)
= (L(a))" (L(a) UL (D))
= {\, a, aa, aaa, ...} {a, b}
= {a,aa,a4aq,...,b, ab, aab, ...}

74

\"ﬂ\r.\Z)?\\\Mﬁi cA

Chapter 3 REGULAR LANGUAGES AND REGULAR GRAMMARS

There is one problem with rules (4) to (7) in Definition 3.2. They define
a language precisely if 7 and r» are given, but there may be some ambigu-
ity in breaking a complicated expression into parts. Consider, for example,
the regular expression a - b -+ c. We can consider this as being made up of
71 = a-b and r2 = ¢. In this case, we find L (a - b+ ¢) = {ab, c}. But there
is nothing in Definition 3.2 to stop us from taking ™ = @ and rp = b +c.
We now get a different result, L(a-b+c) = {ab,ac}. To overcome this,
we could require that all expressions be fully parenthesized, but this gives
cumbersome results. Instead, we use a convention familiar from mathemat-
ics and programming languages. We establish a set of precedence rules for
evaluation in which star-closure precedes concatenation and concatenation
precedes union. Also, the symbol for concatenation may be omitted, so we
can write rirg for ry - .

With a little practice, we can see quickly what language a particular
regular expression denotes.

Example 3.4

For % = {a, b}, the expression
r = (a+b)* (a+bb)
is regular. It denotes the language
L (r) = {a, bb, aa, abb, ba, bbb, ...} .

We can see this by considering the various parts of r. The first part, (a + b)",
stands for any string of a’s and b's. The second part, (a + bb) represents
either an a or a double b. Consequently, L (r) is the set of all strings on

{a, b}, terminated by either an a or a bb.
_ RN

The expression
r = (aa)” (bb)* b

denotes the set of all strings with an even number of a’s followed by an odd
number of b’s; that is

L(r)= {aznb2m+1 :n >0, m>0}.

Going from an informal description or set notation to a regular expression
tends to be a little harder.
_n

3.1 REGULAR EXPRESSIONS 75

For ¥ = {0,1}, give a regular expression r such that
L(r)={w € X* : w has at least one pair of consequtive zeros}.

One can arrive at an answer by reasoning something like this: Every string
in L (r) must contain 00 somewhere, but what comes before and what goes
after is completely arbitrary. An arbitrary string on {0, 1} can be denoted
by (0 + 1)". Putting these observations together, we arrive at the solution

=(0+1)"00(0+1)"

Find a regular expression for the language
L= { w € {0,1}" : w has no pair of consecutive zeros} .

Even though this looks similar to Example 3.5, the answer is harder to
construct. One helpful observation is that whenever a 0 occurs, it must be
followed immediately by a 1. Such a substring may be preceded and followed
by an arbitrary number of 1’s. This bugg(‘stb that the answer involves the
repetition of strings of the form 1---101-.-1, that is, the language denoted
by the regular expression (1*011 *)*. However, the answer is still incomplete,
since the strings ending in 0 or consisting of all 1’s are unaccounted for.
After taking care of these special cases we arrive at the answer

r=(1"0117)" (0+ A) + 1* (0 + N).

If we reason slightly differently, we might come up with another answer.
If we see L as the repetition of the strings 1 and 01, the shorter expression

=(1+01)" (0+X)

might be reached. Although the two expressions look different, both answers
are correct, as they denote the same language. Generally, there are an
unlimited number of regular expressions for any given language.

Note that this language is the complement of the language in Example
3.5. However, the regular expressions are not very similar and do not suggest
clearly the close relationship belween the languages. m

The last example introduces the notion of equivalence of regular ex-
pressions. We say the two regular expressions are equivalent if they denote
the same language. One can derive a variety of rules for simplifying regular

76

Chopter 3 REGULAR LANGUAGES AND REGULAR GRAMMARS

expressions (sce Exercise 18 in the following exercise section), but since we
have little need for such manipulations we will not pursue this.

EXERCISES

1. Find all strings in L ((a +)" b(a + ab)™) of length less than four.

2. Does the expression ((0 4 1) (0 + 1)*)7 00 (0 + 1)* denote the language in Ex-
ample 3.57 @

3. Show that » = (14 01)" (0 + 1*) also denotes the language in Example 3.6.
Find two other equivalent expressions.

(_ Z) Find a regular expression for the set {a™b™ : (n +m) is even}.
C 5_) Give regular expressions for the following languages.

(a) Ly = {a™b™,n > 4,m < 3}, -]

(b) Ly = {a™b™ :n < 4,m < 3},

(¢) The complement of L, @

(d) The complement of Ly.

@ What languages do the expressions ()" and a@ denote?

7. Give a simple verbal description of the language L ((aa)”b(aa)” +
a(aa)* ba (aa)”).

8. Give a regular expression for L" where L is the language in Exercise 1.
(,C:D Give a regular cxpression for L= {a™b™ :n > 1,m > 1,nm > 3}. ®
10) Find a regular expression for L = {ab"w :n > 3,w € {a,b}*}.
11. Find a regular exptession for the complement of the language in Example 3.4.
12. Find a regular expression for L = {vwv : v,w € {a,b}",|[v| = 2}. @

13. Find a regular expression for

L= {we {0,1}" : w has exactly one pair of consecutive zeros}

~

_14/ Give regular expressions for the following languages on 3 = {a, b, c}.

(a) all strings containing exactly one a,
(b) all strings containing no more than three a’s,

(c) all strings that contain at least one occurrence of each symbol in

s, @

(d) all strings that contain no run of a’s of length greater than two,

* (&) all strings in which all runs of a’s have lengths that are multiples
of three.

3.1 REGULAR EXPRESSIONS 7

fiS:‘ Write regular expressions for the following languages on {0,1}.

(a) all strings ending in 01,
(b) all strings not ending in 01,
(c) all strings containing an even number of (s, @

(d) all strings having at least two occurrences of the substring 00
(Note that with the usual interpretation of a substring, 000 con-
tains two such occurrences),

(e) all strings with at most two occurrences of the substring 00,

_ * (f) all strings not containing the substring 101.

16) Pind regular expressions for the following languages on {a, b}.

17.
18.

19.

20.

21.

22,

23.

(8) L ={w:|w/mod3 =0} @
(b) L ={w : n, (w)mod 3 = 0}
(¢) L={w:ng(w)mod5 > 0}
Repeat parts (a), (b), and (c) of Exercise 16, with £ = {a, b, c}.

Determine whether or not the following claims are true for all regular expres-
sions 71 and r2. The symbol = stands for equivalence of regular expressions
in the sense that beth expressions denote the same language.

(a) (ri)” =i,

(b) rt (r1+r2) = (r +7r2)",

(€) (r1+r2)" = (rirz)", ® .
(d) (rirz)” =rirs.)

Give a general method by which any regular expression r can be changed into
7 such that (L (r))" = L (7).

Prove rigorously that the expressions in Exaruple 3.6 do indeed denote the
specified language.

For the case of a regular expression r that does not involve A or @, give a
set of necessary and sufficient conditions that » must satisfy if L (r) is to be
infinite.

Formal languages can be used to describe a variety of two-dimensional figures.
Chain-code languages are defined on the alphabet & = {u, d, r, [}, where these
symbols stand for unit-length straight lines in the dircctions up, down, right,
and left, respectively. An example of this notation is wrdl, which stands for
the squarc with sides of unit length. Draw pictures of the figures denoted by
the expressions (rd)*, (urddru)®, and (ruldr)®.

In Exercise 22, what are sufficient conditions on the expression so that the
picture is a closed contour in the sense that the beginning and ending point
are the same? Are these conditions also necessary?

78

Chapter 3 REGULAR LANGUAGES AND REGULAR GRAMMARS

@D‘“ind an nfa that accepts the language L (aa® (a + b)).

@?}Find a regular expression that denotes all bit strings whose value, when in-
~ terpreted as a binary integer, is greater than or equal to 40. @

26. Find a regular expression for all bit strings, with leading bit 1, interpreted as
a binary integer, with values not between 10 and 30.

. Connection Between Regular Expressions and
Regular Languages

As the terminology suggests, the connection between regular languages and
regular expressions is a close one. The two concepts are essentially the
same; for every regular language there is a regular expression, and for every
regular expression there is a regular language. We will show this in two
parts.

Regular Expressions Denote Regular Languages

We first show that if + is a regular expression, then L (r) is a regular lan-
guage. Our definition says that a language is regular if it is accepted hy some
dfa. Because of the equivalence of nfa’s and dfa’s, a language is also regular
if it is accepted by some nfa. We now show that if we have any regular
expression r, we can construct an nfa that accepts L (r). The construction
for this relies on the recursive definition for L (r). We first construct simple
automata for parts (1), (2), and (3) of Definition 3.2 on page 73, then show
how they can be combined to implement the more complicated parts (4),
(5), and (7).

Let 7 be a regular expression. Then there exists some nondeterministic
finite accepter that accepts L (r). Consequently, L (r) is a regular language.

Proof: We begin with automata that accept the languages for the simple
regular expressions @, A, and @ € X. These are shown in Figure 3.1(a),
(b), and (c), respectivcly. Assume now that we have automata M (r1) and
M (r,) that accept languages denoted by regular expressions r; and 7,
respectively. 'We need not explicitly construct these automata, but may
represent them schematically, as in Figure 3.2. In this schema, the graph
vertex at the left represents the initial state, the one on the right the final
state, In Exercise 7, Section 2.3 we claimed that for every nfa there is an
equivalent one with a single final state, so we lose nothing in assuming that
there is only one final state. With M (r;) and M (r3) represented in this
way, we then construct automata for the regular expressions ry + 74, r179,
and r}. The constructions are shown in Figures 3.3 to 3.5. As indicated

3.2 CoONNECTION BETWEEN REGULAR EXPRESSIONS AND REGULAR LANGUAGES 79

Figure 3.1 e A e a
(a) nfa accepts @.
(a) (b) (@)

(b) nfa accepts {A}.
(c) nfa accepts {a}.

Figure 3.2 _ M(7) .

P ™ % 4 \
Schematic Lo f L 1‘0;
representation of an S Nt/

nfa accepting L (r).

in the drawings, the initial and final states of the constituent machines lose
their status and are replaced by new initial and final states. By stringing
together several such steps, we can build automata for arbitrary complex
regular expressions.

It should be clear from the interpretation of the graphs in Figures 3.3
to 3.5 that this construction works. To argue more rigorously, we can give a
formal method for constructing the states and transitions of the combined
machine from the states and transitions of the parts, then prove by induction
on the number of operators that the construction yields an automaton that
accepts the language denoted by any particular regular expression. We will
not belabor this point, as it is reasonably obvious that the results are always
correct. ® '

- T ——— |

Find an nfa which accepts L (r), where

7= (a+bb)* (ba* + A).

Figure 3.3
Automaton for _ s
L(r1 +r2). A ‘ oo T

i —

80

Figure 3.4
Automaton for

L(rl'rg).

Figure 3.5
Automaton for

L(r}).

Figure 3.6

(a) M accepts
L (a + bb).

(b) M2 accepts
L (ba™ + A).

Figure 3.7
Automaton accepts
L((a+bb)"

(ba™ + A)).

Chapter 3 REGULAR LANGUAGES AND REGULAR GRAMMARS

' Mir,) Mr,)
= P re \
- % > { L A | b
A
¥ M) =
— "——nr —1 |
A A\)
s 5 = p=
—

Automata for (a + bb) and (ba* + A), constructed directly from first princi-
ples, are given in Figure 3.6. Putting these together using the construction
in Theorem' 3.1, we get the solution in Figure 3.7 -

1 2 2
~
' - = 3—! —
b b NG O '
——{ = =)
o N)
"\--.,___ L g
| | ;
@ b
*
v _a M, a M,
¥ 7 = \ B \ _
7 ONK b b A 3 \ B NS VA
.| e —_ =] —t — e e
d ks = rodl i i A
\ | e

3.2 CONNECTION BETWEEN REGULAR EXPRESSIONS AND REGULAR LANGUAGES 81

Regular Expressions for Regular Languages

Tt is intuitively reasonable that the converse of Theorem 3.1 should hold,
and that for every regular language, there should exist a corresponding
regular expression. Since any regular language has an assoclated nfa and
hence a transition graph, all we need to do is to find a regular expression
capable of generating the labels of all the walks from ¢p to any final state.
This does not look too difficult but it is complicated by the existence of
cycles that can often be traversed arbilrarily, in any order. This creates
a bookkeeping problem that must be handled carcfully. There are several
ways to do this; one of the more intuitive approaches requires a side trip
into what are called generalized transition graphs. Since this idea is
used here in a limited way and plays no role in our further discussion, we
will deal with it informally.

A generalized transition graph is a transition graph whose edges are

Jabeled with regular expressions; otherwise 1t is the same as the usual tran-

sition graph. :fhe label of any walk from the initial state to a final state is
tHe concatenation of several regular expressions, and hence itself a regular
expression. The strings denoted by such regular expressions are a subset
of the language accepted by the generalized transition graph, with the full
language being the union of all such generated subsets.

Example 3.8

Figure 3.8

Figure 3.8 represents a generalized transition graph. The language accepted
by it is L (a* + a* (a + b) ¢*), as should be clear from an inspection of the
graph. The edge (o, go) labeled a is a cycle that can generate any number
of a’s, that is, it represents L (a*). We could have labeled this edge a*
without changing the language accepted by the graph. -

The graph of any nondeterministic finite accepter can be considered
a generalized transition graph if the edge labels are interpreted properly.
An edge labeled with a single symbol o is interpreted as an edge labeled
with the expression a, while an edge labeled with multiple symbols a,b, ...
is interpreted as an edge labeled with the expression ¢ + b+ From
this observation, it follows that for every regular language, there exists a

T

‘ B2 Chapter 3 REGULAR LANGUAGES AND REGULAR (GRAMMARS
Figure 3.9 2 "_i."-*f.__f A
d \ 13 v ce*d [
~ YN TN N P
| % L7) [4 \ % I
o A — AN 2 _ "
7 b ae"t

generalized transition graph that accepts it. Conversely, every language
accepted by a generalized transition graph is regular, Since the label of
‘every walk in a generalized transition graph is a regular expression, this
appears to be an immediate consequence of Theorem 3.1. However, there
are some subtleties in the argument; we will not pursue them here, but refer
the reader instead to Exercise 16, Section 4.3 for details.

Equivalence | for generalized transition graphs is defined in terms of the

language accepted. Consider a gener ralized transition graph with states
{608, T where@mﬁml sta_t_é and for which we
want to create an eqiivalent generalized transition graph with one less state
by removing ¢q. We can do this if we do not change the language denoted
by the set of labels that can be generated as we go from go to gy. The
construction that achieves this is illustrated in Figure 3.9, where the state
q is to be removed and the edge labels a, b, ... stand for general expressions.
The case depicted is the most general ﬁ—l_ the sense that ¢ bas outgoing edgw
to all three vertices ¢, q;,q. In cases where an edge is missing in (a), we
omit the corresponding edge in (b).

The construction in Figure 3.9 shows which edges have to be introduced
so that the language of the generalized transition graph does not change
when we remove g and all its incoming and outgoing edges. The complete
process requires that this be done for all pairs (g;,¢;) in Q@ — {q} before
removing g. Although we will not formally prove this, it can be shown that
the construction yields an equivalent generalized transition graph. Accept-
ing this, we are ready to show how any nfa can be associated with a regular
expression.

Let L be a regular language. Then there exists a regular expression r such
that L =L (r).

Proof: Let M be an nfa that accepts L. We can assume without any
loss of generality that M has only one final state and that go ¢ F. We
interpret the graph of M as a generalized transition graph and apply the
above construction to it. To remove a vertex labeled ¢, we use the scheme
in Figure 3.9 for all pairs (g;, ¢;). After all the new edges have been added,

3.2 CoONNECTION BETWEEN REGULAR EXPRESSIONS AND REGULAR LANGUAGES 83

Figure 3.10 s &

~(%)
\H___’_'_,_/
2

*) : i@)r
0 (FH 4> (v

g with all its incident edges can be removed. We continue this process,
removing one vertex after the other, until we reach the situation shown in
Figure 3.10. A regular expression that denotes the language accepted by
this graph is

r=rire(ry +7rarirTe)”. (3.1)

Since the sequence of generalized transition graphs are all equivalent to
the initial one, we can prove by an induction on the number of states in
the generalized transition graph that the regular expression in (3.1) denotes
L m

—

Consider the nfa in Figure 3.11(a). The corresponding generalized transition
graph after removal of state ¢; is shown in Figure 3.11(b). Making the
identification ry = b+ ab*a, ro = ab*b, r3 = &, r4 = a + b, we arrive at the
regular expression

r = (b+ab*a)" ab*b(a + b)*

for the original automaton. The construction involved in Theorem 3.2 is
tedious and tends to give very lengthy answers, but it is completely routine
and always works.

.

brab*a

Figure 3.11 b b %5 asb
J |
OWlpoO ()"

b
a
(a) {b)

-

Chapter 3 RECULAR LANGUAGES AND REGULAR GRAMMARS

Figure 3.12

Figure 3.13

Find a regular expression for the language
L= {w e {a,b}" : na (w) is even and ny (w) is odd} .

An attempt to construct a regular expression directly from this description
leads to all kinds of difficulties. On the other hand, finding a nfa for it is
eagy as long as we uge vertex labelmg effectively. We label the vertices with
EE to denote an even number of a’s and b's, with Q"]é]_ to denote an odd
number of a’s and an even number of b’ s, and so on. With this we easily
get the solution in Figure 3.12.

We can now apply the conversion to a regular expression in a mechanical
way. First, we remove the state labeled OE, giving the generalized transition
graph in Figure 3.13.

Next, we remove the vertex labeled OO. This gives Figure 3.14.
Finally, we apply (3.1} with .

/' ry = aa+ ab(bb)" ba, |
' pp=b+ab(bb)*a, -

. 73 = b+ a(bb)" ba,

\ i ﬂb)_* a.

[y

(| EO }) 00

Fid
ba A | a

= EE QO | EOQ /)

Figure 3.14

I
l*\\\\\“ i \\\\\s\ T
it
Ll

3.2 CONNECTION BETWEEN REGULAR EXPRESSIONS AND REGULAR LANGUACES 85

‘\\\\M \“\\"\
B W

—— T

aa + ab(bb)*ha albd)a
[[]
' .-'I b+ abb)ba J
/" ““‘-\
— \“__ _/ A ’
b+ ab(bb)'a

The final expression is long and complicated, but the way to get it is rela-
tively straightforward.
_n

Regular Expressions for Describing Simple Patterns

In Example 1.15 and in Exercise 15, Section 2.1, we explored the connection
between finite accepters and some of the simpler constituents of progra-
ming languages, such as identifiers, or integers and real numbers. The re-
lation between finite automata and regular expressions means that we can
also use regular expressions as a way of describing thege features. This is
easy to see; for example, the sct of all acceptable Pascal integers is defined

by the regular expression ”) / E;J\

sdd*

where s stands for the sign, with possible values from {+,—, A}, and d
stands for the digits 0 to 9.

Pascal integers are a simple case of what is sometimes called a “pat-
tern,” a term that refers to a set of objects having some common properties.
Pattern matching refers to assigning a given object to one of several cate-
gories, Often, the key to successful pattern matching is finding an effective
way to describe the patterns. This is a complicated and extensive area of
computer science to which we can only briefly allude, The example below
is a simplified, but nevertheless instructive, demonstration of how the ideas
we have talked about so far have been found useful in pattern matching.

san

‘/f%;

An application of pattern matching occurs in text editing. All text editors
allow files to be scanned for the occurrence of a given string; most editors
extend this to permit searching for patterns. For example, Tho editor ed in

the UNIX operating system 1ecogm7es the command
e B

aba*e

86

Chapter 3 RecuiAk LANGUAGES AND REGULAR GRAMMARS

as an instruction to search the file for the first occurrence of the string ab,
followed by an arbitrary number of a’s, followed by a c. We see from this
example that the UNIX editor can recognize regular expressions (although
it uses a somewhat different convention for specifying regular expressions
than the one used here).

A challenging task in such an application is to write an efficient program
for recognizing string patterns. Searching a file for occurrences of a given
string is a very simple programming exercise, but here the situation is more
complicated. We have to deal with an unlimited number of arbitrarily
complicated patterns; furthermore, the patterns are not fixed beforehand,
but created at run time. The pattern description is part of the input, so
the recognition process must be flexible. To solve this problem, ideas from
automata theory are often used.

If the pattern is specified by a regular expression, the pattern recogni-
tion program can take this description and convert it into an equivalent nfa
using the construction in Theorem 3.1, Theorem 2.2 may then be used to
reduce this to a dfa. This dfa, in the form of a transition table, is effectively
the pattern-matching algorithm. All the programmer has to do is to provide
a driver that gives the general framework for using the table. In this way
we can automatically handle a large number of patterns that are defined at
run time.

The efficiency of the program must be considered also. The construction
of finite automata from regular expressions using Theorems 2.1 and 3.1 tends
to yield automata with many states. If memory space is a problem, the state

reduction method described in Section 2.4 is helpful. y
N |

EXERCISES

1. Use the construction in Theorem 3.1 to find an nfa that accepts the language
" L (ab*aa + bba*ab).

9. Find an nfa that accepts the complement of the language in Exercise 1.
@ Glive an nfa that accepts the language L ((a +b)" b(a + bb)"). &
G) Find dfa’s that accept the following languages.

(a) L (aa* 4+ aba*b*) @

(b) L(ab(a+ ab)” (a+ aa))
(c) L ((abab)” + (aaa™ + b))
(@) L ((aa")" 5)")

3.2 CONNECTION BETWEEN REGULAR EXPRESSIONS AND RECULAR LANGUAGES 87

5. Find dfa's that accept the following languages.

(a) L = L(ab*a*)U L ((ab)* ba),
(b) L = L(ab*a*) N L ((ab)* ba).

6. Find an nfa for Exercise 15(f), Section 3.1. Use this to derive a regular
expression for that language.

7. Give explicit rules for the construction suggested in Figure 3.9 when various
edges in 3.9(a) are missing, #

@Consider the following generalized transition graph.

bb

(a) Find an equivalent generalized transition graph with only two
states.

(b) What is the language accepted by this graph? ##

N
&QWhat language is accepted by the following generalized transition graph?

a a+é a+ b

@Find regular expressions for the languages accepted by the following au-
tomata. '

88

Chapter 3 REGULAR LANGUAGES AND REGULAR GRAMMARS

(b}

11. Rework Example 3.10, this time eliminating the state OO first.
@ Find a regular expression for the following languages on {a, b}.

i3.

14.

15.
16.
17.

(a) L=A{w
(b) L ={w
(c) L={w
d) L={w

1, (w) and ny (w) are both even}
: (ng (w) — mp (w)) mod 3 = 1}
: (na (w) — np (w)) mod 3 # 0}

: 2ny (w) + 3ng (w) is even}

Find a regular expression that generates the set of all strings of triplets defin-
ing correct binary addition as in Exercise 23, Section 2.1.

Prove that the conmstructions suggested by Figure 3.9 generate equivalent
generalized trangition graphs.

Write a regular expression for the set of all Pascal real nurmbers.
Find a regular expression for Pascal sets whose elements are integer numbers,

In some applications, such as programs that check spelling, we may not need
an exact match of the pattern, only an approximate one. Once the notion

3.3 REGULAR GRAMMARS 89

of an approximate match has been made precise, automata theory can be
applied to construct approximate pattern matchers. As an illustration of this,
consider patterns derived from the original ones by insertion of one symbol,

Let L be a regular language on ¥ and define
insert (L) = {uav:a € Z,uv € L}.

In effect, insert (L) contains all the words created from L by inserting a
spurious symbol anywhere in a word.

* (a) Given an nfa for L, show how one can construct an nfa for insert (L). #

*% (b) Discuss how you might use this to write a pattern-recognition
program for znsert (L), using as input a regular expression for L.

* 18. Analogous to the previous cxercise, consider all words that can be formed from
L by dropping a single symbol of the string. Formally define this operation
drop for languages. Construct an nfa for drop (L), given an nfa for L.

'19.) Use the construction in Theorem 3.1 to find nfa’s for L (a@) and L (2*). Is
" the result consistent with the definition of these langnages?

Regular Grammars

A third way of describing regular languages is by means of certain simple
grammars. Grammars are often an alternative way of specifying languages.
Whenever we define a language family through an automaton or in some
other way, we are interested in knowing what kind of grammar we can
associate with the family, First, we look at grammars that gencrate regular
languages.

Right- and Left-Linear Grammars

Pefinition 3.3
A grammar G = (V,T, 5, P) is said to be right-linear if all productions
are of the form

A — zB,

A—u,

where A, B € V, and » € T*. A grammar is said to be left-linear if all
productions are of the form

A— DBz,

90

Chapter 3 TRECULAR LANGUAGES AND REGULAR GRAMMARS

or
A— .

A regular grammar is one that is either right-linear or left-linear.

Note that in a regular grammar, at most one variable appears on the
right side of any production. Furthermore, that variable must consistently
be either the rightmost or leftmost symbol of the right side of any produc-
tion.

The grammar G = ({S},{a,b}, S, P1), with P, given as
S — abS|a
is right-linear. The grammar G = ({9, S1, 92}, {a,b}, S,), with produc-
tions
S — Syab,
S] —_ S] ab{Sg,
S2 - a,

is left-linear. Both Gy and G are regular grammars.
The scquence

S = ab8 = ababS = ababa

is a derivation with G1. From this single instance it is easy to conjecture
that L (G) is the language denoted by the regular expression r = (ab)* a. In
a similar way, we can see that I (Gz) is the regular langnage L (aab (ab)”).

u

The grammar G = ({5, A, B}, {a,b}, S, P) with productions

5 — A,
A — aBJA,
B — Ab,

is not regular. Although every production is either in right-linear or left-
linear form, the grammar itself is neither right-linear nor left-linear, and

Theorem 3.3

3.3 REGULAR GGRAMMARS 91

therefore is not regular. The grammar is an cxample of a linear grammar.

A linear grammar is a grammar in which at most one Variable cai oceur
on the right side of any production, withont 1E‘Str1(‘t1(m on the position of
this variable. Clearly, a regular i Linear, but not all linear

grammars are regular.

Our next goal will be to show that regular grammars are associated
with regular languages and that for every regular language there is a regular
grammar. Thus, regular grammars are another way of talking about regular
languages.

Right-Linear Grammars Generate Regular Languages

First, we show that a language generated by a right-linear grammar is always
r(\gular To do so, we construct an nfa that mimics the derivations of a right-
linear grammar. Note that the scntential forms of a right-linear grammar
have the special form in which therc is exactly one variable and it occurs as
the rightmost symbol. Suppose now that we have a step in a derivation

ab---cD = agb. - cdE,

arrived at by using a production 7 — dE. The corresponding nfa can
imitate this step by going from state D to state E when a symbol d is
encountered. In this scheme, the state of the automaton corresponds to the
variable in the sentential form, while the part of the string already processed
is identical to the terminal prefix of the sentential form. This simple idea is
the basis for the following theorem.

Let G = (V,T, S, P) be a right-linear grammar. Then L(G) is a regular
language.

Proof: We assume that V = {V;,V4,...}, that § = V;, and that we have
productions of the form Vy — »nV,, V, — vV, oot Vi, = o, s
a string in L (G), then because of the form of the productions in G, the
derivation must have the form

Vo = nV;
= vV
3
= VU2 UV,

= U U - VRl = WL (3.2)

The automaton to be constructed will reproduce the derivation by “con-
suming” each of these v's in turn. The initial state of the automaton will

S

92 Chapter 3 REGULAR LANGUAGES AND REGULAR GRAMMARS

be labeled Vy, and for each variable V; there will be a nonfinal state labeled
V;. For each production

Vi — ayaz---amVj

the automaton will have transitions to connect V; and V; that is, § will be
defined so that

8 (Viyaraz - am) = Vj.
For each production
Vi— aia2: - am,
the corresponding transition of the automaton will be
8* (Vi,aiag -+ am) = Vy,

where V; is a final state. The intermediate states that are needed to do this
are of no concern and can be given arbitrary labels. The general scheme
is shown in Figure 3.15. The complete automaton is assembled from such
individual parts.

Suppose now that w € L (G) so that (3.2) is satisfied. In the nfa there
is, by construction, a path from Vg to V; labeled vy, a path from V; to V;
labeled v4, and so0 on, so that clearly

Vi €6 (Vp,w),

and w is accepted by M,

Conversely, assume that w is accepted by M. Because of the way in
which M was constructed, to accept w the automaton has to pass through a
sequence of states Vg, Vi, ... to Vy, using paths labeled vy, vz, ... Therefore,
w must have the form

W = MUz - -Vl

Figure 3.15 (¥

Represents V;—+a.a,...a, VJ

13 Ay

Represents ¥;—» a

3.3 REGULAR (GRAMMARS 93

Figure 3.16 {2l =t {7)

and the derivation
#
Vo =0V, => ’U1U2V}‘ = VU2 - UV = Uy - - U

is possible. Hence w is in L (@), and the theorem is proved. m
===

\\ i \Q\\Q\M\\\\\\\ \\\\\\\ M \\\\\\\\\ \W\W\\\\
i

\@WWW g i @Q Construct a finite automaton that accepts the language generated by the
grammar

V() — aVl,
Vi — abVyb.

We start the transition graph with vertices Vi, Vi, and Vy. The first pro-
duction rule creates an edge labeled a between ¥, and Vi. For the second
rule, we need to introduce an additional vertex so that there is a path la-~
beled ab between V) and V;. Finally, we need to add an edge labeled b
between Vi and V%, giving the automaton shown in Figure 3.16. The lan-
guage generated by the grammar and accepted by the automaton is the
regular language L ((aab)” ab).

-

Right-Linear Grammars for Regular Languages

To show that every regular language can be generated by some right-linear
grammar, we start from the dfa for the language and reverse the construc-
tion shown in Theorem 3.3. The states of the dfa now become the variables
of the grammar, and the symbols causing the transitions become the termi-
nals in the productions.

If L is a regular language on the alphabet X, then there exists a right-linear
grammar G = (V, X, 5, P) such that L = L(G).

94

Chapter 3 RecULAR LANGUAGES AND REGULAR GRAMMARS

Proof: Let M = (Q,%,4,q, F) be a dfa that accepts L. We assume that
Q = {90.91, .- qn} and ¥ = {a1,0a2,...,ay}. Construct the right-linear
grammar G = (V, %, S, P) with

V ={q,q, - n}
and S = qy. For each transition
6(¢i,a5) = ax
of M, we put in P the production
qi — Q. (3.3)
In addition, if g is in F, we add to P the production
g — A (3.4)

We first show that G defined in this way can generate every string in
L. Consider w € L of the form

w=a;a;--- apaj.
For M to accept this string it must make moves via

5((10’&1'-) = qp,
0 (staj) = r,

8 (gs, an) = @,
8 (qr,a1) = qf € F.

By construction, the grammar will have one production for each of these
§’s. Therefore we can make the derivation

*
go = UiQp = G3Q;4y = Q05 ~ * Ay
= Q4 - - ARy =¥ Q05 0 Apdy, (3.5)

with the grammar G, and w € L (G).
Conversely, if w € L (G), then its derivation must have the form (3.5).
But this implies that

6" (qo, Qi aray) = qf,

completing the proof. =

Figure 3.17

3.3 REGULAR GRAMMARS 95

8gp @) ={g} | go—agy |

| 8(717 a) = {ff2} | 71 —dgy

Sgp 8 =1g} | g,—bg,

| Slgpa)=lgd | gy —ag, '

gr€F gr—n

For the purpose of constructing a grammar, it is useful to note that the
restriction that M be a dfa is not essential to the proof of Theorem 3.4.
With minor modification, the same construction can be used if M is an nfa.

Construct a right-linear grammar for L (aab*a). The transition function for
an nfa, together with the corresponding grammar productions, is given in
Figure 3.17. The result was obtained by simply following the construction in

Theorem 3.4, The string aaba can be derived with the constructed grammar
by

go => ag1 = aagz = aabygy = aabag; = aaba.

Equivalence Between Regular Languages and
Regular Grammars

The previous two theorems establish the connection between regular lan-
guages and right-lincar grammars. One can make a similar connection be-
tween regular languages and left-lincar grammars, thereby showing the com-
plete equivalence of regular grammars and regular languages.

A language L is regular if and only if there exists a left-linear grammar G
such that L = L (G).

Proof: We only outline the main idea. Given any left-linear grammar with
productions of the form

A — Bv,
or

A— v,

96

Theorem 3.6

Figure 3.18

Chapter 3 REcULAR LANGUAGES AN REGULAR GRAMMARS

we construct from it a right-linear grammar @ by replacing every such
production of G with

A — vEB,
ar
A - vt

respectively. A few examples will make it clear quickly that L(G) =
1\ R
(L (G)) . Next, we use Exercise 12, Section 2.3, which tells us that the re-

verse of any regular language is also regular. Since G is right-linear, L (é)

is regular. But then so are L ((@))R and L(G). =
em— e

Putting Theorems 3.4 and 3.5 together, we arrive at the equivalence of
regular languages and regular grammars.

A language L is regular if and only if there exists a regular grammar G such
that L = L(Q).

We now have several ways of describing regular languages: dfa’s, nfa’s,
regular expressions, and regular grammars. While in some instance one or
the other of these may be most suitable, they are all equally powerful. They
all give a complete and unambiguous definition of a regular language. The
connection between all these concepts is established by the four theorems
in this chapter, as shown in Figure 3.18.

Regular expressions I

A

Theorem 3.1 | Theorem 3.2

‘ d;l or nfa

{

Theorem 3.3 | Theorem 3.4
|
¥

| Regular grammars

3.3 REGULAR GRAMMARS 97

EXERCISES

1. Construct a dfa that accepts the language generated by the grammar

S5 — abA,
A — baD3,
B — aA|bb.

2. Find a regnlar grammar that generates the language L (aa* (ab+ a)”).
3. Construct a left-linear grammar for the language in Exercise 1.

v Construct right- and left-lincar grammars for the language

L={a"b":n>2,m>3}. ®

5. Construct a right-linear grammar for the language L ((aab*ab)”).

4 9 (6.)Find a regular grammar that generates the language on £ = {a, b} consisting
of all strings with no more than three a’s.

In Theorem 3.5, prove that L (6) — (L(G)E. @

7.
A Suggest a construction by which a left-linear grammar can be obtained from
an nfa directly.

9. Find a left-linear grammar for the language in Exercise 5.
q Find a regular grammar for the language L = {a"b” : n+ m is even}., @
11.

Find a regular grammar that generates the language
L = {w € {a,b}" : no (w) + 3ny (w) is even}.
0
(@ Find regular grammars for the following languages on {a, b}.
(8) L= {w:na(w) and n, (w) arc both even} @
(by L ={w: (ne (w) —np (w))mod3 =1}
() L={w: (ng (w) —np(w))mod3 # 0}
(d) L={w:|ng (w) —ny (w)| is odd}.

\ @ Show that for every regular language not containing A there exists a right-
linear grammar whose productions are restricted to the forms

A— aB

where A, BeVanda & T.

o

98

Chapter 3 ReGULAR LANCUAGES AND REGULAR GRAMMARS

@ Show that any regular grammar G for which L (G) # @ must have at least
one production of the form

A— oz,

where A€ V and x € T™.
15. Find a regular grammar that generates the set of all IPascal real numbers.

@Let G1 = (W4, %, 51, P1) be right-linear and Gz = (V2,%, 852, P2) be a left

linear grammar, and assume that V4 and V3 are disjoint. Consider the linear
grammar G = ({S}UWVI UV, X, 8, P), where S is not in Vi U Vz and P =
{S — 81|55} U P, U P;. Show that L (G) is regular.

Properties of
Regular Languages

e have defined regular languages, studied some ways in which they
can be represented, and have seen a few cxamples of their usefulness.
We now raise the question of how general regular languages arc.
Could it be that every formal language is regular? Perhaps any
set we can specify can be accepted by some, albeit very complex, finite
automaton. As we will sce shortly, the answer to this conjecture is definitely
no. But to understand why this is so, we must inquire more deeply into the
nature of regular languages and see what propertics the whole family has.

The first question we raise is what happens when we perform operations
on regular languages. The operations we consider are simple set operations,
such as concatenation, as well ag operations in which each string of a lan-
guage is changed, as for instance in Exercise 22, Scction 2.1. Is the result-
ing language still regular? We refer to this as a closure question. Closure
properties, although mostly of theoretical intercest, help us in discriminating
between the various language families we will encounter,

A sccond set of questions about language families deals with our ability
to decide on certain properties. For example, can we tell whether a language

99

e

100

Chapter 4 PROPERTIES OF REGULAR LANGUAGES

is finite or not? As we will see, such questions are easily answered for regular
langnages, but are not as easily answered for other language families.

Finally we consider the important question: How can we tell whether
a given language is regular or not? If the language is in fact regular, we
can always show it by giving some dfa, regular expression, or regular gram-
mar for it. But if it is not, we need another line of attack. Omne way to
show a language is not regular is to study the general properties of regular
languages, that is, characteristics that are shared by all regular languages.
If we know of some such property, and if we can show that the candidate
language does not have it, then we can tell that the language is not regular.

In this chapter, we look at a variety of properties of regular languages.
These properties tell us a great deal about what regular languages can and
cannot do. Later, when we look at the same questions for other language
families, similarities and differences in these properties will allow us to con-
trast the various language families.

Closure Properties of Regular Languages

Consider the following question: Given two regular languages Ly and Ly, is
their union also regular? In specific instances, the answer may be obvious,
but here we want to address the problem in general. Is it true for all regular
L, and Ly7? Tt turns out that the answer is yes, a fact we express by saying
that the family of regular languages is closed under union. We can ask
similar questions about other types of operations on languages; this leads
us to the study of the closure properties of languages in general.

Closure properties of various language families under different opera-
tions are of considerable theoretical interest. At first sight, it may not be
clear what practical significance these properties have. Admittedly, some of
them have very little, but many results are useful. By giving us insight into
the general nature of language families, closurc properties help us answer
other, more practical questions. We will see instances of this (Theorem 4.7
and Example 4.13) later in this chapter.

Closure under Simple Set Operations

We begin by looking at the closure of regular languages under the common
set operations, such as union and intersection.

If L; and Ly are regular languages, then so are L; U Ly, Ly N Ly, LiLy, I,
and L}. We say that the family of regular Janguages is closed under union,
intersection, concatenation, complementation, and star-closure.

Proof: If Ly and L; are regular, then there exist regular expressions ry and
ro such that Ly = L (ry) and Lo = L (r2). By definition, r1 + 7y, 72, and

4.1 CLOSURE PROPERTIES OF REGULAR LANGUACGES 101

r are regular expressions denoting the languages Ly U Lz, LiLz, and L3,
respectively. Thus, closure under union, concatenation, and star-closure is
immediate.

To show closure under complementation, let M = (@, X, 4, g0, F) be a
dfa that accepts Li. Then the dfa

M': (Q’E’é‘vq()’Q_F)

accepts L;. This is rather straightforward; we have already suggested the
result in Exercise 4 in Scction 2.1. Note that in the definition of a dfa,
we assumed §* to be a total function, so that §* (go,w) is defined for all
w € T*. Consequently either 6* (gg, w) is a final state, in which case w € L,
or 8* (go,w) € Q — F and w € L.

Demonstrating closure under intersection takes a little more work. Let
L, = L(M;) and Ly = L (M), where My = (Q,%, 61,40, F1) and M =
(P, %, 82, po, F2) are dfa’s. We construct from M) and M a combined au-

tomaton M = (Q,E,g, (g0, p0) 1::'), whose state set @ = Q x P consists

of pairs (g;,p;), and whose transition function d is such that M is in state
(gi,p;) whenever M, is in state g; and My is in state pj. This is achieved
by taking

3 ((¢,5) @) = (aw, p1),
whenever
81 (giya) =k
and
62 (pj,a) = pr.

F is defined as the set of all (g;, p;), such that ¢; € Fy and p; € F3. Then
it is a simple matter to show that w € Ly N Ly if and only if it is accepted
by M. Consequently, Ly N Ly is regular. =

Eemanior = criee=r

The proof of closure under intersection is a good example of a construc-
tive proof. Not only does it cstablish the desired result, but it also shows
explicitly how to construct a finite accepter for the intersection of two reg-
ular languages. Constructive proofs occur throughout this book; they are
important because they give us insight into the results and often serve as
the starting point for practical algorithms. Here, as in many cases, there
are shorter but nonconstructive (or at least not so obviously constructive)
arguments. For closure under intersection, we start with DeMorgan’s law,
Equation (1.3), taking the complement of both sides. Then

LLDLQZE1UZ2

e

102 Chapter 4 PRrOPERTIES OF REQULAR LANGUAGES

for any languages L1 and Ls. Now, if Ly and Ly are regular, then by closure
under complementation, so are L, and L. Using closure under union, we
next get that I, UL is regular. Using closure under complementation once
more, we see that

: TiULy=LiNLy

is regular.
The following example is a variation on the same idea.

A
T

TR

Show that the family of regular languages is closed under difference. In
other words, we want to show that if L, and Ly are regular, then L; — Lo
is necessarily regular also.

The needed set identity is immediately obvious from the definition of a
set difference, namely

Li-L=Inn L_g
The fact that Lo is regular implies that Lo is also regular. Then, because

of the closure of regular languages under intersection, we know that L, N Ly
is regular, and the argument is complete. -

A variety of other closure properties can be derived directly by elemen-
tary arguments.

The family of regular languages is closed under reversal.

Proof: The proof of this theorem was suggested as an exercise in Section
2.3. Here are the details. Suppose that L is a regular language. We then
construct an nfa with a single final state for it. By Exercise 7, Section
2.3, this is always possible. In the transition graph for this nfa we make
the initial vertex a final vertex, the final vertex the initial vertex, and re-
verse the direction on all the edges. It is a fairly straightforward matter
to show that the modified nfa accepts w? if and only if the original nfa
accepts w. Therefore, the modified nfa accepts LF, proving closure under
reversal. m

4.1 CrLosurt PROPERTIES OF REGULAR LANGUAGES 103

Closure under Other Operations

In addition to the standard operations on languages, one can define other
operations and investigate closure properties for them. There are many such
results; we select only two typical ones. Others are explored in the exercises
at the cnd of this section.

Suppose ¥ and ' are alphabets. Then a function
h:¥Y—-T*

is called a homomorphism. In words, a homomorphism is a substitution
in which a single letter is replaced with a string. The domain of the function
h is extended to strings in an obvious fashion; if

W= a1dg - - An,
then
h(w)=h{a)h(as) - hiay).
If L is a language on X, then its homomorphic image is defined as

h(L)y={h(w):weL}.

Let ¥ = {a,b} and I’ = {a, b, c} and define h by
h(a) = ab,
h (B) = bbe.

Then h{aba) = abbbcab. The homomorphic image of L = {aa,aba} is the
language h (L) = {abab, abbbeab}.
_n

If we have a regular expression 7 for a language L, then a regular ex-
pression for b (L) can be obtained by simply applying the homomorphism
to each X symbol of r.

-

104

Chapter 4 ProPERTIES OF REGULAR LANCUAGES

T e B R A R R
s gl
RN TR A i
R :‘@m&&mm b \ﬁm\\\\\\\ n

Ean e

Theorem 4.3

Take £ = {a,b} and I = {b, ¢,d}. Definc k by

h(a) = dbee,
h{b) = bde.

If L is the regular language denoted by
r=(a+)(aa)",
then
r1 = (dbee + (bdc)”) (dbecdbec)”

denotes the regular language h (L).
_n

The general result on the clogure of regular languages under any homo-
morphism follows from this example in an obvious manner.

Let h be a homomorphism. If L is a regular language, then its homomorphic
image h (L) is also regular. The family of regular languages is therefore
closed under arbitrary homomorphisms.

Proof: Let L be a regular language denoted by some regular expression
r. We find h (r) by substituting & (a) for each symbol ¢ € ¥ of r. It can
be shown directly by an appeal to the definition of a regular expression
that the result is a regular expression. It is equally easy to see that thc
resulting expression denotes h (L). All we need to do is to show that for
every w € L (r), the corresponding h (w) is in L (h (7)) and conversely that
for every v in L (h(r)) there is a w in L, such that v = h (w). Leaving the
details as an exercise, we claim that h (L) is regular. =

Ry : : B A,
sPefinithaniaziing
: ERTY LR : R
itoatbatfoldd bttt \\\M\M\WMW\

Let L1 and L, be languages on the same alphabet. Then the right quotient
of Ly with Ls is defined as

Li/Ly = {z:ay € Ly for some y € Ly} . (4.1)

To form the right quotient of Ly with Ly, we take all the strings in L; that
have a suffix belonging to L. Every such string, after removal of this suffix,
belongs to Lq/Ls.

4.1 CLOSURE PROPERTIES OF REGULAR LANGUAGES 105

Figure 4.1

Li ={a"t" :n=1,m >0} U {ba}
and
Ly={b":m =1},
then
Ly/Ly={a"b" :n>1,m>0}.

The strings in Ly consist of one or more b’s. Therefore, we arrive at the
answer by removing one or more b’s from those strings in L; that terminate
with at least one b as a suffix.

Note that here Ly, La, and Ly/Ly are all regular. This suggests that
the right quotient of any two regular languages is also regular. We will
prove this in the next theorem by a construction that takes the dfa’s for
Ly and Ly and constructs from them a dfa for Ly /Ly. Before we describe
the construction in full, let us see how it applies to this example. We start
with a dfa for L,; say the automaton My = (Q, 3,6, g, F) in Figure 4.1.
Since an automaton for L, /L, must accept any prefix of strings in Ly, we
will try to modify M) so that it accepts z if there is any y satisfying (4.1).

106

Figure 4.2

Chapter 4 PROPERTIES OF REGULAR LANGUAGES

iy ¥ ’ ({73 V1 g (1)

The difficulty comes in finding whether there is some y such that ay € L,
and y € La. To solve it, we determine, for each g € @, whether there is a
walk to a final state labeled v such that v € Lo, If this is so, any z such
that & (go, z) = q will be in L1/Ls. We modify the automaton accordingly
to make ¢ a final state.

To apply this to our present case, we check each state qy, g1, g2, ¢3, @,
gs to see whether there is a walk labeled bb* to any of the ¢1, go, or g4. We
see that only g1 and ¢z qualify; go, ¢3, g4 do not. The resulting automaton
for Ly/Lo is shown in Figure 4.2. Check it to see that the construction
works. The idea is generalized in the next theorem. -

If L) and Ly are regular languages, then L1/ Ly is also regular. We say that
the family of regular languages is closed under right quotient with a regular
language.

Proof: Let L; = L (M), where M = (Q, %, 8, q0, F) is a dfa. We construct
another dfa M = (Q, %, 4, qo, ﬁ) as follows. For each ¢; € @, determine if
there exists a y € Ly such that

6" (giy)=as € F.

This can be done by looking at dfa’s M, = (Q, %, 4, ¢;, F). The automaton
M; is M with the initial state g replaced by ¢;. We now determine whether

4.1 CLOSURE PRrROPERTIES OF REGULAR LANGUAGES 107

there exists a y in L (M;) that is also in L,. For this, we can use the
construction for the intersection of two regular languages given in Theorem
4.1, finding the transition graph for Ly L (M;). If there is any path between
its initial vertex and any final vertex, then Lo N L (M;) is not empty. In
that case, add ¢; to ﬁ.’_‘ Repeating this for every g; €), we determine F
and thereby construct M.

To prove that L (]\7) = L1/Ls, let © be any element of L;/L;. Then

there must be a y € Lo such that xy € Ly. This implies that
8" (o, 2y) € F,
so that there must be some ¢ € @) such that
0" (g0, %) = ¢
and

0" (q,y) € F.

Therefore, by construction, g € ﬁ, and M accepts x because §* (go,z) is in
F. .
Conversely, for any = accepted by M, we have

8% (go,x) = q € F.

But again by construction, this implies that there exists a y € Ly such
that 6* (¢,y) € F. Therefore xy is in L), and z is in L,/Ly. We therefore
conclude that

L (ﬁ) = I./Ls,

and from this that Ly/Ls is regular. m
O |

T
R
ample d8\

Find L,/L, for
Ly = L(a%baa™),
LZ =1L (ab*) .
We first find a dfa that accepts Li. This is easy, and a solution is given in
Figure 4.3. The example is simple enough so that we can skip the formalities
of the construction. From the graph in Figure 4.3 it is quite evident that
L(Myyn Ly =,
L(M1)N Ly = {a}# 2,
L (Mg) M Lg = {a} 7é &,
L(M3)N Ly = @.

108 Chapter 4 PROPERTIES OF REGULAR LANGUAGES

Figure 4.3 a
i
vl _ p!
£ p — Z
- '?u_- | th...— —(| 45)
|
|
b b
E 34
T3/
|]
a b
Figure 4.4 a g
z - J = P
= T/ - "'__f:\ i)} £ -l
b &
| ?’3.|
=
|
ab

Therefore, the automaton accepting Li/Lqy is determined. The result is
shown in Figure 4.4. It accepts the language denoted by the regular ex-
> pression of a*b + a*baa*, which can be simplified to a*ba*. Thus Li/Ly =

~ L{(a*ba*).
|

4.1 CLOSURE PROPERTIES OF REGULAR LANGUAGES 109

EXERCISES

1. Fill in the details of the constructive proof of closure under intersection in
Theorem 4.1,

2. Use the construction in Theorem 4.1 to find nfa’s that accept

(8) L((a+b)a*)N L (baa*), @
(b) L (ab*e*) M L{a*d*a).
3. In Example 4.1 we showed closure under difference for regular languages,

but the proof was nonconstructive. Provide a constructive argument for this
result. '

4. In the proof of Theorem 4.3, show that h(r) is a regular expression. Then
show that h (r) denotes h (L).

’5‘5‘}. Show that the family of regular languages is closed under finite union and
intersection, that is, if Ly, L, ..., L, are regular, then

Ly = U L;

i={1,2,-..,n}

and
L= [L
i={1,2,...,n}

are also regular.

6. The symmetric difference of two sets 51 and 5; is defined as

S1©®8:={x:z € 81 orz €82, but z is not in both S, and S2}.
Show that the family of regular languages is closed under symmetric differ-
ence.
7. The nor of two languages is
nor (Ly, Lz) = {w:w ¢ L and w ¢ Lz} .
Show that the family of regular languages is closed under the nor operation.

®

8, Define the complementary or (cor) of two languages by
cor(Ly,La) ={w:weli or wels}.

Show that the family of regular languages is closed under the cor operation.
B 9,/ Which of the following are true for all regular languages and all homomor-

phismg?

(a) h{L1 U Lz) =h(L1)Uh (L) e

(b) h(LiNLa) = h(L1) Nh(Ls) . False

(c) h(L1Ls) = h(L1) h(L2) v

110 Chapter 4 PROPERTIES OF REGULAR LANGUAGES

‘ et Ly = L (a*baa”) and Ly = L (aba*). Find L1 /Lo
‘ \Oi how that Ly = LiLs/L2 is not true for all languages L1 and L.

12. Suppose we know that Ly U Lz is regular and that L1 is finite. Can we
‘ \ conclude from this that Lg is regular?
‘ 13. If L is a regular language, prove that L, = {uv : u € L, |v] = 2} is also regular.
14. If L is a regular language, prove that the language {uv rueLyve LR} is
‘ also regular. ®

\‘)\ @) The left quotient of a language L1 with respect to Lz is defined as

. ,’) —I(LI(‘(AA/[(Z et
(jgx{ﬂ’f.gm’Sk—A -.Thl.l,.af(c«j

LofL1={y:x € Ly,zy e L,}.

Show that the family of regular languages is closed under the left quoticnt
with a regular language.

16. Show that, if the statement “If Ly is regular and L1 U L2 is also regular, then
Lo must be regular” were true for all Ly and Ly, then all languages would be
regular. &

17. The tail of a language is defined as the set of all suffixes of its strings, that is
tail (L) = {y : zy € L for some z € X*}.
Show that if L is regular, so is tail (L).
18. The head of a language is the set of all prefixes of its strings, that is,
head (L) = {z : 3y € L for some y € £*}.

Show that the family of regular languages is closed under this operation.
®

19. Define an operation third on strings and languages as
third (a1aza304a5a6 - -+) = G306 - - -

with the appropriate extension of this definition to languages. Prove the
closure of the family of regular languages under this operation.

20. For a string aiaz - - - an define the operation shift as
shift (aias- - an) = az-- - ana1.
From this, we can define the operation on a language as
shift (L) = {v:v = shift (w) for some w € L}.

Show that regularity is preserved under the shift operation.

2i. Define
a &)

and

exchange (@102 -+ Gn—10n) = Gn02 - Gn-101,

ezchange (L) = {v : v = exchange (w) for some w € L}.

Show that the family of regnlar languages is closed under exchange.

4.2 ELEMENTARY QUESTIONS ABOUT REGULAR LANGUAGES 111

* 22, The shuffle of two languages L, and L. is defined as

shuﬁle (Ll,Lz) = {w;_v; Wtz * - WmUm D WIW2.. . Wm € Ll,
V1¥2...Um € Lz, for all wy,v; € £}
Show that the family of regular languages is closed under the shuffle
operation.

* 23. Define an operation minus5 on a language L as the set of all strings of L with
the fifth symbol from the left removed (strings of length less than five are left
unchanged). Show that the family of regular languages is closed under the
manusd operation.

* 24. Define the operation leftside on L by

leftside (L) = {w cww® e L} .

Is the family of regular languages closed under this operation?

25. The min of a language L is defined as

min (L) ={w € L: thereis nou € L,v € £+, such that w = uv}.

Show that the family of regular languages is closed under the min operation,

24@ Let Gy and G2 be two regular grammars. Show how one can derive regular
grammars for the languages

(a) L(GL)UL(G:) @&
(b) L(G1)1.(G2) ®
(c) L(Gh)" @&

Elementary Questions about
Regular Languages

We now come to a very fundamental issue: Given a language L and a string
w, can we determine whether or not w is an element of L? This is the
membership question and a method for answering it is called a member-
ship algorithm. Very little can be done with languages for which we cannot
find efficient membership algorithms. The question of the existence and na-
ture of membership algorithms will be of great concern in later discussions;
it is an issue that is often difficult. For regular languages, though, it is an
easy matter.

We first consider what cxactly we mean when we say “given a lan-
guage....” In many arguments, it is important that this be unambiguous.
We have used several ways of describing regular languages: informal verbal

112

Theorem 4.6

Chapter 4 PropERTIES OF REGULAR LANGUAGES

descriptions, set notation, finite automata, regular expressions, and regu-
lar grammars. Only the last three are sufficiently well defined for use in
theorems. We therefore say that a regular language is given in a stan-
dard representation if and only if it is described by a finite automaton,
a regular expression, or a regular grammar.

Given a standard representation of any regular language L on ¥ and any
w € ¥, there exists an algorithm for determining whether or not w is in L.

Proof: We represent the language by some dfa, then test w to see if it is
accepted by this automaton. m
P

Other important questions arc whether a language is finite or infinite,
whether two languages are the same, and whether one language is a subset of
another. For regular languages at least, these questions are easily answered.

There exists an algorithm for determining whether a regular language, given
in standard representation, is empty, finite, or infinite.

Proof: The answer is apparent if we represent the language as a transition
graph of a dfa. If there is a simple path from the initial vertex to any final
vertex, then the language is not empty.

To determine whether or not a language is infinite, find all the vertices
that are the base of some cycle. If any of these are on a path from an initial
to a final vertex, the language is infinite. Otherwise, it is finite. =

The question of the equality of two languages is also an important prac-
tical issue. Often several definitions of a programming language exist, and
we need to know whether, in spite of their different appearances, they spec-
ify the same language. This is generally a difficult problem; even for regular
languages the argument is not obvious. It is not possible to argue on a
sentence-by-sentence comparison, since this works only for finite languages.
Nor is it easy to see the answer by looking at the regular expressions, gram-
mars, or dfa’s. An elegant solution uses the already established closure
properties.

Given standard representations of two regular languages Ly and Ly, there
exists an algorithm to determine whether or not Ly = Ls.

Proof: Using L, and L, we define the language
Iy =(LinLz)U(LiNLa).

RN

4.2 ELEMENTARY QUESTIONS ABOUT REGULAR LANGUAGHES 113

By closure, Ly is regular, and we can find a dfa M that accepts L. Once
we have M we can then use the algorithm in Theorem 4.6 to determine if
L3 is empty. But from Exercise 8, Section 1.1 we see that Ly = @ if and
onlyif Ly =Ly, m

These results are fundamental, in spite of being obvious and unsurpris-
ing. For regular languages, the questions raised by Theorems 4.5 to 4.7 can
be answered easily, but this is not always the case when we deal with larger
families of languages. We will encounter questions like these on several oc-
casions later on. Anticipating a little, we will see that the answers become
inc¢reasingly more difficult, and eventually impossible to find.

EXERCISES

For all the exercises in this section, assume that regular languages are given
in standard representation. '

1. Show that there exists an algorithm to determine whether or not w € L; — Lo,
for any given w and any regular languages Ly and L. @

2. Show that there exists an algorithm for determining if Ly C Ly, for any
regular languages L1 and L. @@

3. Show that there exists an algorithm for determining if A € L, for any regular
language L.

4. Show that for any regular L1 and L, there is an algorithm to determine
whether or not L; = Ly /L.

5. A language is said to be a palindrome language if L = L*. Find an algorithm
for determining if a given regular language is a palindrome Jangnage. &

6. Exhibit an algorithm for determining whether or not a regular language L
contains any string w such that w® ¢ L.

7. Exhibit an algorithm that, given any three regular languages, L, L1, Lo, de-
termines whether or not L = Ly Ls.

8. Exhibit an algorithm that, given any regular language L, determines whether
ornot L =L",

9. Let L be a regular language on ¥ and & be any string in £*. Find an
algorithm (o determine if L contains any w such that @ is a substring of it,
that is, such that w = uiv, with u,v € T*.

10. Show that there is an algorithm to determine if I = shuf fle (L, L) for any
regular L.

11. The operation tail (L) is defined as

tail (L) = {v:wv € Lyu,v € £*}.

114

Chapter 4 PROPERTIES OF RECULAR LANGUAGES

Show that there is an algorithm for determining whether or not L = tail (L)
for any regular L.

12. Let L be any regular language on ¥ = {a, b}. Show that an algorithm exists
for determining if I contains any strings of even length,

13. Find an algorithm for determining whether a regular language L contains an
infinite number of even-length strings.

14. Describe an algorithm which, when given a regular grammar @G, can tell us
whether or not L (G) = Z*.

Identifying Nonregular Languages

Regular languages can be infinite, as most of our examples have demon-
strated. The fact that regular languages are associated with automata that
have finite memory, however, imposes some limits on the structure of a
regular language. Some narrow restrictions must be obeyed if regularity
is to hold. Imtuition tells us that a language is regular only if, in process-
ing any string, the information that has to be remembered at any stage is
strictly ¥imited. This is true, but has to be shown precisely to be used in
any meaningful way. There are several ways in which this precision can be
achieved.

Using the Pigeonhole Principle

The term “pigeonhole principle” is used by mathematicians to refer to the
following simple observation. If we put n objects into m boxes (pigeonholes),
and if n > m, then at least one box must have more than one item in it.
This is such an obvious fact that it is surprising how many deep results can
be obtained from it.

Is the language L = {a™b" : n > 0} regular? The answer is no, as we show
using a proof by contradiction.

Suppose L is regular. Then some dfa M = (@, {a, b}, 4, qo, F') exists for
it. Now look at 0* (go,a’) for i = 1,2,3,.... Since there are an unlimited
number of #’s, but only a finite number of states in M, the pigeonhole
principle tells us that there must be some state, say g, such that

6% (go,a™) =¢
and

o ((I(), am) =dq,

4.3 IDENTIFYING NONREGULAR LANGUAGES 115

with n # m. But since M accepts a™b™ we must have
0" (q,b") = qy € F.
From this we can conclude that
0* (go,a™d™) = 6" (6* (go,a™),b"™)
= 0" (g, ")
= qf'

This contradicts the original assumption that M accepts a™b” only if n =
m, and leads us to conclude that L cannot be regular.
|

In this argument, the pigeonhole principle is just a way of stating pre-
cisely what we mean when we say that a finite automaton has a limited
memory. To accept all ¢™b™, an automaton would have to differentiate be-
tween all prefixes a™ and a™. But since there are only a finite number of
internal states with which to do this, there are some n and m for which the
distinction cannot be made.

In order to use this type of argument in a variety of situations, it is
convenient to codify it as a general theorem. There are several ways to do
this; the one we give here is perhaps the most famous one.

A Pumping Lemma

The following result, known as the pumping lemma for regular languages,
uses the pigeonhole principle in another form. The proof is based on the
observation that in a transition graph with n vertices, any walk of length n
or longer must repeat some vertex, that is, contain a cycle,

Let L be an infinite regular language. Then there exists some positive
integer 1 such that any w € L with jw| > m can be decomposed as

w = TY2,
with
|lzy| < m,
and
lyl > 1,
such that
w; = xy'z, (4.2)

isalsoin L for alli=0,1,2,....

116

Chapter 4 PROPERTIES OF REGULAR LANGUAGES

To paraphrase this, every gufficiently long string in L can be broken
into three parts in such a way that an arbitrary number of repetitions of
the middle part yields another string in L. We say that the middle string
is “pumped,” hence the term pumping lemma for this result.

Proof: If L is regular, there exists a dfa that recognizes it. Let such a
dfa have states labeled gy, g3, g2, --., gn. Now take a string w in L such that
|lw| Zm=n+ ll Since L is assumed to be infinite, this can always be done.
Jonsider the set of states the automaton goes through as it processes w,
say

90, 9i5 955 - 4f-

Since this sequence has exactly |w] + 1 entries, at least one state must be
repeated, and such a repetition must start no later than the nth move. Thus
the sequence must look like

oy Qis Gy ooy @y s Ay vons 4 fy

indicating there must be substrings x,y, z of w such that

5* (QOaCC) =4,
5" (q'rs y) = qr,
o* (qraz) = 4qf,

with |zy] < n+ 1 = m and |y| > 1. From this it immediately follows that

8" (go, x2) = g5,

as well as

4 (qﬂyw'yzz) =4y,
8* (o0, zy%2) = ay,

and so on, completing the proof of the theorem. m
I

We have given the pumping lemma only for infinite langnages. Finite
languages, although always regular, cannot be pumped since pumping auto-
matically creates an infinite set. The theorem does hold for finite languages,
but it is vacuoti/ The m in the pumping lemma is to be taken larger than
the longest string, so that no string can be pumped.

The pumping lemma, like the pigeonhole argument in Example 4.6, is
used to show that certain languages are not regular. The demonstration
is always by contradiction. There is nothing in the pumping lemina, as we
have stated it here, which can be used for proving that a language is regular,

4.3 IDENTIFYING NONREGULAR LANGUAGES 117

Even if we could show (and this is normally quite difficult) that any pumped
string must be in the original language, there is nothing in the statement
of Theorem 4.8 that allows us to conclude from this that the language is
regular.

Using the pumbing lemma to show that L = {«™b" : n > 0} is not regular,
Assume that L is regular, so that the pumping lemmma must hold. We do
not, know the value of m, but whatever it is, we can always chogse n = m.
Therefore, the substring y must consist entircly of a’s. Suppose |y| = k.|
Then the string obtained by using ¢ = 0 in Equation (4.2) is -
wop = am—k ™

and is clearly not in L. This contradicts the pumping lemma and thereby
indicates that the assumption that L is regular must be false.

L

In applying the pumping lemma, we must keep in mind what the the-
orem says. We are guaranteed the existence of an m as well as the decom-
position zyz, but we do not know what they are. We cannot claim that we
have reached a contradiction just because the pumping lemma is violated
for some specific values of m or zyz. On the other hand, the pumping
lemma holds for every w € L and every i, Therefore, if the pumping lemma
is violated even for one w or ¢, then the language cannot be regular.

The correct argument can be visualized as a game we play against an
opponent. Our goal is to win the game by cstablishing a contradiction of
the pumping lemma, while the opponent tries to foil us. There are four
moves in the game.

% 1. The opponent picks .

2. Given m, we pick a string w in L of length equal or greater than m.
We are free to choose any w, subject to w € L and |w| = m.

3. The opponent chooses the decomposition zyz, subject to |zy| < m, |y| =
1. We have to assume that the opponent makes the choice that will make
\4 it hardest for us to win the game.
Sy
* 4. We try to pick 7 in such a way that the pumped string w;, defined in
Equation (4.2), is not in L. If we can do so, we win the game.

A strategy that allows us to win whatever the opponent’s choices is

gL valenl 0 Va ke tantamount to a proof that the language is not regular. In this, Step 2 is
crucial. 'While we cannot force the opponent to pick a particular decom-

position of w, we may be able to choose w so that the opponent is very

be of the torn, ol
Je

118

Figure 4.5

Chapter 4 PROPERTIES OF REGULAR LANGUAGES

el] n m

restricted in Step 3, forcing a choice of z, y, and z that allows us to produce
a violation of pumping lemma on our next move.

W\Mw\gsww T \\\\Wm

Node that w, shoul,/

/lll CC(ﬂﬂot-/Ol’fe '

Zo /IaV(; 67:(:1/ a’s
or b’s e v

Nol Furce 7o ke 6"14

the £ orm W, bul

l)c’(ﬁ,

L’*@/wzg o Z, P
v/

Let ¥ = {a,b}. Show that
L={wwf:wex}

is not regular.

Whatever m the opponent picks on Step 1, we can always choose a w_
as shown in Figure 4.5. Because of this choice, and the requirement that
|zy| < mi, the opponent is restricted in Step 3 to choosing a y that consists
entirely of a’s. In Step 4, we use ¢ = 0. The string obtained in this fashion
has fewer a’s on the left than on the right and so cannot be of the form
wwf. Thercfore L is nol regular.

Note that if we had chosen w too short, then the opponent could have
chosen a y with an even number of b's. In that case, we could not have
reached a violation of the pumping lemma on the last step. We would also
fail if we were to choose a string consisting of all a’s, say,

w=a’™,

which is in L. To defcat us, the opponent need only pick
Y = aa.

Now w; is in L for all i, and we lose.

To apply the pumping lemma we cannot assume that the opponent will
make a wrong move. If, in the case where we pick w = a*™, the opponent
were to pick

y=a,

then wg is a string of odd length and therefore not in L. DBut any argu-
ment that assumes that the opponent is so accommodating is automatically
incorrect.

|

Example 4.9

4.3 InenNTIFYING NONREGULAR LANGUAGES 119

Let ¥ = {a,b}. The language
L={wek" n,(w)<ny(w)}

is. not regular.

Suppose we are given m. Since we have complete freedom in choosing
w, we pick w = a™b™*L. Now, because |zy| cannot be greater than m, the
opponent cannot do anything but pick a y with all a’s, that is

y:ak, 1<k <im.
We now pump up, using ¢ = 2. The resulting string
1771,+/cbm+l

Wy = q,

is not in L. Therefore, the pumping lemma is violated, and L is not regular.

Example 4.10

Example 4.11

The language
L={(ab)"a":n>kk >0}

is not regular.
Given m, we pick as our string

W= (ab)""Jr:l g

in the part _9f the string made up of ab’s. The choice of x doeb not afiect
the rxrgument 50 let us see what can be done with y. If our opponent picks
{(3=.4, we choose 4 = 0 and get a string not in L ((ab)) If the opponent

picks y = ab;ywe can choose ¢ = 0 again. Now we get the string (ab)™ a™,

~which is not in-L. In the same way, we can deal with any possible (,hol(,e

by the opponent, thereby proving our claim.

Show that

L= {a”! :n 20}

is not regular.
riven the opponent’s choice for m, we pick as w the string ™' (unless
the opponent picks m < 3, in which case we can use ¢ as w). The various

120

Chapter 4 PROPERTIES OF REGULAR LANGUAGES

decompositions of w obviously differ only in the lengths of the substrings.
Suppose the opponent picks y such that

ly| =k < m.

We then look at zz which has length m! — k. This string is in L only if
there exists a 7 such that

m! —k = j!
But this is impossible, since for m > 2 and k& < m we have
mlsml—k>(m-—1)!

Therefore, the language is not regular.

In some cases, closure properties can be used to relate a given problem
to one we have already classified. This may be much simpler than a direct
application of the pumping lemma.

Show that the language
L={a"*c"™* :n >0,k > 0}

is not regular.
It is not difficult to apply the pumping lemma directly, but it is even
easier to use closure under homomorphism. Take

h(a) = a,h(b) =a,h(c)=c
then
h(L) = {a"+"’c""+k in+k >0}
={a’c:i >0},

but we know this language is not regular; therefore L cannot be regular
either.
]

Show that the language
L={a"tin#l}

is not regular.

4.3 IDENTIFYING NONREGULAR LANGUAGES 121

Here we need a bit of ingenuity to apply the pumping lemma dircctly.
Choosing a string with n = {+1 or n = [+ 2 will not do, since our opponent
can always choose a decomposition that will make it impossible to pump
the string out of the language (that is, pump it so that it has an equal
number of a’s and b’s). We must be more inventive. Let us take n = m!
and | = (m+ 1)!. If the opponent now chooses a y (by necessity consisting
of all a’s) of length & < n, we pump ¢ times to generate a string with
m!+ (i ~ 1}k a’s. We can get a contradiction of the pumping lemma, if we
can pick ¢ such that

ml+ (i —1k=(m+1)!
This is always possible since

m !
k

i=1+

and k& < m. The right side is therefore an integer, and we have succeeded
in violating the conditions of the pumping lemma.

However, there is a much more elegant way of solving this problem.
Suppose I were regular. Then, by Theorcm 4.1, L and the language

would also be regular. But L; = {a"b" : n > 0}, which we have already
classified as nonregular. Consequently, L cannot be regular.
[

The pumping lemma is difficult for several reasons. Its statement is
complicated, and it is easy to go astray in applying it. But even if we
master the technique, it may still be hard to see exactly how to use it. The
pumping lemma ig like a game with complicated rules. Knowledge of the
rules is essential, but that alone is not enough to play a good game. You
also need a good strategy to win. If you can apply the pumping lemma
correctly to some of the more difficult cases in this book, you are to be
congratulated.

EXERCISES

(}) Prove the following version of the pumping lemma. If L is regular, then there
is an m such thal, every w € L of length greater than m can be decomposed
as

w = 1Yz,

122 Chapter 4 PROPERTIES OF RKGULAR LANGUAGES

3.

with

lyz| < m,
ly] > 1,

such that zy’z is in L for all 4.

Prove the following generalization of the pumping lemma, which includes

Theorem 4.8 as well as Exercise 1 as special cases.
If L is regular, then there exists an m, such that the following holds for

every sufficiently long w € L and cvery one of its decompositions w = uivus,
with w1, u2 € T, |v| > m. The middle string v can be written as v = xyz,
with |zy| < m,|y| 2 1, such that wyzy'zus € L for all i =0,1,2, ... ®

Show that the language L = {w:nq (w)=ns (w)} is not regular. Is L~
regular?

@q) Prove that the following languages are not regular.

(a) L={a"ba*:k2>n+1} @

(b) L ={a"bt'a* : k#n+1}

(¢) L={a™a" :n=1lorl#k}
(d) L={a" :n<1}

(€) L={w:na(w)#ny(w)} &
—(f) L=A{ww:we {a b}"}

(8) I= {wwwn® :w & {a,b}"}

@ Determinc if the following languages on ¥ = {a} are regular.

-~

= v

N
LJ/) ! Pacc" _/L..,;,- Vongsg{(b) L = {a" : n is not a prime number} 2

/p""-"_) \/v 5

(a) L= {a™:n > 2, nis a prime number} ®

L
n
¢) L={a":n =k for some k >0 — K

QA L a

—~(d) L= {a™:n=2" for some k > 0}

(&) L = {a™ : n is the product of two prime numbers}

(f) L = {a™ : n is either prime or the product of two or more prime numbers}

6. Apply the pumping lemma directly to show the result in Example 4.12.

s {O\m\’;&

N \) 9l LA G-

Show that the following language is not regular. N e
A Q\q‘ ...,\
A L={a”b"’:n>k}u{a”bk n#k—1
b om ome e =),‘ YRV LJ”

Provc or disprove the following statement. If L, and L. are nonregular lan-

guages, then L) U Ly is also nonregular.

.

4.3 IDENTIFYING NONREGULAR LANGUAGES 123

9.)Consider the languages below. For each, make a conjecture whether or not it
is regular. Then prove your conjecture.

(@) L={a"a*:n+l+k>5 @
(b) L={a"ta" :n>51>3k<l} @
(c) L = {a™¥ :n/lis an integer}
(d) L ={a™ :n+1isa prime number}
(e L= {a,""b/' n<l< ‘Zn}
(f) L ={a™:n>100,1 <100}
(8) L={a™:|n—1| =2}
@) 1s the following language regular?

L = {wicws : wy,wa € {a,b}" ;w1 # wa}
=) R . .
Ql- Let Ly and Ly be regular languages. Is the language L = {w : w € L1, w" € Ly}
necessarily regular? @

12. Apply the pigeonhole argument directly to the language in Example 4.8.
& 13-..) Are the following languages regular?

(a) L = {uww"v:u,v,w € {a, b}+}]

e *(h) L= {uwva suyv,w € {a, b} jul 2 lv}} ® [P
LN .

14, Is the following language regular?
L= {w'w“v cv,w € {a, b}+}

i
e g&)Let P be an infinite but countable set, and associate with each p € P a
" language Lp. The smallcst sct containing every L, is the union over the
infinite set P; it will be denoted by UpepLp. Show by example that the

family of regular languages is not closed under infinite union. &

*16. Consider the argument in Section 3.2 that the language associated with any
generalized transition graph is regular. The language associated with such a
graph is

L={]JL(r),

peP

where P is the set of all walks through the graph and r, is the expression
associated with a walk p. The set of walks is generally infinite, so that in light
of Exercise 15, it does not immediately follow that L is regular. Show that
in this case, because of the special nature of P, the infinite union is regular.

124 Chapter 4 PROPERTIES OF REGULAR LANGUAGES

¥ *@Is the family of regular languages closed under infinite intersection? &

@Suppo&e that we know that L, U Lz and L, are regular. Can we conclude
from this that Lo is regular?

x K

19. In the chain code language in Exercise 22, Section 3.1, let L be the set of
all w € {u,7,1,d}" that describe rectangles. Show that L is not a regular

language.

Context-Free
Languages

n the last chapter, we discovered that not all languages arc regular.

While regular languages are effective in describing certain simple

patterns, one does not need to look very far for examples of nonreg-

ular languages. The rclevance of these limitations to programming
languages becomes evident if we reinterpret some of the examples. If in
L = {a"b™ : n > 0} we substitute a left parenthesis for a and a right paren-
thesis for b, then parentheses strings such as (()) and ((())) are in L, but
() is not. The language therefore describes a simple kind of nested struc-
ture found in programming languages, indicating that some properties of
programming languages require something beyond regular languages. In
order to cover this and other more complicated features we must enlarge
the family of languages. This leads us to consider context-free languages
and grammars.

We begin this chapter by defining context-free grammars and languages,
illustrating the definitions with some simple examples. Next, we consider
the important membership problem; in particular we -ask how we can tell
if a given string is derivable from a given grammar. Explaining a sentence
through its grammatical derivation is familiar to most of us from a study

125

126

Chapter 5 CONTEXT-FREE LANGUAGES

of natural languages and is called parsing. Parsing is a way of describing
sentence structure. It is important whenever we need to understand the
meaning of a sentence, as we do for ingtance in translating from one language
to another. In computer science, this is relevant in interpreters, compilers,
and other translating programs.

The topic of context-free languages is perhaps the most important as-
pect of formal language theory as it applies to programming languages.
Actual programming languages have many features that can be described
elegantly by means of context-free languages. What formal language the-
ory tells us about context-free languages has important applications in the
design of programming languages as well as in the construction of cfficient
compilers. We touch upon this briefly in Section 5.3.

1 Context-Free Grammars

The productions in a regular grammar are restricted in two ways: the left
side must be a single variable, while the right side has a special form. To
create grammars that arc more powerful, we must relax some of these restric-
tions. By retaining the restriction on the left side, but permitting anything
on the right, we get context-free grammars.

R

A grammar G = (V,T, 8, P) is said to be context-free if all productions
in P have the form

A—uz,

where A € V and z € (VUT)".
A language L is said to be context-free if and only if there is a context-
free grammar G such that L = L (&),

Every regular grammar is context-free, so a regular language is also a
context-free one. But, as we know from simple examples such as {a™b"},
there are nonregular languages. We have already shown in Example 1.11
that this language can be generated by a context-free grammar, so we sce
that the family of regular languages is a proper subset of the family of
context-free languages.

Context-free grammars derive their name from the fact that the sub-
stitution of the variable on the left of a production can be made any time
such a variable appears in a sentential form. It does not depend on the

5.1 CONTEXT-FREE GRAMMARS 127

symbols in the rest of the sentential form (the context). This featurc is
the consequence of allowing only a single variable on the left side of the
production.

Examples of Context-Free Languages

TR ., . .
‘Exomple 5.1 The grammar G = ({S}, {a, b}, 8,), with productions
S — aba,
S — bSh,
S — A

is context-free. A typical derivation in this grammar is
S = aSa = aaSaa = aabSbaa = aabbaa.
This makes it clear that
L(G) = {ww®:w e {a,b}"}.

The language is context-free, but as shown in Example 4.8, it is not regular.

The grammar G, with productions

S — abD3,
A — aaBb,
3 — bbAa,
A— A,

is context-free. We leave it to the reader to show that
L(G) = {ab (bbaa)" bba (ba)" : n > 0}.

_n

Both of the above examples involve grammars that are not only context-
free, but lincar. Regular and linear grammars are clearly context-free, but
a context-free grammar is not necessarily linear,

128

Chapter 5 CONTEXT-FREE LANGUACES

aa

The language
L={a"b™:n#m}

is context-free.

To show this, we need to produce a context-free grammar for the lan-
guage. The case of n = m was solved in Example 1,11 and we can build
on that solution. Take the case n > m. We first generate a string with an
equal number of ¢’s and b’s, then add extra a’s on the left. This is done
with

S — A8y,
S1 — aSib|A,
A — aAla.

We can use similar reasoning for the case n < m, and we get the answer

5 — A58 B,
81 — aS1b|A,
A — alla,

B — bBlb.

The resulting grammar is context-free, hence L is a context-free langnage.
However, the grammar is not linear.

The particular form of the grammar given here was chosen for the pur-
pose of illustration; there are many other equivalent context-free grammars.
In fact, there are some simple linear ones for this language. In Exercise 25
at the end of this section you are asked to find one of them. -

Consider the grammar with productions
5 — aSb|SS|A.

This is another grammar that is context-free, but not linear. Some strings
in L (G) are abaabb, aababb, and ababab. It is not difficult to conjecture and
prove that

L={we{a,b}" :n,(w) =ny (w) and ng (v) > ny (v),
where v is any prefix of w}. (5.1)

We can see the connection with programming languages clearly if we re-
place a and b with left and right parentheses, respectively. The language L

5.1 CoONTEXT-FREE GRAMMARS 129

includes such strings as (()) and () () () and is in fact the set of all properly
nested parenthesis structures for the common programming languages.
Here again there arc many other equivalent grammars. But, in contrast
to Example 5.3, it is not so easy to sec if there are any linear ones. We will
have to wait until Chapter 8 before we can answer this question. -

Leftmost and Rightmost Derivations

In context-free grammars that are not linear, a derivation may involve sen-
tential forms with more than one variable. In such cases, we have a choice
in the order in which variables are replaced. Take for example the grammar
G = ({4, B, S},{a,b}, S, P) with productions

1. 85— AB.

2. A — aad.

3. A— A

4. B — Bb.

5 B — A

It is easy to sce that this grammar generates the language L (G) = {a?"b™ :
n>0,m>0}
Consider now the two derivations

S AB 2 4aAB 2 qaB -31;- aaBb = aab
and
S5 AB L ABb 3 0aABb 2 aadb =S aab.

In order to show which production is applied, we have numbered the pro-
ductions and written the appropriate number on the = symbol, From this
we see that the two derivations not only yield the same sentence but use
exactly the same productions. The difference is entirely in the order in
which the productions are applied. To remove such irrelevant factors, we
often require that the variables be replaced in a specific order.

A derivation is said to be leftmost if in each step the leftmost variable
in the sentential form is replaced. If in each step the rightmost variable is
replaced, we call the derivation rightmost.

130

Figure 5.1

Chapter 5 CoNTEXT-FREE LANGUAGES

T
i

TR
S

i
HENEm

AN ettt Lt

Consider the grammar with productions

S — aAB,
A - bD3b,
B — A|)\.

Then
S = aAB = abBbDB = abAbB = abbBbbB = abbbbl} = abbbb

is a leftmost derivation of the string abbbb. A rightmost derivation of the
same string is

S = aAB = aA = abBb = abAb = abbBbb = abbbb.

Derivation Trees

A second way of showing derivations, independent of the order in which
productions are used, is by a derivation tree. A derivation tree is an
ordered tree in which nodes are labeled with the left sides of productions
and in which the children of a node represent its corresponding right sides.
For example, Figure 5.1 shows part of a derivation tree representing the
production

A — abABec.

In a derivation tree, a node labeled with a variable occurring on the left
side of a production has children consisting of the symbols on the right side
of that production. Beginning with the root, labeled with the start symbol
and ending in leaves that are terminals, a derivation tree shows how each
variable is replaced in the derivation. The following definition makes this
notion precise.

Dy

il
RERE

Let G = (V,T,S,P) be a context-free grammar. An ordered tree is a
derivation tree for G if and only if it has the following properties.

5.1 CONTEXT-FREE (GRAMMARS 131

1. The root is labeled S.
2. Every leaf has a label from T U {A}.
3. Every interior vertex (a vertex which is not a leaf) has a label from V.

4. If a vertex has label A € V, and its children are labeled (from left to
right) a1, a2, ..., @y, then P must contain a production of the form

A— ajaz - an.

5. A leaflabeled X has no siblings, that is, a vertex with a child labeled A
can have no other children.

A tree that has properties 3, 4 and 5, but in which 1 does not necessarily
hold and in which property 2 is replaced by:

2a. Every leaf has a label from V U T U {\}

is said to be a partial derivation tree.

The string of symbols obtained by reading the leaves of the trec from
left to right, omitting any \'s encountered, is said to be the yield of the tree.
The descriptive term left to right can be given a precise meaning. The yield
is the string of terminals in the order they are encountered when the tree
is traversed in a depth-first manner, always taking the leftmost unexplored
branch.

Consider the grammar G, with productions

S — aAB,
A — bBb,
B — A|A.

The tree in Figure 5.2 is a partial derivation tree for G, while the tree in
Figure 5.3 is a derivation tree. The string abBbB, which is the yield of the
first tree, is a sentential form of G. The yield of the second tree, abbbb is a
sentence of L (G).

n

132

Figure 5.2

Figure 5.3

Chapter 5 CoONTEXT-FREE LANGUAGES

e i
¥ ™
e =
.l" Ir\‘ | | £ | ; |
Y » ¥ st
- .,
{2 [B bl

Relation Between Sentential Forms and Derivation Trees

Derivation trees give a very explicit and easily comprehended description
of a derivation. Like transition graphs for finite automata, this explicitness
is a great help in making arguments. First, though, we must establish the
connection between derivations and derivation trees.

Let G = (V,T,S, P) be a context-free grammar. Then for every w € L (G),

there exists a derivation tree of G whose yield is w. Conversely, the yield of
any derivation tree is in L (G). Also, if ¢y is any partial derivation tree for
G whose oot is labeled S, then the yield of ¢ is a sentential form of G.

Proof: First we show that for every sentential form of L (@) there is a cor-
responding partial derivation tree. We do this by induction on the number
of steps in the derivation. As a basis, we note that the claimed result is true
for every sentential form derivable in one step. Since § = u implies that
there is a production § — u, this follows immediately from Definition 5.3.

Assurme that for every sentential form derivable in n steps, there is a
corresponding partial derivation tree. Now any w derivable in n + 1 steps

5.1 CONTEXT-FRrREE GRAMMARS 133

must be such that

S 2 Ay, zye(VUl), A€V,
in n steps, and

rAy = zaiaz - Gy =w,a) € VUT.

Since by the inductive assumption there is a partial derivation tree with
yield z Ay, and since the grammar must have production A — a0z Oy
we see that by expanding the leaf labeled A, we get a partial derivation tree
with yield #zaiaz -+ amy = w. By induction, we therefore claim that the
result is true for all sentential forms.

In a similar vein, we can show that cvery partial derivation tree repre-
sents some sentential form. We will leave this as an exercise.

Since a derivation tree is also a partial derivation tree whose leaves are
terminals, it follows that cvery sentence in L (G) is the yield of some deriva-
tion tree of G and that the yield of every derivation tree is in L (G). =

Derivation trees show which productions are used in obtaining a sen-
tence, but do not give the order of their application. Derivation trees are
able to represent any derivation, reflecting the fact that this order is ir-
relevant, an obscrvation which allows us to close a gap in the preceding
discussion. By definition, any w € L(G) has a derivation, but we have
not claimed that it also had a leftmost or rightmost derivation. However,
once we have a derivation tree, we can always get a leftmost derivation by
thinking of the tree as having been built in such a way that the leftmost
variable in the tree was always expanded first. Filling in a fow details, we
are led to the not surprising result that any w € L (G) has a leftmost and a
rightmost derivation (for details, sce Exercise 24 at the end of this section).

EXERCISES

1., Complete the arguments in Example 5.2, showing that the language given is
generated by the grammar.

Draw the derivation tree corresponding to the derivation in Example 5.1,

Give a derivation tree for w = abbbaabbaba for the grammar in Example 5.2.
Use the derivation tree to find a leftmost derivation.

1. Show that the grammar in Example 5.4 does in fact generate the language
described in Equation 5.1. ¢®

Is the language in Example 5.2 regular?

Complete the proof in Theorem 5.1 by showing that the yield of every partial
derivation tree with root S is a sentential form of G.

134 Chapter 5 CoNTEXT-FREE LANGUAGES

é @ Find context-free grammars for the following languages (with n > 0, m > 0).
(a) L={a"":n<m+3} @
(b) L={a"b™ :n#m—1}
(c) L={a™b™ :n # 2m}
(d) L={a"":2n<m < 3n} @
(&) L= {we {a,b}" : ma () # o (w)}
(f) L = {w € {a, b}’".: na (v) > np (v), where v is any prefix of w)
(g) L ={w e {a,b}" : ng (w) = 2n; (w) + 1}

"8, Find context-free grammars for the following languages (with n > 0, m >
0,k > 0).

(@) L={a""c" :n=morm<k} ®

(b) L= {a"b™c* : n=m or m # k}

(c) L={a™™c* : k=n+m}

(d) L={a™b™c* : n +2m = k)

(e) L={a"b"c" 1 k=|n—m|} &

(f) L =A{w € {a,b,c}" : na (w) + ny (w) # ne (w)}
(8) L={a"b™c" k#n+m}

(h) L = {a"b"c’C k> 3}

9. Find a context-free grammar for head (L), where L is the language in Exercise
7(a) above. For the definition of head see Exercise 18, Section 4.1.

0 @ Find a context-free grammar for %> = {a, b} for the language L = {a™ww™b™ : w €
¥ n>1}.

*11. Given a context-free grammar G for a language L, show how one can create
from G a grammar G so that L (é) = head (L).

12/ Let L= {a"b™ : n > 0}.
(a) Show that L? is context-free. @
(b) Show that L* is context-frec for any given k > 1.

(¢) Show that L and L* are context-free.

13. Let Ly be the language in Exercise 8(a) and L, the language in Exercise 8(d).
Show that L, U Ly is a context-free language.

. 14. Show that the following language is context-free.

L= {u'uum” cu,v,w € {a, b} Jul = |w| = 2}

*15. Show that the complement of the language in Example 5.1 is context-free. @

5.1 CoNTEXT-FREE GRAMMARS 136

16. Show that the complement of the language in Exercisc 8(b) is context-free.

CLZ) Show that the language L = {wicwsa : w1, w2 € {a, b w # wé‘l}, with ¥ =
{a, b, ¢}, is context-free.

18. Show a derivation tree for the string aabbbb with the grammar
S — ABJ|A,
A—aB,
B — 5b.

Cive a verbal description of the language generated by this grammar.
@onsider the grammar with productions

5 — aaB,
A — bBb|A,
B — Aa.

Show that the string aabbabba is not in the language generated by this
graminar.

20. Consider the derivation tree below.

o

Find a simple grammar G for which this is the derivation tree of the string

.~ aab. Then find two more sentences of L (G).
@Deﬁne what one might mean by properly nested parenthesis structures in-

volving two kinds of parentheses, say () and []. Intuitively, properly nested
strings in this situation are ([]), ([[]]) [()], but not ([)] or ({]]. Using your
definition, give a context-free grammar for generating all properly nested

< parenthescs.

[22} Find a contextfree grammar for the set of all regular expressions on the
1
,Z alphabet {a,b}. &

23, Find a context-frec graminar that can generate all the production rules for
context-free grammars with T = {a,b} and V = {4, B,C}.

rove that if (is a context-free grammar, then every w € L (G) has a leftmost
and rightmost derivation. Give an algorithm for finding such derivations from
a derivation tree.

136

Chapter 5 CONTEXT-FREE LANGUAGES

25. Find a linear grammar for the language in Example 5.3.

26. Jet G = (V,T,5, P) be a context-free grammar such that every one of its
productions is of the form 4 — v, with |v| = & > 1. Show that the derivation
tree for any w € L (G) has a height h such that

logy |w] < h < %:]—Q

Parsing and Ambiguity

We have so far concentrated on the generative aspects of grammars. Given
a grammar G, we studied the sct of strings that can be derived using @. In
cases of practical applications, we are also concerned with the analytical side
of the grammar: given a string w of terminals, we want to know whether
or not w is in L (G). If so, we may want to find a derivation of w. An
algorithm that can tell us whether w is in L (G) is a membership algorithm.
The term parsing describes finding a sequence of productions by which a
w € L{G) is derived.

Parsing and Membership

Given a string w in L (G), we can parse it in a rather obvious fashion:
we systematically construct all possible (say, leftmost) derivations and see
whether any of them match w. Specifically, we start at round one by looking
at all productions of the form

S —z,

finding all « that can be derived from S in one step. If nonc of these
result in a match with w, we go to the next round, in which we apply
all applicable productions to the leftmost variable of every x. This gives
us a set of sentential forms, some of them possibly leading to w. On each
subsequent round, we again take all leftmost variables and apply all possible
productions. It may be that some of these sentential forms can be rejected
on the grounds that w can never be derived from them, but in general, we
will have on each round a set of possible sentential forms. After the first
round, we have sentential forms that can be derived by applying a single
production, after the second round we have the sentential forms that can be
derived in two steps, and so on. If w € L (Q), then it must have a leftmost
derivation of finite length. Thus, the method will eventually give a leftmost
derivation of w.

For refercnce below, we will call this the exhaustive search parsing
method. It is a form of top-down parsing, which we can view as the
construction of a derivation tree from the root down.

5.2 PARSING AND AMBIGUITY 137

e

T)
me Consider the grammar

T
T

e
at
A

8§ — 85 |aSb|bSalA

and the string w = aabb. Round one gives us

1. 8§= 59,
2. 8§ = aSh,
3. §=bS5a,
4. 5= A

The last two of these can be removed from further consideration for obvious
reasons. Round two then yields sentential forms

S = 55= 858,
S = 55 = a5bhs,
S = 558 = bYal,
S=88=05,

which are obtained by replacing the leftmost S in sentential form 1 with all
applicable substitutes. Similarly, from sentential form 2 we get the addi-
tional sentential forms

S = aSb = aSS9),
S = aSb = aaShd,
S = aSb= abSab,
S = aSb = abd.

Again, several of these can be removed from contention. On the next round,
we find the actual target string from the sequence '

S = aSb = aaSbb = aabb.

Therefore aabb is in the language generated by the grammar under consid-
eration. '
|

Exhaustive search parsing has serious flaws. The most obvious one
is its tediousness; it is not to be used where efficient parsing is required.
But even when efficiency is a secondary issue, there is a more pertinent
objection. While the method always parses a w € L (G), it is possible that
it never terminates for strings not in L (G). This is certainly the case in

138

Example 5.8

Chapter 5 CONTEXT-FREE LANGUAGES

the previous example; with w = abb, the method will go on producing trial
sentential forms indefinitely unless we build into it some way of stopping.

The problem of nontermination of exhaustive scarch parsing is relatively
easy to overcome if we restrict the form that the grammar can have. If we
examine Example 5.7, we see that the difficulty cotnes from the productions
S — A; this production can be used to decrease the length of successive
sentential forms, so that we cannot tell casily when to stop. If we do not
have any such productions, then we have many fewer difficulties. In fact,
there are two types of productions we want to rule out, those of the form
A —» X\ as well as those of the formm A — B. As wc will see in the next
chapter, this restriction does not affeet the power of the resulting grammears
in any significant way.

The grammar
S~ 55 |aSh| bSa |abl ba

satisfies the given requirements. It generates the language in Example 5.7
without the empty string.

Given any w € {a, b}, the exhaustive search parsing method will al-
ways terminate in no more than jw| rounds. This is clear because the length
of the sentential form grows by at least one syrubol in each round. After
lw| rounds we have either produced a parsing or we know that w ¢ L (G).

~ The idea in this example can be generalized and made into a theorem
for context-free languages in general.

Suppose that G = (V,T, S, P) is a context-free grammar which does not
have any rules of the form

A— A,
or
A— D,

where A, B € V. Then the exhaustive search parsing method can be made
into an algorithm which, for any w € 3%, cither produces a parsing of w, or
tells us that no parsing is possible.

Proof: For each sentential form, consider both its length and the number
of terminal symbols. Each step in the derivation increases at least one
of these. Since neither the length of a sentential form nor the number of

5.2 PARSING AND AMBIGUITY 139

terminal symbols can exceed |w|, a derivation cannot involve more than
2 fw| rounds, at which time we either have a successful parsing or w cannot
be generated by the grammar,

While the exhaustive search method gives a theoretical guarantee that
parsing can always be done, its practical usefulness is limited because the
number of sentential forms generated by it may be excessively large. Exactly
how many sentential forms are generated differs from case to case; no precise
general result can be established, but we can put some rough upper bounds
on it. If we restrict ourselves to leftmost derivations, we can have no more
than |P| sentential forms after one round, no more than |P|® sentential
forms after the second round, and so on. In the proof of Theorem 5.2, we
observed that parsing cannot involve more than 2 |w| rounds; therefore, the
total number of sentential forms cannot exceed

M =[P+ |Pf + -+ P[] (5.2)

This indicates that the work for exhaustive search parsing may grow ex-
ponentially with the length of the string, making the cost of the method
prohibitive. Of course, Equation (5.2) is only a bound, and often the num-
ber of sentential forms is much smaller. Nevertheless, practical observation
shows that exhaustive search parsing is very inefficient in most cases.

The construction of more efficient parsing methods for context-free
grammars is a complicated matter that belongs to a course on compilers.
We will not pursue it here except for some isolated results.

For every context-free grammar there exists an algorithm that parses any
w € L(G) in a nunber of steps proportional to Jw|>.
==

There are several known methods to achieve this, but all of them are
sufficiently complicated that we cannot even describe them without devel-
oping some additional results. In Section 6.3 we will take this question up
again briefly. More details can be found in Harrison 1978 and Hoperoft
and Ullman 1979. Onec reason for not pursuing this in detail is that even
these algorithms are unsatisfactory. A method in which the work rises with
the third power of the length of the string, while better than an exponential
algorithm, is still quite inefficient, and a compiler based on it would need an
excessive amount of time to parse even a moderately long program. What
we would like to have is a parsing method which takes time proportional to
the length of the string. We refer to such a method as a linear time parsing

140

Example 5.9

Chapter 5 CoNTEXT-FREE LANGUAGES

algorithm. We do not know any linéar time parsing methods for context-
free languages in general, but such algorithms can be found for restricted,
but important, special cases.

\Definition:

A context-free grammar G = (V,T, S, P) is said to be a simple grammar
or s-grammar if all its productions are of the form

A azx,

whete A€V, a €T, z € V*, and any pair (A, a) occurs at most once in P.

The grammar
S — aS|bSS|c
is an s-grammar. The grammar
S — a8 |b55|as8S|c

is not an s-grammar because the pair (S, a) occurs in the two productions
S — af and § — aS5.
_u

While s-grammars are quite restrictive, they are of sotne interest. As
we will see in the next section, many features of common programming
languages can be described by s-grammars.

If G is an s-grammar, then any string w in L (G) can be parsed with an
effort proportional to jw|. To see this, look at the exhaustive search method
and the string w = aiaz -+ a,. Since there can be at most one rule with
S on the left, and starting with a; on the right, the derivation must begin
with

S = alAlAg ERR Am.

Next, we substitute for the variable A, but since again there is at most one
choice, we must have

S :*> alagBle---Ag---Am.

We see from this that each step produces one terminal symbol and hence
the whole process must be completed in no more that |w| steps.

Example 5.10

Figure 5.4

5.2 PARSING AND AMBIGUITY 141

Ambiguity in Grammars and Languages

On the basis of our argument we can claim that given any w € L(G),
exhaustive search parsing will produce a derivation tree for w. We say “a”
derivation tree rather than “the” derivation tree because of the possibility
that a number of different derivation trees may exist. This situation is
referred to as ambiguity.

Definition 5.5

A context-free grammar G is said to be ambiguous if there exists some
w € L(G) that has at least two distinct derivation trees. Alternatively,
ambiguity implies the existence of two or more leftmost or rightmost deriva-
tions.

The grammar in Example 5.4, with productions S — aSb|SS| A, is am-
biguous. The sentence aabb has the two derivation trees shown in Figure

5.4.
-

Ambiguity is a common feature of natural languages, where it is tol-
erated and dealt with in a variety of ways. In programming languages,
where there should be only one interpretation of each statement, ambiguity
must be removed when possible. Often we can achieve this by rewriting the
grammar in an equivalent, unambiguous form.

142

Figure 5.5

Two derivation

trees for a 4 bxc.

¢ Chapter 5 CoONTEXT-FREE LANCUAGES

E (£)

i
— } o — L . _—
E ; [E . E) | | E
| 5_ ' .‘|__ 5.'_’
--j —~ r 4 —' o A'// .---!--. E x
I (&) . | E F : ((7
¥ : 1 : = i -
x L ¥ 1 1 Y
a [I) o 2 I

i |
Y P 3 Y
l; | : L
(a) (b)

T
R,
%

B

R

Example!

w\g‘\ o i‘w&

A

W:N N
"N

Consider the grammar G = (V, T, E, P) with

V= {E,I}g
T—-"_- {a,b,ca_'—a*’(?)}’

and productions

L —1,
E—-E+E,
E — ExF,
. (B),
I—alble

The strings (a + b) *c and axb + ¢ arc in L(G). It is easy to see that
this grammar generates a restricted subset of arithmetic expressions for C
and Pascal-like programming languages. The grammar is ambiguous. For
instance, the string a + bxc has two different derivation trees, as shown in
Figure 5.5.

n

One way to resolve the ambiguity is, as is done in programming manuals,
to associate precedence rules with the operators + and *. Since * normally
has higher precedence than +, we would take Figure 5.5(a) as the correct
parsing as it indicates that b*c is a subexpression to be evaluated before
performing the addition. However, this resolution is completely outside the
grammar. It is better to rewrite the grammar so that only one parsing is
possible,

Figure 5.6

5.2 PARSING AND AMBIGUITY 143

[E)
|
A L
o
; [
1 .
- - —— EN
T | '8 d /
A v
F " T
- -/.
t L r
I /
¥ 1

To rewrite the grammar in Example 5.11 we introduce new variables, taking
V as {E,T, F, I} and replace the productions with

E—-T,
T—-F,
F—1,
E—~E+T,
T—=TxF,
P (B},
I —albe

A derivation tree of the sentence a + b ¢ is shown in Figure 5.6. No other
derivation tree is possible for this string: the grammar is unambiguous. It
also is cquivalent to the grammar in Example 5.11. It is not too hard to
justify these claims in this specific instance, but, in general, the questions of
whether a given context-free grammar is ambiguous or whether two given
context-free grammars are equivalent are very difficult to answer. In fact,
we will later show that there are no general algorithms by which these
questions can always be resolved. m

In the foregoing example the ambiguity came from the grammar in
the sense that it could be removed by finding an equivalent unambiguous
grammar. In some instances, however, this is not possible because the
ambiguity is in the language.

144

Chapter 5 CoONTEXT-FREE LANGUAGES

If L is a context-free language for which there exists an unambiguous gram-
mar, then L is said to be unambiguous. If every grammar that generates L
is ambiguous, then the language is called inherently ambiguous.

It is a somewhat difficult matter even to exhibit an inherently am-
biguous language. The best we can do here is give an example with sorme
reasonably plausible claim that it is inherently ambiguous.

The language
L — { a/n bﬂ. C’"Z,} U { an b'ln C‘"l,} ,

with n and m non-negative, is an inherently ambiguous context-free lan-
guage.
That L is context-free is easy to show. Notice that

L=1L4ULy,

where Ly is generated by

S — SiclA,
A — aAblX,

and Lg is given by an analogous grammar with start symbol S and pro-
ductions

SQ e aSgIB,
3 — bBc|A.

Then L is generated by the combination of these two grammars with the
additional production

S — 51]Sg.

The grammar is ambiguous since the string a”b"c™ has two distinct
derivations, one starting with § == Sy, the other with § = Sp. 1t does of
course not follow from this that L is inherently ambiguous as there might
exist some other nonambiguous grammars for it. But in some way L) and L,
have conflicting requirements, the first putting a restriction on the number
of a’s and b’s, while the second does the same for s and ¢’s. A few tries will

5.2 PARSING AND AMBICGUITY 145

quickly convince you of the impossibility of combining these requirements
in a single set of rules that cover the case n = m umiquely. A rigorous
argument, though, is quite technical. One proof can be found in Harrison
1978.

EXERCISES

Cl\,) Find an s-grammar for L (aaa*b + b).

2.

(9

w0

Find an s-grammar for L= {a"b" :n > 1}. @
Find an s-grammar for L = {a"‘b”’"“ Tn > 2}.
Show that every s-grammar is unambiguous.

Let G = (V,T, 5, P) be an s-grammar. Give an expression for the maximum

* size of P in terms of [V| and [T

10.

11.
12,

13.

14,

15,
16.
17,

- Show that the following grammar is ambiguous.

S — AB|aaB,
A — al|Aa,
B-b &

Construct an unambiguous grammar equivalent to the grammar in Exercise 6.

Give the derivation tree for (((a+b) * ¢)) + @ + b, using the grammar in
Example 5.12.

Show that a regular language cannot be inherently ambiguous. @

Give an unambiguous grammar that generates the sct of all regular expres-
sions on ¥ = {a, b}.

Is it possible for a regular grammar to be ambiguous?

Show that the language L = {ww R.we {a,b}"} is not inherently ambigu-
ous.

Show that the following grammar is ambiguous.

S — aSbS |bSas| A

Show that the grammar in Example 5.4 is ambiguous, but that the language
denoted by it is not. @ .

Show that the grammar in Example 1.13 is ambiguous.
Show that the grammar in Example 5.5 is unambiguous.

Use the exhaustive scarch parsing method to parse the string abbbbbb with
the grammar in Example 5.5. In general, how many rounds will be needed
to parse any string w in this language?

-

146

Chapter 5 CONTEXT-FREE LANGUAGES

18. Show that the grammar in Example 1.14 is unambiguous.

19. Prove the following result, Let G = (V, T, S, P) be a context-free grammar in
which every A € V occurs on the left side of at most one production. Then
G is unambiguous.

20. Find a grammar equivalent to that in Example 5.5 which satisties the condi-
tions of Theorem 5.2. &

#548: Context-Free Grammars and
Programming Languages

One of the most important uses of the theory of formal languages is in the
definition of programming languages and in the construction of interpreters
and compilers for them. The basic problem here is to define a programming
language precisely and to use this definition as the starting point for the
writing of cfficient and reliable translation programs. Both regular and
context-free languages are important in achieving this. As we have seen,
regular languages arc used in the recognition of certain simple patterns
which oceur in programming languages, but as we argued in the introduction
to this chapter, we need confext-free languages to model more complicated
aspecis.

As with most other languages, we can define a programming language
by a grammar. It is traditional in writing on programming languages to
use a convention for specifying grammars called the Backus-Naur form or
BNF. This form is in essence the same as the notation we have used here,
but the appearance is different. In BNF, variables are enclosed in triangular
brackets. Terminal symbols are written without any special marking. BNF
also uses subsidiary symbols such as |, much in the way we have done. Thus,
the grammar in Example 5.12 might appear in BNF as

(expression) = (term) | (cxpression) + (term) ,
(term) == (factor) | (term) * (factor),

and so on. The symbols + and * are terminals. The symbol | is used
as an alternator as in our notation, but ::= is used instead of —. BNF
descriptions of programming languages tend to use more explicit variable
identifiers to make the intent of the production explicit. But otherwise there
are no significant differences between the two notations.

Many parts of a Pascal-like programming language are susceptible to
definition by restricted forms of context-free grammars. For example, a
Pascal if-then-else statement can be defined as

(i f _statement) ::= if (expression) (then_clause) (else_clause) .

5.3 CONTEXT-FREE GRAMMARS AND PROGRAMMING LANGUAGES 147

Here the keyword ¢f is a terminal symbol. All other terms are variables
which still have to be defined. If we check this against Definition 5.4, we see
that this looks like an s-grammar production. The variable (i f_statement)
on the left is always associated with the terminal i¢f on the right. For
this reason such a statement is easily and efficiently parsed. We see here
a reason why we use keywords in programming languages. Keywords not
only provide some visual structure that can guide the reader of a program,
but also make the work of a compiler much easier,

Unfortunately, not all features of a typical programming language can
be expressed by an s-grammar. The rules for (expression) above are not of
this type, so that parsing becomes less obvious. The question then arises for
what grammatical rules we can permit and still parse efficiently. In compil-
ers, extensive use has been made of what are called LL and LR grammars,
which have the ability to express the less obvious features of a programming
language, vet allow us to parse in linear time. This is not a simple matter,
and much of it is beyond the scope of our discussion. We will briefly touch
on this topic in Chapter 6, but for our purposes it suffices to realize that
such grammars exist and have been widely studied.

In connection with this, the issue of ambiguity takes on added signifi-
cance. The specification of a programming language must be unambiguous,
otherwise a program may yield very different results when processed by
different compilers or run on different systems. As Example 5.11 shows, a
naive approach can easily introduce ambiguity in the grammar. To avoid
such mistakes we must be able to recognize and remove ambiguities. A
related question is whether a language is or is not inherently ambiguous.
What we need for this purpose are algorithms for detecting and remov-
ing ambiguities in context-free grammars and for deciding whether or not
a context-free language is inherently ambiguous. Unfortunately, these are
very difficult tasks, impossible in the most general sense, as we will see later.

Those aspects of a programming language which can be modeled by a
context-free grammar are usually referred to as its syntax. However, it
is normally the case that not all programs which arc syntactically correct
in this sense are in fact acceptable programs. For Pascal, the usual BNF
definition allows constructs such as

var x,y : real;

x, 2 integer
or

var T wmiteger;
Ti=3.2.

Neither of these two constructs is acceptable to a Pascal compiler, since they
violate other constraints, such as “an integer variable cannot be assigned

R

| 148

Chapter 5 CoONTEXT-FREE LANGUAGES

a real value.” This kind of rule is part of programming language seman-
tics, since it has to do with how we interpret the meaning of a particular
construct.

" Programming language semantics are a complicated matter. Nothing
as elegant and concise as context-free grammars exists for the specification
of programming language semantics, and consequently some semantic fea-
tures may be poorly defined or ambiguous. It is an ongoing concern both
in programming languages and in formal language theory to find effective
methods for defining programming language semantics. Several methods
have been proposed, but none of them have been as universally accepted
and as successful for semantic definition as context-free languages have been
for syntax.

EXERCISES

1. Give a complete dcfinition of (ezpression) for Pascal,

2. Give a BNF dcfinition for the Pascal while statement (leaving the general
concept (statement) undefined).

3. Qive a BNF grammar that shows the relation between a Pascal program and
its subprograms.

4. Give a BNF definition of a FORTRAN do statement.
5. Give a definition of the correct form of the if-else statement in C.

6. Find examples of features of C that cannot be described by context-free gram-
INArs.

Simplification of
Context-Free
Grammars and
Normal Forms

efore we can study context-free languages in greater depth, we must

attend to some technical matters. The definition of a context-ree

grammar imposes no restriction whatsoever on the right side of a

production. However, complete freedom is not necessary, and in fact,
is a detriment in some arguments. In Theorem 9.2, we saw the convenience
of certain restrictions on grammatical forms; eliminating rules of the form
A — X and A — B made the arguments easier. In many instances, it is
desirable to place even more stringent restrictions on the gramimar. Because
of this, we need to look at methods for transforming an arbitrary context-
free grammar into an equivalent one that satisfies certain restrictions on its
form. In this chapter we study several transformations and substitutions
that will be useful in subsequent discussions.

We also investigate normal forms for context-free grammars. A nor-
mal form is one that, although restricted, is broad enough so that any
grammar has an cquivalent normal-form version. We introduce two of the
most useful of these, the Chomsky normal form and the Greibach nor-
mal form. Both have many practical and theoretical uses. An immediate
application of the Chomsky normal form to parsing is given in Section 6.3.

149

.-

150

Chapter 6 SIMPLIFICATION OF CONTEXT-FREE GRAMMARS AND NORMAL FORMS

The somewhat tedious nature of the material in this chapter lies in the
fact that many of the arguments are manipulative and give little intuitive
insight. For our purposes, this technical aspect is relatively unimportant
and can be read casually. The various conclusions are significant; they will
be used many times in later discussions.

. Methods for Transforming Grammars

‘We first raise an issue that is somewhat of a nuisance with grammars and
languages in general: the presence of the empty string. The empty string
plays a rather singular role in many theorems and proofs, and it is often
necessary to give it special attention. We prefer to remove it from consider-
ation altogether, looking only at languages that do not contain A. In doing
80, we do not lose generality, as we see from the following considerations.
Let L be any context-free language, and let G = (V, T, 8, P) be a context-
free grammar for L — {\}. Then the grammar we obtain by adding to V'
the new variable Sy, making Sy the start variable, and adding to P the
productions

S0 — S|A,

generates L. Therefore any nontrivial conclusion we can make for L — {)\}
will almost certainly transfer to L. Also, given any context-free grammar

G, there is a method for obtaining G such that L (@) = L(G) — {A}

(see Exercise 13 at the end of this section). Consequently, for all practical
purposes, there is no difference between context-free languages that include
A and those that do not. For the rest of this chapter, unless otherwise
stated, we will restrict our discussion to A-free languages.

A Useful Substitution Rule

Many rules govern generating equivalent grammars by means of substitu-
tions. Here we give one that is very useful for simplifying grammars in
various way. We will not define the term simplification precisely, but we
will use it nevertheless. What we mean by it is the removal of certain types
of undesirable productions; the process does not necessarily result in an
actual reduction of the number of rules.

Let G = (V, T, S, P) be a context-free grammar. Suppose that P contains
a production of the form

A— I BCEQ.
Assume that A and B are different variables and that

B =y ly2l - yn

6.1 METHODS FOR TRANSFORMING (JRAMMARS 151

is the set of all productions in P which have B as the left side. Let G =
(V, T,8S, P) be the grammar in which P is constructed by deleting

A — x1Bxs (6.1)
from P, and adding to it
A - 2y 22 [19222| - [T1YnTe-
Then
L (@) = L(G)

Proof: Suppose that w € L (G), so that
8§ ;:‘}-G w.

The subscript on the derivation sign = is used here to distinguish between
derivations with different grammars. If this derivation does not involve the
production (6.1), then obviously

*
S=>§w.

If it does, then look at the derivation the first time (6.1) is used. The B so
introduced eventually has to be replaced; we lose nothing by assuming that
this is done immediately (see Exercise 17 at the end of this section). Thus

E 3
S =g urAus =g u1z1Braus =G UiT1Y;Loug.
But with grammar G we can get
*
S =& ulAuz =& U1T1Y;5TaUg.

Thus we can reach the same sentential form with G and G. If (6.1) is used
again later, we can repeat the argument. It follows then, by induction on
the number of times the production is applied, that

S :*:’@ w.
Therefore, if w € L (G), then w € L (6’)

By similar reasoning, we can show that if w € L (@), then w € L (@),
completing the proof. =
——

Theorem 6.1 is a simple and quite intuitive substitution rule: A produc-
tion A — x1B2x> can be eliminated from a grammar if we put in its place

S

1562

Chapter 6 SIMPLIFICATION OF CONTEXT-FREE GRAMMARS AND NorMAL FORMS

the set of productions in which B is replaced by all strings it derives in one
step. In this result, it is necessary that A and B be different variables. The
case when A = B is partially addressed in Exercises 22 and 23 at the end
of this section.

Consider G = ({4, B} ,{a,b, ¢}, A, P) with productions

A — a|aaA|abBe,
B — abbAlb.

Using the suggested substitution for the variable B, we get the grammar G
with productions

A — alaaA] ababbAc|abbe,
B — abbAlb.

The new grammar Gis equivalent to G. The string aaabbc has the derivation
A = aaA = aaabBc = aaabbe
in G, and the corresponding derivation

A = aaA = aaabbe

in G.

Notice that, in this case, the variable B and its associated productions
are still in the grammar even though they can no longer play a part in any
derivation. We will see shortly how such unnecessary productions can be
removed from a grammar. -

Removing Useless Productions

One invariably wants to remove productions from a grammar that can never
take part in any derivation. For example, in the grammar whose entire
production set is

S — aSbhiA| A,
A — adA,

the production 8§ — A clearly plays no role, as A cannot be transformed
into a terminal string. While A can occur in a string derived from S, this
can never lead to a sentence. Removing this production leaves the language
unaffected and is a simplification by any definition.

6.1 METHODS FOR TRANSFORMING (GRAMMARS 153

Definition 6.1

Let G = (V| T, 5, P) be a context-free grammar. A variable A € V is said
to be useful if and only if there is at least one w € L (G) such that

S = zAy = w, (6.2)

with z,y in (VUT)". In words, a variable is useful if and only if it occurs
in at least one derivation. A variable that is not useful is called useless. A
production is useless if it involves any useless variable.

A variable may be useless because there is no way of getting a terminal
string from it. The case just mentioned is of this kind. Another reason s
variable may be useless is shown in the next grammar. In a grammar with
start symbol & and productions

55— A,
A — aAl),
B — bA,

the variable B is useless and so is the production B — bA. Although B can
derive a terminal string, there is no way we can achieve S = zBy.

This example illustrates the two reasons why a variable is useless: either
because it cannot be reached from the start symbol or because it cannot
derive a terminal string. A procedure for removing useless variables and
productions is based on recognizing these two situations. Before we present
the general case and the corresponding theorem, let us look at another
example,

Eliminate useless symbols and productions from G = (V,T, S, P), where
V ={5A,B,C} and T = {a,b}, with P consisting of

S —aS|A|C,
A —a,

B — aa,
C — aCh.

Figure 6.1

Chapter 6 SIMPLIFICATION OF CONTEXT-FREE GRAMMARS AND NORMAL Forms

First, we identify the set of variables that can lead to a terminal string.
Because A — a and B — aa, the variables A and B belong to this set.
So does 8, because S = A => a. However, this argument cannot be made
for C, thus identifying it as useless. Removing C and its corresponding
productions, we are led to the grammar G with variables V; = {8, A, B},
terminals T' = {a}, and productions

S — aS|A,
A — a,
B — aa.

Next we want to eliminate the variables that cannot be reached from
the start variable. For this, we can draw a dependency graph for the vari-
ables. Dependency graphs are a way of visualizing complex relationships
and are found in many applications. For context-free grammars, a depen-
dency graph has its vertices labeled with variables, with an edge between
vertices C' and D if and only if there is a production form

C — xDy.

A dependency graph for V; is shown in Figure 6.1. A variable is useful
only if there is a path from the vertex labeled S to the vertex labeled with
that variable. In our case, Figure 6.1 shows that B is useless. Removing it
and the affected productions and terminals, we are led to the final answer

G = (V,T, S, ﬁ) with V = {$, A} T = {a}, and productions

S — a8|A,
A —a.

The formalization of this process leads to a general construction and
the corresponding theorem.

Let G = (V,T,5,P) be a context-free grammar. Then there exists an

equivalent grammar G = (17,?, S, ﬁ) that does not contain any useless
variables or productions.

Figure 6.2

6.1 METIODS FOR TRANSFORMING GRAMMARS 155

Proof: The grammar G can be gencrated from G by an algorithm consisting
of two parts. In the first part we construct an intermediate grammar (7} =
(V1,T5, S, P,) such that V; contains only variables A for which

ASweT
is possible. The steps in the algorithm are:
1. Set Vi to &

2. Repeat the following step until no more variables are added to V.

For every A € V for which P has a production of the form

A—xyTy- -2y, with all 2, in ViUT,

add A to 17.
8. Take Iy as all the productions in P whose symbols are all in (V; U).

C‘lmuly this procedure terminates. It is equally clear that if A Vi,
then A = w e T* is a possible derlvatlon with G;. The remaining issue
is whether every A for which 4 = w = ab--- is added to V; before the
procedure terminates. To see this, consider any such 4 and look at the
partial derivation trec corresponding to that derivation (Figure 6.2). At
level k, there are only terminals, so every variable A; at level k — 1 will be
added to V; on the first pass through Step 2 of the algorithm. Any variable
at level k — 2 will then be added to Vi on the second pass through Step 2.
The third time through Step 2, all variables at level k — 3 will be added,
and so on. The algorithm cannot terminate while there are variables in the
tree that are not yet in V). Hence A will cventually be added to V.

In the second part of the construction, we get the final answer & from
G;. We draw the variable dependency graph for G; and from it find all

9

1. -Tevel £ 2

F .1_.
[A4) ¢) - Levelé-1
(@) | & J-ooooos Level

ri—

156

P
’j)}
o

Chapter 6 SIMPLIFICATION OF CONTEXT-FREE GRAMMARS AND NORMAL FORMS

variables that cannot be reached from &. These arc removed [rom the
variable set, as are the productions involving them. We can also eliminate
any terminal that does not occur in some useful production. The result is

the grammar G = (V, T,85, P).
Because of the construction, G does not contain any nseless symbols or
productions. Also, for each w € L (G) we have a derivation

S S zAy = w.

Since the construction of G rtetains A and all associated productions, we
have everything needed to make the derivation

S35 zAy =*>(:; w.

T

The grammar G is constructed from G by the removal of productions,

o that P € P. Consequently L (G) C L(G). Putting the two results

together, we see that G and G are cquivalent. =
[=—S-— = =

Removing A-Productions

One kind of production that is sometimes undesirable is one in which the
right side is the empty string.

Pefinition 621

Any production of a context-free grammar of the form
A— A

is called a A\-production. Any variable A for which the derivation

e (63)

is possible is called nullable.

A grammar may generate a language not containing A, yet have some
A-productions or nullable variables. In such cases, the A-productions can
be removed.

6.1 METHODS FOR TRANSFORMING GRAMMARS 157

S

TRV
PRE B

Theorem 6.3

Consider the grammar

S — aSb,
S] —_— (ZS]_b,/\

This grammar generates the A-free language {a™b™ : n > 1}. The A-production
851 — A can be removed after adding new productions obtained by substi-
tuting A for Sy where it occurs on the right. Doing this we get the grammar

§ — aSyblab,
Sy — aS;blab.

We can easily show that this new grammar gencrates the same language as
the original one.

In more general situations, substitutions for A-productions can be made
in a similar, although more complicated, manner.

Let G be any context-free grammar with A not in L (&). Then there cxists

an equivalent grammar G having no A-productions.

Proof: We first find the set Vi of all nullable variables of G, using the
following steps.

1. For all productions A — A, put A into V.

2. Repeat the following step until no further variables are added to Vy.

For all productions

B — A1As--- Ay,

where A;, As, ..., A, arc in Vy, put B into Vy.

Once the sct Vy has been found, we are ready to construct P. To do 80,
we look at all productions in P of the form

A= 21Ty T, m > 1,

where each z; € V UT. For cach such production of P, we put into P that
production as well as all those generated by replacing nullable variables with
A in all possible combinations. For example, if #; and z; are both nullable,
there will be one production in P with z; replaced with A, one in which x;
is replaced with A, and one in which both z; and z; are replaced with A.

’%

158

Example 6.5

Chapter 6 SIMPLIFICATION OF CONTEXT-FREE GRAMMARS AND NORMAL FORMS

There is one exception: if all z; are nullable, the production A — A is not
put into P. .

The argument that this gramiar G is equivalent to G is straightforward
and will be left to the reader. m

Find a context-free grammar without A-productions equivalent to the gram-
mar defined by

S — ABaC,
A — BC,

B — blA,

C — DA,
D d.

From the first step of the construction in Theorem 6.3, we find that the
nullable variables are A, B,C. Then, following the second step of the con-
struction, we get

S — ABaC |BaC| AaC |ABa| aC | Aa| Bala,
A — B|C| BC,

B —b,

C — D,

D —d.

Removing Unit-Productions

As we see from Theorem 6.2, productions in which both sides are a single
variable arc at times undesirable.

Definition 6

Any production of a context-free grammar of the form
A— B,

where A, B € V is called a unit-production.

6.1 METHODS FOR TRANSFORMING (GRAMMARS 159

To remove unit-productions, we use the substitution rule discussed in
Theorem 6.1. As the construction in the next theorem shows, this can be
done if we proceed with some care.

Let G = (V,T, S, P) be any context-free grammar without A-productions.

Then there exists a context-free grammar G = 17, ’f, 5,]3) that does not
have any unit-productions and that is equivalent to G.

Proof: Obviously, any unit-production of the form A — A can be removed
from the grammar without effect, and we need only consider A — B, where
A and B are different variables. At first sight, it may seem that we can use
Theorem 6.1 directly with 1 = 23 = X to replace

A— B
with

A-yilyal - lyn
But this will not always work; in the special case

A— B,
B— A,

the unit-productions are not removed. To get around this, we first find, for
each A, all variables B such that

AS B, (6.4)

We can do this by drawing a dependency graph with an edge (C, D) when-
ever the grammar has a unit-proeduction C — D; then (6. 4) holds whenever
there is a walk between A and B. The new grammar G is generated by
first putting into P all non-unit productions of P. Next, for all A and B
satisfying (6.4), we add to P

A= yilyal - |yn,

where B — yy |ya| - - - yn is the set of all rules in P with B on the left. Note
that since B — y1 |ya] - - |yn is taken from P, none of the y; can be a single
variable, so that no unit-productions are created by the last step,

To show that the resulting grammar is equivalent to the original one we
can follow the same line of reasoning as in Theorem 6.1, =

160 Chapter 6 SIMPLIFICATION OF CONTEXT-FREE GRAMMARS AND NORMAL FORMS

\““ﬁ—_—__h_g__ﬁ_/——/"

|
|
Figure 6.5 el
® oo
|
|

Remove all unit-productions from

S — Aa|B,
B — A|bb,
A — albc] B.

The dependency graph for the unit-productions is given in Figure 6.3; we
see from it that § & A,$ = B,B= A, and A = B. Hence, we add to the
original non-unit productions

S — Aa,
A — albe,
B — bb,

the new rules

S — a |bc] bb,
A — bb,
B — albe,

to obtain the equivalent grammar

S — a|bc|bblAa,
A — a|bb| be,
B — a|bb| be.

Note that the removal of the unit-productions has made B and the associ-
ated productions useless.
= |

We can put all these results together to show that grammars for context-
free languages can be made free of useless productions, A-productions, and
unit-productions.

;\'\ 1‘1;;::_;::“5 ‘E::gﬁl: ﬁv Let L be a context-free language that does not contain A. Then there exists

a context-free grammar that generates L and that does not have any useless
productions, A-productions, or unit-productions.

6.1 METHODS FOR TRANSFORMING (GRAMMARS 161

Proof: The procedures given in Theorems 6.2, 6.3, and 6.4 remove these
kinds of productions in turn. The only point that needs consideration is
that the removal of one type of production may introduce productions of
another type; for example, the procedure for removing A-productions can
create new unit-productions. Also, Theorem 6.4 requires that the gram-
mar have no A-productions. But note that the removal of unit-productions
does not create A-productions (Exercise 15 at the end of this section), and
the removal of useless productions does not create A-productions or unit-
productions (Exercise 16 at the end of this section). Therefore, we can
remove all undesirable productions using the following sequence of steps:

1. Remove A-productions
2. Remove unit-productions

3. Remove useless productions

The result will then have none of these productions, and the theorem is
proved. m

EXERCISES

1. Complete the proof of Theorem 6.1 by showing that
S :*:»@ w
implies
S =g w.

2, In Example 6.1, show a derivation tree for the string ababbbac, using both
the original and the modified grammar.

3. Show that the two grammars

S — abAB|ba,
A — gaa,
B — aAlbb
and _
S — abAaA |abAbb| ba,

A — aaa

are equivalent.

162

Chapter 6 SiMPLIFICATION OF CONTEXT-FREE GRAMMARS AND NORMAL FORMS

4.

o

10.
11.
12.

In Theorem 6.1, why is it necessary to assume that A and B are different
variables?

. Eliminate all useless productions from the grammar

S — aS|AB,
A — bA,
B — AA.

What language does this grammar generate?

Eliminate useless productions from

8§ — alaA| B|C,
A — aB|A,

B — Aa,

C —eCD,

D — ddd.

. Eliminate all A-productions from

S — AaBlaaB,
A—)
B — bbA| .

. Remove all unit-productions, all useless productions, and all A-productions

from the grammar

S — aA|aBB,
A — aadAl),
B — bB|bbC,
C — B.

What language does this grammar generate?

. Eliminate all unit productions from the grammar in Exercise 7.

Complete the proof of Theorem 6.3.
Complete the proof of Theorem 6.4.

Use the construction in Theorem 6.3 to remove A-productions from the gram-
mar in Example 5.4. What language does the resulting grammar generate?

13

14

15

16

7

18

19

20

6.1 METHODS FOR TRANSFORMING (GRAMMARS 163

. Buppose that G is a context-free grammar for which A € L (G). Show that if
we apply the construction in Theorem 6.3, we obtain a new grammar G such

that L (c“;) =L(G) - {A}.

. Give an example of a situation in which the removal of A-productions intro-
duces previously nonexistent unit-productions, @

. Let G be a grammar without A-productions, but possibly with some unit-
productions. Show that the construction of Theorem 6.4 does not then intro-
duce any A-productions.

. Show that if a grammar has no A-productions and no unit-productions, then
the removal of useless productions by the construction of Theorem 6.2 does
not introduce any such productions. @

. Justify the claim made in the proof of Theorem 6.1 that the variable B can
be replaced as soon as it appears.

. Suppose that a context-free grammar G = (V, T, S, P) has a production of
the form

A — zy,

¢

where ¢,y € (V UT)". Prove that if this rule is replaced by

A — By,

B —z,

where. B ¢ V, then the resulting grammar is equivalent to the original one.

;- ‘Consider the procedure suggested in Theorem 6.2 for the removal of useless

“productions. Reverse the order of the two parts, first eliminating variables
that cannot be reached from S, then removing those that do not yield a
terminal string. Does the new procedure still work correctly? If so, prove it.
If not, give a counterexample.

. It is possible to define the term simplification precisely by introducing the
concept of complexity of a grammar. This can be done in many ways; one
of them is through the length of all the strings giving the production rules.
For example, we might use

complexity (G) = Z {1+ 0]}

A—veP

Show that the removal of useless productions always reduces the complexity
in this sense. What can you say about the removal of A-productions and
unit-productions?

164

Chapter 6 SIMPLIFICATION OF CONTEXT-FREE GRAMMARS AND NORMAL FORMS

21.

* 22,

23.

* 24,

A context-free grammar G is said to be minimal for a given language L if
complexity (G) < complexity ((:;') for any G generating L. Show by exam-
ple that the removal of useless productions does not necessarily produce a
minimal grammar. &

Prove the following result. Let G = (V, T, 85, P) be a context-free grammar.
Divide the set of productions whose left sides are some given variable (say,
A), into two disjoint subsets

A — Azq |Aza| - |Azn,
and
A= yilyzl e Yo,

where x;,y; are in (VUT)", but A is not a prefix of any y;. Consider the
grammar G = (V u{z},T,5, ﬁ), where Z ¢ V and P is obtained by re-
placing all productions that have A on the left by

A—ylyZ, i=12,..,m,
Z > wifeZ, i=1,2,..n

Then L(G) =L (6)

Use the result of the preceding exercise to rewrite the grammar

A — AqalaBc| A
B — Bb|bc

so that it no longer has productions of the form A — Az or B - Bz.

Prove the following counterpart of Exercise 22. Lct the set of productions
involving the variable A on the left be divided into two disjoint subsets

A— mAlzd| - |za A
and
A— m \yQ\ et l'ym,

where A is not a suffix of any y;. Show that the grammar obtained by
replacing these productions with

A—ylZy, i=12,..,m

Z -~ wi|Zxy, i=1,2,...,n

is equivalent to the original grammar.

Example 6.7

6.2 Two IMPORTANT NORMAL ForMS 165

: Two Important Normal Forms

There are many kinds of normal forms we can establish for context-free
grammars. Some of these, because of their wide usefulness, have been stud-
1ed extensively., We consider two of them bricfly.

Chomsky Normal Form

One kind of normal form we can look for is one in which the number of
symbols on the right of a production arc strictly limited. In particular, we
can ask that the string on the right of a production consist of no more than
two symbols. One instance of this is the Chomsky normal form.

A context-free grammar is in Chomsky normal form if all productions are
of the form

A — BC,
or
A - a,

where 4, B, C arein V, and ¢ is in 1",

The prammar

5 — AS|a,
A— SA)b

is in Chomsky normal form. The grammar

A — SAlaa

is not; both productions § — AAS and A — «a violate the conditions of
Definition 6.4.
_ n

Chapter 6 SIMPLIFICATION OF CONTEXT-FREE GRAMMARS AND NORMAL FORMS

Any context-free grammar G = (V, T, 8, P) with A ¢ L () has an equiva-
lent grammar G= (17, CF, S, ﬁ) in Chomsky normal form.

Proof: Because of Theorem 6.5, we can assume without loss of generality
that G has no A-productions and no unit-productions. The construction of
G will be done in two steps.

Step 1: Construct a grammar G, = (V1,T, 8, P;) from G by considering all
productions in P in the form

A-—):Eldfz"-mn, (6.5)

where each z; is a symbol either in V or T. If n = 1 then x; must be a
terminal since we have no unit-productions. In this case, put the production
into P,. If n > 2, introduce new variables B, for each a € T. For each
production of P in the form (6.5) we put into P, the production

A—- CiCs -+ Cy,
where
Ci=ux;ifx;isinV,
and
C; = B, if z; = a.
For every B, we also put into P; the production
B, —a.

This part of the algorithm removes all terminals from productions whose
right side has length greater than one, replacing them with newly introduced
variables. At the end of this step we have a grammar G; all of whose
productions have the form

A—a, (6.6)
or
A— C]Cg"'Cn, (67)

where C; € V1.
It is an easy consequence of Theorem 6.1 that

L(G)) =L(G).

6.2 Two IMPORTANT NORMAL FORMS 167

Step 2: In the second step, we introduce additional variables to reduce the
length of the right sides of the productions where necessary. First we put
all productions of the form (6.6) as well as all the productions of the form
(6.7) with n = 2 into P. Forn > 2, we introduce new variables Dy, D, ...
and put into P the productions

A~ CDy,
Dy — CyDy,
Dy 3 — Cn—-lcn-

Obviously, the resulting grammar G is in Chomsky normal form. Repeated
applications of Theorem 6.1 will show that L (G1) =L (@), 0 that

L(G)=L(@).

This somewhat informal argument can easily be made more precise. We
will leave this to the reader. m

Convert the grammar with productions

S — ABa,
A — aab,
B — Ae,

to Chomsky normal form.

As required by the construction of Theorem 6.6, the grammar does not
have any A-productions or any unit-productions.

In Step 1, we introduce new variables B, By, B, and use the algorithm
to get

S — ABB,,
A — B,B,By,
B — AB,,

B, — a,

By — b,

B, - ¢

168 Chapter 6 SIMPLIFICATION OF CONTEXT-FREE GRAMMARS AND NORMAL FORMS

In the second step, we introduce additional variables to get the first two
productions into normal form and we get the final result

S — AD,
D, — BB,,
A — ByDa,
Dz — B, By,
B — AB,,
B, — a,
B}, - b,
B. — c.

Greibach Normal Form

Another useful grammatical form is the Greibach normal form. Here
we put restrictions not on the length of the right sides of a production,
but on the positions in which terminals and variables can appear. Argu-
ments justifying Greibach normal form are a little complicated and not very
transparent. Similarly, constructing a grammar in Greibach normal form
equivalent to a given context-free grammar is tedious. We therefore deal
with this matter very briefly. Nevertheless, Greibach normal form has many
theorctical and practical consequences.

A context-free grammar is said to be in Greibach normal form if all pro-
ductions have the form

A — az,

where a € T and x € V*.

If we compare this with Definition 5.4, we see that the form A — az
is common to both Greibach normal form and s-grammars, but Greibach
normal form does not carry the restriction that the pair (4, a) occur at most
once. This additional freedom gives Greibach normal form a generality not
possessed by s-grammars.

Example 6.9

6.2 Two IMPORTANT NORMAL FORMS 169

If a grammar is not in Greibach normal form, we may be able to rewrite
it in this form with some of the techniques encountered above. Here are two
simple examples.

The grammar

S — AB,
A — aA|bB|b,
B—b

is not in Greibach normal form. However, using the substitution given by
Theorem 6.1, we immediately get the equivalent grammar

S — aAB|bBB|bB,
A — aA[bB|b,
B — b,

which is in Greibach normal form.

Convert the grammar
S — abSblaa,

into Greibach normal form.

Here we can use a device similar to the one introduced in the con-
struction of Chomsky normal form, We introduce new variables 4 and B
that are essentially synonyms for a and b, respectively. Substituting for the
terminals with their associated variables leads to the equivalent grammar

S — aBSBlaA,
A — a,
B — b,

which is in Greibach normal form.

_________ P — |

In general, though, neither the conversion of a given grammar to Greibach
normal form nor the proof that this can always be done are simple matters.
We introduce Greibach normal form here because it will simplify the tech-
nical discussion of an important result in the next chapter. However, from

170 Chapter 6 SIMPLIFICATION OF CONTEXT-FREE GRAMMARS AND NORMAL FORMS

a conceptual viewpoint, Greibach normal form plays no further role in our
discussion, so we only quote the following general result without proof.

For every context-free grammar G with A ¢ L (G), there exists an equivalent

grammar G in Greibach normal form.

EXERCISES

. Provide the details of the proof of Theorem 6.6.

2. Convert the grammar S — aSb|ab into Chomsky normal form.

Transform the grammar § — a8aA|A, A — abA|b into Chomsky normal
form.

Transform the grammar with productions
S5 — abAB,
A — bABJ),
B — BAa|A| A,

into Chomsky normal form.

Convert the grammar

S — AB|aB
A — aab|\
B — bbA

into Chomsky normal form. ®

. Let G = (V,T, S, P) be any context-free grammar without any A-productions

or unit-productions. Let k& be the maximum number of symbols on the right of
any production in P. Show that there is an equivalent grammar in Chomsky
normal form with no more than (k — 1) {P} + |T| production rules.

7. Draw the dependency graph for the grammar in Exercise 4.

8. A linear language is one for which there exists a linear grammar (for a.def-

inition, see Example 3.13). Let L be any linear language not containing A.
Show that there exists a grammar G = (V, T, S, P) all of whose productions
have one of the forms

A —aB,

A — Ba,

A —a,

where a € T, A,B €V, such that L = L (G). ®

9.

10.

11.

12,

13.

14.

15.

*16.

6.2 Two IMPORTANT NORMAL FORMS 171

Show that for every context-free grammar G = (V, T, 8, P) there is an equiv-
alent one in which all productions have the form

A — aBC,

or
A— X
wherea € UM}, A, B,CcV. @

Convert the grammar
S — aSb|bSalalb

into Greibach normal form.

Convert the following grammar into Greibach normal form.

S — aSblab.

Convert the grammar

S5 — ablaS|aas

into Greibach normal form. &b

Convert the grammar
S — ABbla,
A — wadA|B,
B — bAb

into Greibach normal form.

Can every lincar grammar be converted to a form in which all productions
look like A — ax, where a € T and z € VU {A}?

A context-free grammar is said to be in two-standard form if all production
rules satisfy the following pattern

A — aBC,
A — aB,
A a,

where A,B,C €V and a € T.

Convert the grammar G = ({5, A, B,C},{a,b}, S, P) with P given as

S —al4,
A — bABC,
B — b,
C — aBC,

into two-standard form. &%

Two-standard form is general; for any context-frce grammar G with A ¢
L (G), there exists an equivalent grammar in two-standard form. Prove this.

-3

|]

Chapter 6 SIMPLIFICATION OF CONTEXT-FREKR GRAMMARS AND NORMAL FORMS

#13: A Membership Algorithm for Context-
Free Grammars*

In Section 5.2, we claimed, without any elaboration, that membership and
parsing a]gzorithms for context-free grammars exist that require approxi-
mately |w|” steps to parse a string w. We are now in a position to justify
this claim. The algorithm we will describe here is called the CYK algorithm,
after its originators J. Cocke, D. H. Younger, and T. Kasami. The algo-
rithm works only if the grammar is in Chomsky normal form and succeeds
by breaking one problem into a sequence of smaller ones in the following
way. Assurne that we have a grammar G = (V, T, 5, P} in Chomsky normal
form and a string

W= aidy -y,
We define substrings
Wi = Ay~ - - Gy
and subsets of V
V;_l = {AEV:A:*>71)7;_7'}.

Clearly, w € L (G) it and ouly if § € V,,.

To compute V;;, observe that A € V;; if and only if &' contains a pro-
duction A — a;. Therefore, V; can be computed for all 1 < ¢ < n by
inspection of w and the productions of the grammar. To continue, notice

that for j > 4, A derives w;; if and only if there is a production A — BC,
with B = w;y, and C = W1, for some k with ¢ < k, k < j. In other words,

Vij = U {A:4— BC, with B € Vir,C € Viyr, ;). (68)
ke{ii+l,...,j—1}

An inspection of the indices in (6.8) shows that it can be used to compute
all the V;; if we proceed in the sequence

1. Compute V1 1 ‘/229 Tty V’nn
2. Compute Vig, Vaz, ..., Vo1
3. Compute Vig,Vau, ..., Voo

and so on.

6.3 A MEMBERSHIP ALGORITHM FOR CONTEXT-FREE (CRAMMARS 173

Determine whether the string w = aabbb is in the language generated by
the grammar

S — AB,
A — BB]a,
B - ABb,

First note that wy, = a, so V|| is the set of all variables that immedi-
ately derive a, that is, Vi3 = {A}. Since waz = a, we also have Vay = {A)
and, similarly,

Vin = {A},Vay = {A} , Vay = {B}, Vi = {B}, Vs; = {B}.
Now we use (6.8} to get
Vie = {A:A — BC, BeV)),Ce Vgg},
Since V11 = {A} and Vi = {A}, the sct consists of all variables that occur
on the left side of a production whose right side is AA4. Since there are
none, Vis is emptly. Next,

Vay ={A: A— BC, B &€ Vi, C € Vas},

s0 the required right side is AB, and we have Vo3 = {5, B}, A straightfor-
ward argument along these lines then gives

Vie = @, Vg = {8, B}, Vay = {A}, Vs = {4},
Vig = {5, B}, Vay = {A},Vss = {5, B},

Vig = {A}, Vo5 = {5, B},

Vis = {8, B},

so that w € L(G). -

The CYK algorithin, as described here, determines membership for any
langnage generated by a grammar in Chomsky normal form. With some
additions Lo keep track of how the elements of Vi; are derived, it can be
converted into a parsing method. 1o see that the CYK membership algo-
rithm requires On® steps, notice that exactly n(n+ 1) /2 sets of Vi; have
to be computed. Each involves the evaluation of at most n terms in (6.8),
80 the claimed result follows.

174

Chapter 6 SiMpLIFICATION OF CONTEXT-FREE GRAMMARS AND NORMAL FORMS

EXERCISES

1. Use the CYK algorithm to determine whether the strings aabb, aabba, and
abbbb are in the language generated by the grammar in Example 6.11.

2. Use the CYK algorithm to find a parsing of the string eab, using the grammnar
of Example 6.11.

3. Usc the approach employed in Excrcise 2 to show how the CYK membership
algorithm can be made into a parsing method.

*k 4. Use the result in Exercise 3 to write a computer program for parsing with
any context-free grammar in Chomsky normal form.,

Pushdown
Automata

he description of context-free languages by means of context-free

grammars is convenient, as illustrated by the use of BNF in pro-

gramming language definition. The next question is whether there

is a class of automata that can be associated with context-free lan-
guages. As we have seen, finite automata cannot recognize all context-free
languages. Intuitively, we understand that this is because finite automata
have strictly finite memories, whereas the recognition of a context-free lan-
guage may require storing an unbounded amount of information. For ex-
ample, when scanning a string from the language L = {a™b" : n > 0}, we
must not only check that all a’s precede the first b, we must also count the
number of a’s. Since n is unbounded, this counting cannot be done with a
finite memory. We want a machine that can count without limit. But as
we see from other examples, such as {ww®}, we need more than unlimited
counting ability: we need the ability to store and match a sequence of sym-
bols in reverse order. This suggests that we might try a stack as a storage
mechanism, allowing unbounded storage that is restricted to operating like
a stack. This gives us a class of machines called pushdown automata

(pda).

176 Chapter 7 PUSHDOWN AUTOMATA
. B Input fil
Figure 7.1 nput e
Stack
Control unit

In this chapter, we explore the connection between pushdown automata
and context-free languages. We first show that if we allow pushdown au-
tomata, to act nondeterministically, we get a class of automata that accepts
exactly the family of context-free languages. But we will also see that here
there is no longer an equivalence between the deterministic and nondeter-
ministic versions. The class of deterministic pushdown automata defines a
new family of languages, the deterministic context-free languages, forming
a proper subset of the context-free languages. Since this is an important
family for the treatment of programming languages, we conclude the chap-
ter with a brief introduction to the grammars associated with deterministic
context-free languages.

Nondeterministic Pushdown Automata

A schematic representation of a pushdown automaton is given in Figure 7.1,
Each move of the control unit reads a symbol from the input file, while at
the same time changing the contents of the stack through the usual stack
operations. Each move of the control unit is determined by the current
input symbol as well as by the symbol currently on top of the stack. The
result of the move is a new state of the control unit and a change in the
top of the stack. In our discussion, we will restrict ourselves to pushdown
automata acting as accepters.

Definition of a Pushdown Automaton

Formalizing this intuitive notion gives us a precise definition of a pushdown
automaton.

7.1 NONDETERMINISTIC PUSHDOWN AUTOMATA 177

‘Definitio

AN

A nondeterministic pushdown accepter (npda) is defined by the sep-
tuple

17\/_{: (Q,27F7(57QO5'Z7F)?

where

(2 is a finite set of internal states of the control unit,

¥ i8 the input alphabet,

I' is a finite set of symbols called the stack alphabet,

§:Qx (XU {A})x1' — finite subscts of Q x I'* is the transition function,
go € 2 is the initial state of the control unit,

z €T is the stack start symbol,

F C @ is the set of final states.

The complicated formal appearance of the domain and range of § merits
a closer examination. The arguments of 4 are the current state of the control
unit, the current input symbol, and the current symbol on top of the stack.
The result is a set of pairs (g,), where ¢ is the next state of the control
unit and z is a string which is put on top of the stack in place of the
single symbol there before. Note that the second argument of § may be),
indicating that a move that does not consume an input symbol is possible.
We will call such a move a A-transition. Note also that & is defined so that
it needs a stack symbol; no move is possible if the stack is empty. Finally,
the requirement that the range of § be a finite subset is necessary because
@ x '™ is an infinite set and therefore has infinite subsets. While an npda
may have several choices for its moves, this choice must be restricted to a
finite set of possibilities.

Suppose the set of transition rules of an npda contains

6 (qha’b) = {((]2, Cd) s 43,)‘} .

If at any time the control unit is in state ¢1, the input symbol read is a, and
the symbol on top of the stack is b; then one of two things can happen: (1)
the control unit goes into state g, and the string cd replaces b on top of the
stack, or (2) the control unit goes into state g3 with the symbol b removed
from the top of the stack. In our notation we assume that the insertion of
a string into a stack is done symbol by symbol, starting at the right end of

the string.
N —— |

178

Chapter 7 PUSHDOWN AUTOMATA

Consider an npda with

Q =1{90,q1, 9,9},

¥ = {a, b},
Ir={0,1},
z=0,

F={a},

and

6 (9050) = {(c,10)., (g5, M}
(g0, 2, 0) = {(g3: M)},
6(q1,0,1) = {(q1,11)},
6(q1,0,1) = {(a2, M)},
5(g2,6,1) = {(a2, N},

8 (g2,A,0) = {(g3, M)}

What can we say about the action of this automaton?

First, notice that transitions are not specified for all possible combina-
tions of input and stack symbols. For instance, there is no entry given for
5 (o, b,0). The interpretation of this is the same that we used for nonde-
terministic finite automata: an unspecified transition is to the null set and

represents fﬁdead configuratiori for the npda.
The crucial transitions are
5((]1,&, 1) = {(qlv 11)})

which adds a 1 to the stack when an a is read, and

) (q27bv 1) = {(QZ:)‘)} ’

which removes a 1 when a b is encountered. These two steps count the
number of a's and match that count against the number of b’s. The control
unit is in state ¢ until the first b is encountered at which time it goes into
state go. This assures that no b precedes the last a. After analyzing the
remaining transitions, we see that the npda will end in the final state g3 if
and only if the input string is in the language

L={a"":n>0}U{a}.

As an analogy with finite automata, we might say that the npda accepts
the above language. Of course, before making such a claim, we must define
what we mean by an npda accepting a language.

7.1 NONDETERMINISTIC PUSHDOWN AUTOMATA 179

To simplify the discussion, we introduce a convenient notation for de-
scribing the successive configurations of an npda during the processing of a
string. The relevant factors at any time are the current state of the control
unit, the unread part of the input string, and the current contents of the
stack. Together these completely determine all the possible ways in which
the npda can proceed. The triplet ; sl L_;ﬂc,'g

—

. -] = -
(State) Cotdust o <[Tawu w7y

Y

where ¢ is the state of the control unit, w is the unread part of the input

string, and u is the stack contents (with the leftmost symbol indicating the
top of the stack) is called an instantaneous description of a pushdown
automaton. A move from one instantaneous description to another will be
denoted by the symbol +; thus

(q1,aw, bz) F (g2, w, yz)

is possible if and only if

‘.(Q2,y) € d(ql’a,b) .
Moves involving an arbitrary number of steps will be denoted by F. On

occasions where several automata are under consideration we will use by
to emphasize that the move is made by the particular automaton M.

The Language Accepted by a Pushdown Automaton

» _sia
i . v gl
il i »‘\ A \M\) \z
Pefinition 7

AN

Let M = (Q,%,T,4,qo, 2, F) be a nondeterministic pushdown automaton.
The language accepted by M is the set

L(M)= {w eX*: (g, w,z) Fy(p, A\ u),pe Flue I‘”‘} .
In words, the language accepted by M is the set of all strings that can put

M into a final state at the end of the string. The final stack content u is
irrelevant to this definition of acceptance.

Construct an npda for the language
L={we{a,b}" :ng(w)=mnyw)}.

As in Example 7.2, the solution to this problem involves counting the num-
ber of a’s and b’s, which is easily done with a stack. Here we need not even

180

Chapter 7 PUSHDOWN AUTOMATA

worry about the order of the a’s and b’s. We can insert a counter symbol,
say 0, into the stack whenever an a is read, then pop one counter symbol
from the stack when a b is found. The only difficulty with this is that if
there is a prefix of w with more b’s than a’s, we will not find a 0 to use. But
this is easy to fix; we can use a negative counter symbol, say 1, for counting
the #’s that are to be matched against o’s later. The complete solution is
an npda M = ({qo.qs} . {a,b},{0,1,2},0,q0, 2, {¢s}), with & given as

3 (90,2 2) = {lg5, 2)}

5((107a z) {(qo,(Jz)},
8 (g0, b, 2) = {(g0, 12)},
8 (g0, a,0) = {(40,00)},
& (90,6,0) = {(g0,)},

5 (g0, a,1) = {(g0, M)},

4 (qO> b, 1) = {(q0> 11)} .
In processing the string baab, the npda makes the moves
(qO7 baab? Z) t (QOa aab, J-z) - (q07 (Lb, Z)
F (o, b,02) - (gos Ay 2) F (gg, A 2)

and hence the string is accepted.

To constriuct an npda for accepting the language
I 2 g

L= {wwH Tw € {a, b}+})

we use the fact that the symbols are retrieved from a stack in the reverse
order of their insertion. When reading the first part of the string, we push
consceutive symbols on the stack. For the second part, we compare the
current input symbol with the top of the stack, continuing as long as the
two match. Since symbols are retrieved from the stack in reverse of the
order in which they were inserted, a complete match will be achieved if and
only if the input is of the form ww?.

An apparent difficulty with this suggestion is that we do not know
the middle of the string, that is, where w ends and wh starts. But the
nondeterministic nature of the automaton helps us with this; the npda
correctly guesses where the middle is and switches states at that point. A
solution to the problem is given by M = (Q,%,I',d, g0, 2, F'), where

Q = {q0, 491,42},
¥ = {a,b},
r'={ab,z2},
F={q}.

7.1 NONDETERMINISTIC PUSHDOWN AUTOMATA 181

The trangition function can be visualized as having several parts: a set to
push w on the stack,

0 (g0, @, @) = {(qo, aa)},
4 (g0, ,0) = {{(g0,%a)},
6 (g0, @, b) = {(go, ab)},
6 (g0, b,b) = {(q0,bb)},
Push 5 (20,0,2) = {(g0,02)},
6 (90,0, 2) = {(qo, b2)},

a set to guess the middle of the string, where the npda switches from state
a0 to q1,

4 (g0, Mra) = {(g1,0)},
6((10?/\’ b) = {(Q1ab)}a

a set to match w? against the contents of the stack,

5(ql’a7a) :{(QIa/\)}v
6 (q1,b,6) = {(a1, M)},

and finally
6 ((Il, ’\7 z) = {<q27 z)} ?

to recognize a successful match.
The sequence of moves in accepting abba is

(g0, abba, 2) & (qu, baa, az) F (qo, ba, baz)
F (q1,ba,baz) - (g1, a, az) F (q, A, 2) F (ga,2).

The nondeterministic alternative for locating the middle of the string is
taken at the third move. At that stage, the pda has the instantaneous
descriptions (go, ba, baz) and has two choices for its next move. One is to
use 4 (qo,b,b) = {(qo,bb)} and make the move

(qo, baa, baz) F (go, a, bbaz)

the second is the one used above, namely 4§ (go, A, b) = {(q1,0)}. Only the
latter leads to acceptance of the input. u

Chapter 7 PUSHDOWN AUTOMATA

EXERCISES

1. Find a pda with fewer than four states that accepts the same language as the
pda in Example 7.2.

2. Prove that the pda in Example 7.4 does not accept any string not in {wwR}.

®

@ Construct npda’s that accept the following regular languages.

(a) Ly = L (aaa™b)
(b) Ly = L (aab"aba™)
(c) the union of Ly and Ly
(d) In — L2
Construct npda’s that accept the following languages on © = {a,b, c}.
(a) L= {a"t*™ :n>0} @
(b) L= {wew":w e {a,b}"}
(¢) L={a™tmc™™:n>0,m> 0}
(d) L= {a"b"*™c™ :n > 0,m > 1}
(e) L ={a®"c" :n >0}
(f) L ={a"b™:n<m<3n} ®
(&) L= {w: na (w) = ny (w) + 1}
() L= fw: na () = 2, (w)}
(3) L= {0 na () + 1o (w) = e (w))
(G) L ={w: 2n, (w) < np (w) < 3na (w)}
(K) L = fw: na (w) < ns ()}

.. |Construct an npda that accepts the language L = a™b™ i n > 0,n # m}.
; 1 p guag)

6 / Find an npda on £ = {a,b,c} that accepts the language
L= {wlcwz s, we € {a, b}, wr # wr?}.

7. Find an npda for the concatenation of L (a*) and the language in Exercise 6.
Find an npda for the language L = {ab(ab)™ b (ba)” : n > 0}.

9. Is it possible to find a dfa that accepts the same language as the pda

M= ({(107 (Il} » {(1,, b} r {Z} » 40, {ql}) ’

10.

7.1 NONDETERMINISTIC PUSHDOWN AUTOMATA 183

with

6 {(go,a,2) = {(q1,2)},
6 (qo,b, 2) = {(go, 2)},
8(q1,a,2) = {(q1,2)},
8 (q1,6,2) = {(g0,2)}? B

33

What language is accepted by the pda
M= ({Q()y g1, 492, 43,494, q5} ’ {a’a b} ’ {07 1, a} » 40y {q5}) ’
with

6(g0,b,2) = {(q1,12)},
6 (qu,b,1) = {(q1,11)},
6 (q2,0,1) = {(g3, M)},
4 (gs,a,1) = {(gs, M)},
0(gs,0,2) = {(ga, 2) , (g5, 2)}?

11/ What language is accepted by the npda M = ({q0,q1,92},{a,b},{a,b, 2},

12.
13.

14.

15.

48,90, 2, {g2}) with transitions

6(q0,a,2) = {(q1,0), (g2, N},
d{q,b,a) = {(a1,b)},
&g, b,b) = {(q1,b)},
§(a1,a,b) = {(g2,))}. @

What language is accepted by the npda in Example 7.3 if we use F = {qo, ¢ }?

What language is accepted by the npda in Exercise 11 above if we use F =
{0, 91, q2}?

Find an npda with no more than two internal states that accepts the language

L(aa*ba*). B
Suppose that in Example 7.2 we replace the given value of § (gz, A, 0) with

5(‘12))‘: 0) = {(q()r)‘)} .

What is the language accepted by this new pda?

We can define a restricted npda as one that can increase the length of the
stack by at most one symbol in each move, changing Definition 7.1 so that

6:Q x (ZU{A}) x T — 29x(Fruruixh)

The interpretation of this is that the range of § consists of sets of pairs of the
form (gi,ab) , (g, a) , or (gi, A). Show that for every npda M there exists such

a restricted npda M such that L (M)=1L (K/f) ®

e T e

184

P
nl’cl €A C’-UO“‘/)C}’“/CJL}-._J’ L

aehy a2

Chapter 7 PuUSHDOWN AUTOMATA

17.) An alternative to Definition 7.2 for language acceptance is to require the stack
to be empty when the end of the input string is reached. Formally, an npda
M is said to accept the language N (M) by empty stack if

N = {we s w2 Fulo, n},

where p is any element in Q. Show that this notion is effectively equivalent
to Definition 7.2, in the sense that for any npda M there exists an npda M

such that L (M) = N (H), and vice versa.

Pushdown Automata and Context-
Free Languages

In the examples of the previous section, we saw that pushdown automata
exist for some of the familiar context-free languages. This is no accident.
There is a general relation between context-free languages and nondeter-
ministic pushdown accepters that is established in the next two major re-
sults. We will show that for every context-free language there is an npda
that accepts it, and conversely, that the language accepted by any npda is
context-free.

Pushdown Automata for Context-Free Languages

We first show that for every context-free language there is an npda that
accepts it. The underlying idea is to construct an npda that can, in some
way, carry out a leftmost derivation of any string in the language. To
simplify the argument a little, we assume that the language is generated by
a grammar in Greibach normal form.

The pda we are about to construct will represent the derivation by
keeping the variables in the right part of the sentential form on its stack,
while the left part, consisting entirely of terminals, is identical with the
input read. We begin by putting the start symbol on the stack. After
that, to simulate the application of a production A — az, we must have
the variable A on top of the stack and the terminal a as the input symbol.
The variable on the stack is removed and replaced by the variable string
z. What J should be to achieve this is easy to see. Before we present the
general argument, let us look at a simple example.

Construct a pda that accepts the language generated by grammar with
productions

S — aSbbla.

Theorem 7.1

7.2 PUSHDOWN AUTOMATA AND CONTEXT-FREE LANGUAGES 185

We first transform the grammar into Greibach normal form, changing the
productions to

S — aSA|a,
A — bB,
B —b.

The corresponding automaton will have three states {qo, g1, g2}, with initial
state go and final state go. First, the start symbol § is put on the stack by

§(g0, A 2) = {(@1,82)} -

The production S — aSA will be simulated in the pda by removing §

from the stack.and replacing.it with §A4, while reading a from the input.

Similarly, the rule S — a should cause the pda to read an a_while simply

removing 5. Thus, the two productions are represented in the pda by

d(q1,a,8) = {(@1,S4), (a1, A\)}.

In an analogous manner, the other productions give

4 (g1,0,4) ={(q1, B)},
d(g1,b, B) = {(q1, M)}

The appearance of the stack start symbol on top of the stack signals the
completion of the derivation and the pda is put into its final state by

§(q1, A\ 2) = {(g2, A)}.

The construction of this example can be adapted to other cases, leading
to a general result.
|

For any context-fre¢ language L, there exists an npda M such that

L=L(M).

Proof: If L is a A-free context-free language, there exists a context-free
grammar in Greibach normal form for it. Let G = (V, T, S, P) be such a
grammar. We then construct an npda which simulates leftmost derivations
in this grammar. As suggested, the simulation will be done so that the
unprocessed part of the sentential form is in the stack, while the terminal
prefix of any sentential form matches the corresponding prefix of the input
string.

e

‘ 186 Chapter 7 PUSHDOWN AUTOMATA

‘ Specifically, the npda will be

| M:({QOaQDC]f}7T:VU{Z}755C]0527{qf})7

where z ¢ V. Note that the input alphabet of M is identical with the set
of terminals of G and that the stack alphabet contains the set of variables
of the grammar.

The transition function will include

6(‘]07)\,Z) = {(ql,SZ)}, (71)

so that after the first move of M, the stack contains the start symbol S of
the derivation. (The stack start symbol z is a marker to allow us to detect
the end of the derivation.) In addition, the set of transition rules is such
that

((Ils u) €d (‘hs a, A) P (7'2)

whenever
A — au

is in P. This reads input a and removes the variable A from the stack,
replacing it with u. In this way it generates the transitions that allow the
pda to simulate all derivations. Finally, we have

8 (@, A 2) ={(g5,2)}, (7.3)

to get M into a final state.
To show that M accepts any w € L (G), consider the partial leftmost
derivation

S ajag - anA1As - A
=r"a1a2'"aanl"'BkA2"‘Am.

If M is to simulate this derivation, then after reading a,as - - a,, the stack
must contain A;As - -- A,,. To take the next step in the derivation, G must
have a production

Ay > bBy -+ Bg.
But the construction is such that then M has a transition rule in which
(‘haBl Tt Bk) € 6(‘1176: Al) 2

so that the stack now contains By « -+ By As » - - Ay, after having read ajas - - - anb.
A simple induction argument on the number of steps in the derivation
then shows that if

S = w,

7.2 PUSHDOWN AUTOMATA AND CONTEXT-FREE LANCUAGES 187

then

*

(g1, w, S2) F (g1, A, 2).
Using (7.1) and (7.3) we have

*

((I(hwvz) + (ql,'w,Sz) F (q1y/\7 Z) F ((.va)‘vz)a
so that L (G) C L (M).
To prove that L (M) C L(G), let w € L (M). Then by definition
(go,w, 2) F (g5, A u) .

But there is only one way to get from gy to ¢; and only one way from ¢; to
gy. Therefore, we must have

*

(QIywasz) = (Qla/\,z) .

Now let us write w = ayagas - - - a,. Then the first step in

%

(q1,010203 - - - an, Sz) + (g1, X, 2) (7.1)

must be a rule of the form (7.2) to get

(g1,a10203 - an, S2) F (q1,00a3 - - ap,u12) .
But then the grammar has a rule of the form $ — aju,, so that

S = ajuy.

Repeating this, writing u; = Aus, we have

(q1,a203 @n, Auz2) F (q1, a3 - a,, uzugz),
implying that A — apug is in the grammar and that

S = a1asuzus.

This makes it quite clear at any point the stack contents (excluding z)
are identical with the unmatched part of the sentential form, so that (7.4)
implies

*®
S = a0y,

In consequence, L (M) ¢ L (G), completing the proof if the language does
not contain A.
If A € L, we add to the constructed npda the transition

8(qo, A, 2) = {(gr,2)}

so that the empty string is also accepted. m
(i s

188 Chapter 7 PUSHDOWN AUTOMATA

Consider the grammar

S — aA,

‘ A - aABC|bB|a,
B — b,

‘ C—e

‘ Since the grammar is already in Greibach normal form, we can use the
construction in the previous theorem immediately. In addition to rules

| 5 (g0, A, 2) = {(a1,52))
| and

6(qu, %) = {(gr, %)},

the pda will also have transition rules

é(q1,a,8) = {@A)
§(q1,a,4) = {(q1,ABC) , (q1, M)},
8(g1,b,4) = {(a1, B)}, '
§(q1,b, B) = {(a1, M)},

) = {{q1,)}

The sequence of moves made by M in processing aaabc is

§{q1,¢,C

(g0, aaabe, 2) & (g1, aaabe, Sz)
b (g1, aabe, Az)
F (g, abe, ABCz)
 (q1,be, BCz)
F(q1,6,C2)
F (g1, 2)
F(gr, A 2).

This corresponds to the derivation
S5 = aA = aaABC = aaaBC = acabC = aaabe.

In order to simplify the arguments, the proof in Theorem 7.1 assumed
that the grammar was in Greibach normal form. It is not necessary to do
this; we can make a similar and only slightly more complicated construction

7.2 PUSHDOWN AUTOMATA AND CONTEXT-FREE LANGUAGES 189

from a general context-free grammar. For example, for productions of the
form

A — Bz,

we remove A from the stack and replace it with Bz, but consume no input
symbol. For productions of the form

A — abCrx,

we must first match the ab in the input against a similar string in the stack
and then replace A with Cz. We leave the details of the construction and
the associated proof as an exercise.

Context-Free Grammars for Pushdown Automata

The converse of Theorem 7.1 is also true. The construction involved readily
suggests itself: reverse the process in Theorem 7.1 so that the grammar
simulates the moves of the pda. This means that the content of the stack
should be reflected in the variable part of the sentential form, while the
processed input is the terminal prefix of the sentential form. Quite a few
details are needed to make this work.

To keep the discussion as simple as possible, we will assume that the
npda in question meets the following requirements:

1. Tt has a single final state g5 that is entered if and only if the stack is
empty;

2. All transitions must have the form 6 (¢;,a, A) = {¢1, ca, ..., ¢ }, Where
¢ = (g, M), (7.5)
-
¢ = (¢4, BO). L(7.6)

That is, each move either increases or decreases the stack content by a single
symbol.

These restrictions may appear to be very severe, but they are not.
It can be shown that for any npda there exists an equivalent one having
properties 1 and 2. This equivalence was explored partially in FExercises 16
and 17 in Section 7.1. Here we need to explore it further, but again we
will leave the arguments as an exercise (see Exercise 16 at the end of this
section). Taking this as given, we now construct a context-free grammar
for the language accepted by the npda.

As stated, we want the sentential form to represent the content of the
stack. But the configuration of the npda also involves an internal state, and

190

Chapter 7 PUSHDOWN AUTOMATA

this has to be remembered in the sentential form as well. It is hard to see
how this can be done, and the construction we give here is a little tricky.

Suppose for the moment that we can find a grammar whose variables
are of the form (¢;Ag;) and whose productions are such that

(QiAQj) :*;’ v,

if and only if the npda erases A from the stack while reading v and going
from state g; to state g;. “Erasing” here means that A and its effects (i.e.,
all the successive strings by which it is replaced) are removed from the stack,
bringing the symbol originally below A to the top. If we can find such a
grammar, and if we choose (gozqys) as its start symbol, then

(q02qf) = w,

if and only if the npda removes z (creating an empty stack) while reading
w and going from ¢o to gf. But this is exactly how the npda accepts w.
Therefore, the language generated by the grammar will be identical to the
language accepted by the npda.

To construct a grammar that satisfies these conditions, we examine the
different types of transitions that can be made by the npda. Since (7.5)
involves an immediate erasure of A, the grammar will have a corresponding
production

(¢:4g;) — a.
Productions of type (7.6) generate the set of rules

(gidar) — a(g;Bar) (@iCqx),

where ¢, and ¢ take on all possible values in . This is due to the fact that
to erase A we first replace it with BC', while reading an ¢ and going from
state ¢; to g;. Subsequently, we go from g, to g, erasing B, then from g to
q, erasing C'.

In the last step, it may seem that we have added too much, as there
may be some states g that cannot be reached from ¢; while erasing B.
This is true, but this does not affect the grammar. The resulting variables
(g; Bq;) are useless variables and do not affect the language accepted by the
gramrnar.

Finally, as start variable we take (qozgs), where gs is the single final
state of the npda.

Example 7.7

7.2 PUSHDOWN AUTOMATA AND CONTEXT-FREE LANGUAGES 191

Consider the npda with transitions

d(go,a,2) = {(qv, A2)},
6 (g0, a, A) = {(q0, 4)},
5 (g0, b, A) = (a1, N},
(@, 2) ={(g, N}

Using go as initial state and g as the final state, the npda satisfies condition
1 above, but not 2. To satisfy the latter, we introduce a new state gs and
an intermediate step in which we first remove the A from the stack, then
replace it in the next move. The new set of transition rule is

5(‘107(1’.’ z) = {(quAz)}a
6 (g3, A, 2) = {(q0, A2)},
§ (g0, 0, 4) = {{gz, M},
6 (g0, b, 4) = {(q1, N},
d(q1, A 2) = {(g2, M)}

The last three transitions are of the form (7.5) so that they yield the corre-
sponding productions

(w0Agz) — a, (gAq)—b, (qr2g2) — A

From the first two transitions we get the set of productions

(20290) — a{90Aq) (90290) |a (90 Aq1) (q1290)|
a (g0Agz2) (922q0) [a (g0Ags) (g32q0) ,
(qozq1) — a(g0Aqo) (q0zaq1) la (g0 Aq1) (q1zq1)|
a(904¢) (222q1) la (90 Ags) (32q1)
(g02g2) — a(g0Ago) (20292) la (goAq1) (n1292)]
a(qoAgz) (92292) |a (9o Ags) (g3242)
(902q3) — a(goAq) (90293) la (40 Aq1) (q12a3)|
a(g0Agz2) (¢2243) |a (g0 Ags) (gazgs)

q1290)| (OACI2)(Q2Z<10) (q0Ags) (¢3290) ,

qoAq)

012q1)| (q0Agz) (922q1) | (g0Ag3) (932¢1) ,
)
)

q0240) |)
q0Aqi)
)
)

QOZQ1) '|
q02q2) |
qo2q3) |

(g3290) — (q0Aqo)
(g32q1) — (90Aqo)
(g32g2) — (90Aqo)
(g3243) — (90Aqo)

91292)| (qoAq2) (22¢2) | (q0Ags) (g32¢2) ,
q1293)| (90 Ag2) (g22q3) | (qoAgs) (g32¢3

qoAq
QwAq

TN
—~ o — —
~ e~ —

192

Theorem 7.2

Chapter 7 PUSHDOWN AUTOMATA

The start variable will be (gozgz). The string aab is accepted by the pda,
with successive configurations

(g0, aab, z) F (go, ab, A2)
F (g3, b, 2)
F (qo, b, Az)
F (g, A 2)
F (g2, A A).

The corresponding derivation with G is

(90292) = 0 (goAgs) (g3242)
= aa(gszqz2)
= aa (@Aq) (12¢2)
= aab(q12q2)
= aab.

"The steps in the proof of the following theorem will be easier to understand
if you notice the correspondence between the successive instantaneous de-
scriptions of the pda and the sentential forms in the derivation. The first ¢;
in the leftmost variable of every sentential form is the current state of the
pda, while the sequence of middle symbols is the same as the stack content.

Although the construction yields a rather complicated grammar, it can
be applied to any pda whose transition rules satisfy the given conditions.
This forms the basis for the proof of the general result. -

HL=L(M i‘for some npda M, then L is a context-free language.

Proof: Assume that M = (Q,X,I,6,q,72 {qs}) satisfies conditions 1
and 2 above. We use the suggested construction to get the grammar
G = (V,T,5,P), with T = ¥ and V consisting of elements of the form
(gicg;). We will show that the grammar so obtained is such that for all
gi,g5, € QA X €T yv el

(gi,uv, AX) F (g;,v, X) (7.7)
implies that
(¢:Aqj) = u,

and vice versa.
The first part is to show that, whenever the npda is such that the
symbol A and its effects can be removed from the stack while reading u and

7.2 PUSHDOWN AUTOMATA AND CONTEXT-FREE LANGUAGES 193

going from state ¢; to g;, then the variable (g; Ag;) can derive u. This is not
hard to see since the grammar was explicitly constructed to do this. We
only need an induction on the number of moves to make this precise.

For the converse, consider a single step in the derivation such as

(giAgqr) = a(g;Ba) (@Cgx) .
Using the corresponding transition for the npda,
d (gi,a, A) = {(q;, BC), ...}, (7.8)

we see that the A can be removed from the stack, BC put on, reading a,
with the control unit going from state ¢; to g;. Similarly, if

(@Ag;) = a, (7.9)
then there must be a corresponding transition
d(gi,a, A) = {(g;, M)} (7.10)

whereby the A can be popped off the stack. We see from this that the
sentential forms derived from (q;Ag;) define a sequence of possible configu-
rations of the npda by which (7.7) ean be achieved.

Notice that (¢:4q;) = a(g;Bq) (¢Cqr) might be possible for some
(g;Bai) (1Cqx) for which there is no corresponding transition of the form
(7.8) or (7.10). But, in that case, at least one of the variables on the right
will be useless. For all sentential forms leading to a terminal string, the
argument given holds.

If we now apply the conclusion to

(qoswa Z) = (va ’\7)‘) ’
we see that this can be so if and only if
(go2q5) = w.

Consequently L (M) = L(G). =
=]

EXERCISES

1. Show that the pda constructed in Example 7.5 accepts the string aaabbbb
that is in the language generated by the given grammar.

2. Prove that the pda in Example 7.5 accepts the language L = {a"“bz’1 n > O}.

194 Chapter 7 PUSHDOWN AUTOMATA

@Construct an npda that accepts the language generated by the grammar

8.

S — aSbblaah. @

Construct an npda that accepts the language generated by the grammar

S — aS85S|ab. @

Construct an npda corresponding to the grammar

8 — aABBlaAA,
A -+ aBB|a,
B — bBBJA.

Construct an npda that will accept the language generated by the grammar
G = ({8, A}, {a,b}, S, P), with productions S — AA|a, A — SA[b.

Show that Theorems 7.1 and 7.2 imply the following. For every npda M, there
exists an npda M with at most three states, such that L (M) =L (M) &

Show how the number of states of M in the above exercise can be reduced to
two.

Find an npda with two states for the language L = {a”b’”‘1 n > O}. @&

10.
11.
12.
13.
14.

16.

17.
18.

Find an npda with two states that accepts L = {a”bzn n = 1}.

Show that the npda in Example 7.7 accepts L (aa"b). @&

Show that the grammar in Example 7.7 generates the language L (aa™b).
In Example 7.7, show that the variables (goBgqo) and (gozq1) are useless.

Use the construction in Theorem 7.1 to find an npda for the language Example
7.5, Section 7.1.

Find a context-free grammar that generates the language accepted by the
npda M = ({q0,q1},{a,b}, {4, 2},8, g0, 2, {q1}), with transitions

J(QO’G,Z) = {(qﬂa Az>}7
(S(QO,b, A) = {(qoaAA)} »
5((]0,0:, A) = {(qlv)‘)} .

Show that for every npda there exists an equivalent one satisfying conditions
1 and 2 in the preamble to Theorem 7.2,

Give full details of the proof of Theorem 7.2.

Give a construction by which an arbitrary context-free grammar can be used
in the proof of Theorem 7.1.

Y

7.3 DETERMINISTIC PUSHDOWN AUTOMATA AND DETERMINISTIC CONTEXT-FREE LANGUAGES 195

Deterministic Pushdown Automata and
Deterministic Context-Free Languages

A deterministic pushdown accepter (dpda) is a pushdown automaton
that never has a choice in its move, This can be achieved by a modification
of Definition 7.1.

A pushdown automaton M = (Q, %, T, 8, g, 2, F) is said to be deterministic
if it is an automaton as defined in Definition 7.1, subject to the restrictions
that, for every g € Q,a e ZU{A} and be T,

1. 5(qg,a,b) contains at most one element,

2. if& (g, A, b) i9 not empty, then 6 (q, ¢, b) must be empty for every ¢ € X,

The first of these conditions simply requires that for any given input symbol
and any stack top, at most one move can be made. The second condition is
that when a A-move is possible for some configuration, no input-consuming
alternative is available.

C}JV‘V It is interesting to note the difference between this definition and the
’ corresponding definition of a deterministic finite automaton. The domain
of the transition function is still as in Definition 7.1 rather than @ x X x T’
because we want to retain A-transitions. Since the top of the stack plays a
role in determining the next move, the presence of A-fransitions does not
automatically imply nondeterminism. Also, some transitions of a dpda may
be to the empty set, that is, undefined, so there may be dead configurations.
This does not affect the definition; the ouly criterion for determinism is that
at all times at most one possible move exists.

A language L is said to be a deterministic context-free language if and
only if there exists a dpda]\>f“s“r_l‘t:h“t‘l‘l‘éif“‘l;"‘i_l;‘”('M). ' '

e

196

Example 7.8

/4

OU:,\ [__)}\

Example 7.9

Chapter 7 PUSIIDOWN AUTOMATA

The language
L={a"":n >0}

is a deterministic context-free language The pda M =
{07 l} » 67 qdo, Oy {qo}) Wlth
e

({q(.h QhQQ} [{av b}v

v (tor.0) = {(qﬁtﬁ

é
r ol Binal 4 50 a,1) = {(@ 1)},
| 6 (1,5,1) = {(a2, M)},

3 (92,0, 1) = {(g2, M)},

(g2, ,0) = {(q0, M},

accepts the given language. It satisfics the conditions of Definition 7.4 and
is therefore deterministic.
||

£ ¥

Look now at Example 7.4. The npda there is not deterministic because

8 (qo, a,a) = {(qo, aa)}

and

(g0, A a) = {(q1,a)}

violate condition 2 of Definition 7.3. This, of course, does not imply that
the language {ww®} itself is nondeterministic, since there is the possibility
of an equivalent dpda. But it is known that the language is indeed not
deterministic. From this and the next example we see that, in contrast to
finite automata, deterministic and nondeterministic pushdown automata are
not equivalent. There are context-free languages that arc not deterministic.

Let,
1={a"b" :n =0}

and
Ly

[a"b?" :n > 0}.

An obvious modification of the argument that Ly is a context-free language
shows that Ly is also context-free. The langnage

L=L1UL2

7 3 DETERMINISTIC PUSHDOWN AUTOMATA AND DETERMINISTIC CONTEXT-FREE LANGUAGES 197

is context-free as well. This will follow from a genera/l glc}goy&m to be pre-
sented in the next chapter, but can easily be made plausibfe at this point.
Let G = (Vi,T, 81, P1) and Gy = (V,T, 82, P2) be context-free gram-
mars such that L1 = L(G1) and Ly = L(G2). If we assume that V) and
Vs are disjoint and that S ¢ V) U Vz, then, combining the two, grammar
G =(VuV,U{S},T, S, P), where

P=P UP,U{8 — 51|52},

generates L ULy. This should be fairly clear at this point, but the details of
the argument will be deferred until Chapter 8. Accepting this, we see that
L is context-free. But L is not a deterministic context-free language. This
seems reasonable, since the pda has either to match one b or two against
each a, and so has to make an initial choice whether the input is in Ly
or in Ly. There is no information available at the beginning of the string
by which the choice can be made deterministically. Of course, this sort of
argument, is based on a particular algorithm we have in mind; it may lead us
to the correct conjecture, but does not prove anything. Therc is always the
possibility of a completely different approach that avoids an initial choice.
But it turns out that there is not, and L is indeed nondeterministic. To
see this we first establish the following claim. If L were a deterministic
context-free language, then

L=LU{a"b"c":n >0}

would be a context-free language. We show the latter by constructing an
npda M for L, given a dpda M for L.

The idea behind the construction is to add to the control unit of M a
similar part in which transitions caused by the input symbol b are replaced
with similar ones for input ¢. This new part of the control unit may be
entered after M has read a™b”. Since the second part responds to ¢” in
the same way as the first part does to b, the process that recognizes ab?"
now also accepts a”b"c". Figure 7.2 describes the construction graphically;
a formal argument follows.

Let M = (Q,%,T,4,qo, z, F) with

Q={q0,91, ., qn}-
Then consider M = (@,E,F,éu&z,ﬁ) with
C*) = Q) {607 617 ey "j:n} y
ﬁ:FU{@:qiEF},
and 9 constructed from § by including

3 (g, M 8) = {(@9)},

o

‘ 198 Chapter 7 PUSHDOWN AUTOMATA

Figure 7.2

LN
() . Addition
N o e

o : L—) Control unit of M

b} NJ,’\ Shad g
{

P
for all gf € Fys ¢ T, and
e M

Egs
Cotm ' 1)

o

8 (@, ¢,8) = (g5, w},

for all

5(%,) {(QJau)}

g € Q,s €, uel™ For M to accept a™b™ we must have

(qma”bn’z) '—FM (Qh)‘y u)v

with ¢; € F. Because M is deterministic, it must also be true that

(QOv aann’ Z) IiM (q'iv bn’ ’LL))

so that for it to accept a™b*" we must further have

(gs, ™, u) Far (g5, A u1)

for some g; € F. But then, by construction

*
(@7(-3“1“) l_]d_,’f ((JI‘:’I!)" ul))

so that M will _accept ab"c™. It remains to be shown that no strings other
than those in L are accepted by M this is considered in several exercises

at the end of this section. The conclusion is that L = L (M), 5o that L
is context-free. But we will show in the next chapter (Example 8.1) that

T is not context-free. Therefore, our assurption that L is a deterministic
context-free language must be false,

7.3 DETERMINISTIC PUSHDOWN AUTOMATA AND DETERMINISTIC CONTEXT-FREE LANGUAGES 199

EXERCISES

12.

13.

14.

(15.

6.

Show that L = {a“bzn inz O} is a deterministic context-free language.

Show that L = {a™b™ : m 2 n + 2} is deterministic.

. Is the language L = {a"b" : n > 1} U {b} deterministic?

Is the language L = {a™b" : n > 1} U {a} in Example 7.2 deterministic? &

Show that the pushdown automaton in Example 7.3 is not deterministic, but
that the language in the example is nevertheless deterministic.

For the language L in Exercise 1, show that L* is a deterministic context-free
language.

Give reasons why one might conjecture that the following language is not
deterministic.

L= {a,"bmr:k in=morm= k}

Is the language L = {a"b™ : n = m or n = m + 2} deterministic?

Is the language {wew™ : w € {a,b}"} deterministic? &

. While the language in Exercise 9 is deterministic, the closely related language

L= {ww®:we{q, b}*} is known to be nondeterministic. Give arguments
that make this statement plausible.

Show that L = {w € {a,b}" : na (w) # ns (w)} is a deterministic context-free
language.

Show that M in Example 7.9 does not accept a™b™c® for k # n.
Show that M in Example 7.9 does not accept any string not in L (a*b*c®).

Show that M in Example 7.9 does not accept a™b?"c® with k > 0. Show also
that it does not accept a™b™¢* unless m = n or m = 2n.

Show that every regular language is a deterministic context-free language.

®

Show that if L is deterministic context-free and Lz is regular, then the
language L1 U Lo is deterministic context-free. #

{17/ Show that under the conditions of Exercise 16, L1 N L2 is a deterministic

S

context-free language.

Give an example of a deterministic context-free language whose reverse is not
deterministic.

200

Figure 7.3

Chapter 7 PusipowN AUTOMATA

Grammars for Deterministic Context-Free
Languages*

The importance of deterministic context-free languages lies in the fact that
they can be parsed efficiently. We can see this intuitively by viewing the
pushdown automaton as a parsing device. Since there is no backtracking
involved, we can easily write a computer program for it, and we may expect
that it will work efficiently. Since there may be A-transitions involved, we
cannot immediately claim that this will yield a linear-time parser, but it
puts us on the right track nevertheless. To pursue this, let us see what
grammars might be suitable for the description of deterministic context-
free languages. Here we enter a topic important in the study of compilers,
but somewhat peripheral to our interests. We will provide only a brief
introduction to some important results, referring the reader to books on
compilers for a more thorough treatment.

Suppose we are parsing top-down, attempting to find the leftmost deriva-
tion of a particular sentence. For the sake of discussion, we use the approach
illustrated in Figure 7.3, We scan the input w from left to right, while de-
veloping a sentential form whose terminal prefix matches the prefix of w up
to the currently scanned symbol. To proceed in matching consecutive sym-
bols, we would like to know exactly which production rule is to be applied
at each step. This would avoid backtracking and give us an efficient parser.
The question then is whether there are grammars that allow us to do this.
For a general context-free grammar, this is not the case, but if the form of
the grammar is restricted, we can achieve our goal.

As first case, take the s-grammars introduced in Definition 5.4. From
the discussion there, it is clear that at every stage in the parsing we know
exactly which production has to be applied. Suppose that w = wyws and
that we have developed the sentential form wi Az. To get the next symbol
of the sentential form matched against the next symbol in w, we simply
look at the leftmost symbol of ws, say a. If there is no rule A — ay in the
grammar, the string w does not belong to the language. If there is such a
rule, the parsing can proceed. But in this case there is only one such rule,
so there is no choice to be made.

ay az ay 4y ... a Input w
ay ay az 4. .. Sentential form

Matched part Yet to be matched

7.4 GRAMMARS FOR DETERMINISTIC CONTEXT-FREE LANGUAGES 201

Although s-grammars are useful, they are too restrictive to capture all
aspects of the syntax of programming languages. We need to generalize the
idea so that it becomes more powerful without losing its essential property
for parsing. One type of grammar is called an LL grammar. In an LL
grammar we still have the property that we can, by looking at a limited
part of the input (consisting of the scanned symbol plus a finite number
of symbols following it), predict exactly which production rule must be
used. The term LI is standard usage in books on compilers; the first L
stands for the fact that the input is scanned from left to right; the second
L indicates that leftmost derivations are constructed. Every s-grammar is
an LL grammar, but the concept is more general.

The grammar

8 — aSblab

is not an s-grammar, but it is an LL grammar. In order to determine which
production is to be applied, we look at two consecutive symbols of the input
string. If the first is an a and the second a b, we must apply the production
S — ab. Otherwise, the rule § — aSh must be used.

_— _—

We say that a grammar is an LL (k) grammar if we can uniquely identify
the correct production, given the currently scanned symbol and a “look-
ahead” of the next k — 1 symbols. The above is an example of an LL (2)
grammar.

T
AR
ARy

A

m%“«&\ A1 The grammar

S — 5 |aSh| ab

generates the positive closure of the language in Example 7.10. As remarked
in Example 5.4, this is the language of properly nested parenthesis struc-
tures. The grammar is not an LL (k) grammar for any k.

To see why this is so, look at the derivation of strings of length greater
than two. To start, we have available two possible productions § — 88
and § — aSb. The scanned symbol does not tell us which is the right
one. Suppose we now use a look-ahead and consider the first two symbols,
finding that they are aa. Does this allow us to make the right decision? The
answer i8 still no, since what we have seen could be a prefix of a number of
strings, including both aabb or aabbad. In the first case, we must start with
S — a5, while in the second it is necessary to use 5 — 55. The grammar
is therefore not an LL (2) grammar. In a similar fashion, we can see that

202

Chapter 7 PUSHDOWN AUTOMATA

no matter how many look-ahead symbols we have, there are always some
situations that cannot be resolved.

This observation about the grammar does not imply that the language
is not deterministic or that no LL grammar for it exists. We can find an
LL grammar for the language if we analyze the reason for the failure of the
original grammar. The difficulty lies in the fact that we cannot predict how
many repetitions of the basic pattern a™b™ there are until we get to the end
of the string, yet the grammar requires an immediate decision. Rewriting
the grammar avoids this difficulty. The grammar

S — aSbhS|A

is an LL-grammar nearly equivalent to the original grammar.
To see this, consider the leftmost derivation of w = abab. Then

S = aShS = abS = abaSbs = ababS = abab.

We see that we never have any choice. When the input symbol examined is
a, we must use 8 — aShS, when the symbol is b or if we are at the end of
the string, we must use § — A,

But the problem is not yet completely solved because the new grammar
can generate the empty string. We fix this by introducing a new start vari-
able Sy and a production to ensure that some nonempty string is generated.
The final result

Sp — aSbs
S — aSbhS|A

is then an LL-grammar equivalent to the original grammar.

_— —

While this informal description of LL grammars is adequate for under-
standing simple examples, we need a more precise definition if any rigorous
results are to be developed. We conclude our discussion with such a defini-
tion.

Let G = (V, T, S, P) be a context-free grammar. If for every pair of left-most
derivations

* *

S = wlel = W1Y1T1 = wiwy,
* *

S = w1 Az = WiYeZs = Wi1wWs,

with wy, we, ws € T*, the equality of the k leftmost symbols of wy and ws
implies y; = yo, then G is said to be an LL (k) grammar. (If |ws| or |ws] is
less than k, then & is replaced by the smaller of these.)

7.4 GRAMMARS FOR DETERMINISTIC CONTEXT-FREE LANGUAGES 203

The definition makes precise what has already been indicated. If at any
stage in the leftmost derivation (wyAz) we know the next k symbols of the
input, the next step in the derivation is uniquely determined (as expressed
by y1 = y2).

The topic of LL grammars is an important one in the study of compil-
ers. A number of programming languages can be defined by LL grammars,
and many compilers have been written using LL parsers, But LL grammars
are not sufficiently general to deal with all deterministic context-free lan-
guages. Consequently, there is interest in other, more general deterministic
grammars. Particularly important are the so-called LR grammars, which
also allow efficient parsing, but can be viewed as constructing the derivation
tree from the bottom up. There is a great deal of material on this subject
that can be found in books on compilers (e.g., Hunter 1981) or books specif-
ically devoted to parsing methods for formal languages (such as Aho and
Ullman 1972).

EXERCISES

1. Show that the sccond gramnmar in Example 7.11 is an L7 grammar and that
it is equivalent to the original grammar.

2. Show that the grammar for L = {w : n, (w) = ny, (w)} given in Example 1.13
is not an LL grammar. &

=

Find an LL grammar for the language in Exercise 2.

b

Construct an LL grammar for the language L (a*ba) U L (abbb™). #

Show that any LL grammar is unambiguous.

«

6. Show that if G is an LL (k) grammar, then L (G) is a deterministic context-
free language.

7. Show that a deterministic context-free language is never inherently ambiguous.

8. Let G be a context-free grammar in Greibach normal form. Describe an
algorithm which, for any given k, determines whether or not G is an LL (k)
grammar.

9. Give LL grammars for the following languages, assuming ¥ = {q, b, c}.
(a) L=A{a"p" """ :n>0,m>0} B
(b) L ={a""b™c™ ™ :n > 0,m > 0}
(¢) L= {a™"**c™ :n>0,m>1}
(d) L= {w:n,(w) <np(w)}
(&) L= {u s m (1) + o (w) # e (w)}

Properties of
Context-Free
Languages

he family of context-free languages occupies a central position in
a hierarchy of formal languages. On the one hand, context-free
languages include important but restricted language families such
as regular and deterministic context-free languages. On the other
hand, there are broader language families of which context-free languages
are a special case. To study the relationship between language families
and to exhibit their similarities and differences, we investigate characteris-
tic properties of the various families. As in Chapter 4, we look at closure
under a variety of operations, algorithms for determining properties of mem-
bers of the family, and structural results such as pumping lemmas. These
all provide us with a means of understanding relations between the differ-
ent families as well as for classifying specific languages in an appropriate
category.

205

206

Chapter 8 PROPERTIES OF CONTEXT-FREE LANGUAGES

Two Pumping Lemmas

The pumping lemma given in|Theorem 4.8215 an effective tool for showing
that certain languages are not regular. Similar pumping lemmas are known
for other language familics. Here we will discuss two such results, one for
context-free languages in general, the other for a restricted type of context-
free language.

A Pumping Lemma for Context-Free Languages

Let L be an infinite context-free language. Then there exists some positive
integer m such that any w € L with jw| > m can be decomposed as

l\ W= uUpryz. ! (8.1)
with
e W
loxy| < m, (8.2)
- |
and i
luy| > 1, (8.3)
such that
wo'lzy'z € L, (8.4)

for all § = 0,1,2,.... This is known as the pumping lemma for context-free
languages.

Proof: Consider the language L — {\}, and assume that we have for it a
grammar G without unit-productions, or A-productions. Since the length
of the string on the right side of any production is bounded, say by k, the
length of the derivation of any w € L must be at least |w|/k. Therefore,
gince L is infinite, there exist arbitrarily long derivations and corresponding
derivation trecs of arbitrary height.

Consider now such a high derivation tree and some sufficiently long path
from the root to a leaf. Since the number of variables in G is finite, there
must be some variable that repeats on this path, as shown schematically in
Figure 8.1. Corresponding to the derivation tree in Figure 8.1, we have the
derivation

K * *
S = udz = wAyz = wwzyz,
where u, v, , ¥, and 2z arc all strings of terminals. From the above we see

that A = vAy and A 2 1z, so all the strings wvizy'z, i = 0,1,2,..., can
be generated by the grammar and are therefore in L. Furthermore, in the

Figure 8.1
Derivation tree for
a long string.

Example 8. l

8.1 Two PuMmPING LEMMAS 207

derivations A = vAy and A = z, we can assume that no variable repeats
(otherwise, we just use the repeating variable as A). Therefore, the lengths
of the strings v, z, and y depend only on the productions of the grammar
and can be bounded independently of w so that (8.2) holds. Finally, since
there are no unit productions and no A productions, v and y cannot both
be empty strings, giving (8.3).

This completes the argument that (8.1) to (8.4) hold [

This pumping lemma is useful in showing that a language does not
belong to the family of context-free languages. Its application is typical of
pumping lemipas in general; they are used negatively to show that a given
language does not belong to some family. As in Theorem 4.8, the correct
argument can be visualized as a game against an|intelligent opponent But
now the rules make it a little more difficult for us. For regular languages,
the substrlng;:cy)hose length is bounded by m starts at the left end of
w. Therefore the substring y that can be pumped is within m symbols of
the beginning of w. For context-free languages, we only have a bound on
|vzy|. The substring u that precedes vxy can be arbitrarily long. This gives
additional freedom to the adversary, making arguments involving Theorem
8.1 a little more complicated.

Show that the language
L= {a"bt"c" :n >0}

is not context-free.

208

L',%oﬂlaﬁlq(

R Q_ﬁ_ L {.x Ci’c/

o

4 -

4 wt
);.-',,ml S / . el i S e

]

-

[T

gt i”«,_!f_,‘_,:_f-
AU

Chapter 8 ProrerTIES OF CONTEXT-FREE LANGUAGES

Once the adversary has chosen m, we pick the string iambmcmi which is
in L. The adversary now has several choices. If he chooses vzy to contain
only a’s, then the pumped string will obviously not be in L. If he chooses
a string containing an equal number of a’s and b’s, then the pumped string

with k # m can be generated, and again we have generated a string

not in L. In fact, the only way the adversary could stop us from winning is
to pick vzy so that vy has the same number of a’s, b’s, and ¢’s. But this is
not possible because of restriction (8.2). Therefore, L is not context-free.

If we try the same argument on the language L = {a™b™}, we fail, as we
must, since the language is context-free. If we pick any string in L, such as
w = a™b™, the adversary can pick v = a® and y = b*. Now, no matter what
i we choose, the resulting pumped string w; is in L. Remember, though,

_that this does not prove that L is context-free; all we can say is that we
have beeri unable to get any conclusion from the pumping lemma. That L is
context-free must come from some other argument, such as the construction
of a context-free graminar.

The argument also justifies a claim made in Example 7.9 and allows us

to close a gap in that example. The language

| z — {an.bn} u {a’nb2n} U {anbncn} |
is not context-free. The string a™b™c™ is in E, but the pumped result is

not.
. ~—

Consider the language
-

|j£: {ww _w e {a, b}*}J'

Although this language appears to be very similar to the context-free lan-
guage of Example 5.1, it is not context-free.
Consider the string

a”b"a™b™.

There are many ways in which the adversary can now pick vzy, but for all
of them we have a winning countermove. For example, for the choice in
Figure 8.2, we can use ¢ = 0 to get a string of the form

a*¥a™b™ k < mor j <m,

which is not in L. For other choices by the adversary, similar arguments
can be made. We conclude that L is not contexi-free.
]

8.1 Two PUMPING LEMMAS 209

Figure 8.2 I TR R W

—
€ oxy F4

B -
i

e
' Q@{QW\Q St §W§@§d

o i 4 X3
RN W b \\%h\\\\\\\m\\h

Show that the language e ealoae
— — /,,nr)‘” 3]

| L={a":n>0}V
=tz T

{

is not context-free.

In Example 4.11 we showed that this language is not regular. However,
for a language over an alphabet with a single symbol, there is little differ-
ence between Theorem 8.1 and the pumping lemma for regular languages.
In either case, the strings to be pumped consist entirely of a’s, and what-
ever new string can be generated by Theorem 8.1 can also be generated by
Theorem 4.8. Thercfore, we can use essentially the same arguments as in
Example 4.11 to show that L is not context-free.

-

"L laa o

. m 43 S \:L
Show that the language i amancoo bhly

is not context-free. A = e

Given m in Theorem 8.1, we pick as our strin a”:zn@ The adversary
now has several choices. The only one that requires miich thought is the
one shown in Figure 8.3, Pumping ¢ times will yield a_new string with

Jm? + (i = 1) k; a's)and m+ (G —T)k b’s.] If the adversary takes ki # 0,
ks , we can pick ¢ = 0. Since

(m — k) < (m —1)°

=m?—2m+1

<m? —k,

the result is not in L. If the opponent picks k; = 0, ks # 0 or k; # 0,
kz = 0, then again with i = 0, the pumped string is not in L. We can
conclude from this that L is not a context-free language.

=

e

‘ 210

‘ Figure 8.3

Chapter 8 ProprerTiES OF CONTEXT-FREE LANGUAGES

n i

,ﬁL.\ ,—kL\
@...a...a...ab...b... b b
—t—t —
u @ x y oz

A Pumping Lemma for Linear Languages

We previously made a distinction between l1near and nonlinear context-free
gramma,rs We now make a similar distinction between languages.

Petinition: &:1
\\\\\ l\m\w S \\\\

A context-free language L is said to be linear if there exists a linear context-
free grammar G such that L = L (G).

-

=, } -)
[y Cﬁ U((p .

Clearly, every linear language is context-free, but we have not yet es-
tablished whether or not the converse is true.

R T \v\mw\mg’« m\\n\m

i,
" Exam 5
b

ot

SRR Wi \\\

Theorem 8.2

The language L = {a™b" : n > 0} is a linear language. A linear grammar
for it is given in Example 1.10. The grammar given in Example 1.12 for the
language L = {w : n, (w) = np (w)} is not linear, so the second language is
not necessarily linear.

-

Of course, just because a specific grammar is not linear does not imply
that the language generated by it is not linear. If we want to prove that a
language is not linear, we must show that there exists no equivalent linear
grammar. We approach this in the usual way, establishing structural prop-
erties for linear languages, then showing that some context-free languages
do not have a required property.

Let L be an infinite linear language. Then there exists some positive integer
m, such that any w € L, with |w| > m can be decomposed as w = uvzyz
with

|luvyz| < m, (8.5)
vyl = 1 8.6
Y)

8.1 Two PuMPING LEMMAS 211

such that
w'zy'z € L, (8.7)

foralli=0,1,2, ...

Note that the conclusions of this theorem differ from those of Theorem
8.1, since (8.2) is replaced by (8.5). This implies that the strings v and y
to be pumped must now be located within m symbols of the left and right
ends of w, respectively. The middle string = can be of arbitrary length.

Proof: Our reasoning follows the proof of Theorem 8.1. Since the language
is linear, there exists some linear grammar G for it. To use the argument
in Theorem 8.1, we also need to claim that G contains no unit-productions
and no A-productions. An examination of the proofs of Theorem 6.3 and
Theorem 6.4 will show that removing A-productions and unit-productions
does not destroy the linearity of the grammar. We can therefore assume
that @ has the required property.

Consider now the derivation tree as shown in Figure 8.1. Because the
grammar is linear, variables can appear only on the path from § to the
first A, on the path from the first A4 to the second one, and on the path
from the second A to some leaf of the tree. Since there are only a finite
number of variables on the path from S to the first A, and since each of
these generates a finite number of terminals, » and z must be bounded. By
a similar argument, v and y are bounded, so (8.5) follows,

The rest of the argument is as in Theorem 8.1. m

The language

l!l L={w:ny(w) =n (w)} |
is not linear.
To show this, assume that the language is lincar and apply Theorem
8.2 to the string
w = a'ran'm,am.‘
Inequality (8.7) shows that in this case the strings u, v, y, z must all consist
entirely of a’s. If we pump this string, we get a™*p2mgm+ with either
k= 1orl> 1, aresult that is not in L. This contradiction of Theorem 8.2
proves that the language is not linear.
e |

o

212 Chapter 8 ProrerTiEs OF CONTEXT-FREE LANGUAGES

This example answers the general question raised on the relation be-
tween the families of context-free and linear languages. The family of linear
languages is a proper subset of the family of context-free languages.

| EXERCISES

1. Use reasoning similar to that in Example 4.11 to give a complete proof that
the language in Example 8.3 is not context-free.

@Show that the language L = {a" : n is a prime number} is not context-free.
Show that L = {ww'w : w € {a,b}"} is not a context-free language. &
. Show that L = {w € {a,b,c}": n2 (w) + nd (w) = nZ (w)} is nat context-free.

. Is the language L = {a™b™ : n = 2™} context-free?

B

o]

6. Show that the language L = {(7/”’2 n > 0} is not context-free.
“ @ Show that the following languages on X = {a, b, ¢} are not context-free.
() L={a"¥ :in<) @ ,
(b) L={a" :n>(—-1)°}
(¢) L= {a™'c*: k= jn}
(dy L = {a”l:ojc"c ck>nk>j)
(e) L={a"¥c*:n<jn<k< i}
() L ={w:na(w) <np(w) <ne(w)} (8)
~(8) L = {w: na (w) /ry (w) = e (w)}
(h) L = {w € {a,b,c}" : nu (w) +np (w) = 2ne (w)}.
/') @ Determine whether or not the following languag‘és are context-free.
(a) L= {a"wwfa":n>0,w e {a,b}"}
(b) L = {a‘"‘bja"bj :n > 0,5 >0} @
(c) L = {a"Va’d™ :n > 0,5 >0}
(d) L= {a"¥a" in+j<k+1}
(¢) L ={a"ba" :n<k,j<lI}
(t) L= {(L“b"(:‘l’- n < j}

9. In Theorem 8.1, find a bound for m in terms of the properties of the grammar
G.

@ Determine whether or not the following language is context-free.

L = {wrcws 1 w1, w2 € {a,b}" , w1 # w2} &

8.2 CLOSURE PROPERTIES AND DECISION ALGORITHMS FOR CONTEXT-FREE LANGUAGES 213

7) @ Show that the language L = {&™b"a™b™ : n > 0,m > 0} is context-free but

not linear.
4 @ Show that the following language is not linear.
L={w:new)2ns(w)} @
13. Show that the language L = {w € {a,b,¢}" : no (w) +np (w) = ne (w)} is
context-free, but not linear,
\ 0 @ Determine whether or not the language L = {a™b’ : j < n < 2j — 1} is linear.
15. Determine whether or not the language in Example 5.12 is linear. @

16. In Theorem 8.2, find a bound on m in terms of the properties of the grammar
G.

17. Justify the claim made in Theorem 8.2 that for any linear language (not
containing \) there exists a linear grammar without A-productions and unit-
productions.

18. Consider the set of all strings a/b, where g and b are positive decimal integers
such that ¢ < b. The set of strings then represents all possible decimal
fractions. Determine whether or not this is a context-free language.

*19. Show that the complement of the language in Exercise 6 is not context-free.
\(: Is the following language context-free?

L={a"":n and m are prime numbers} @&

Closure Properties and Decision Algorithms
for Context-Free Languages

In Chapter 4 we looked at closure under certain operations and algorithms
to decide on the properties of the family of regular languages. On the whole,
the questions raised there had easy answers. When we ask the same ques-
tions about context-free languages, we encounter more difficulties. First,
closure properties that hold for regular languages do not always hold for
context-free languages. When they do, the arguments needed to prove them
are often quite complicated. Second, many intuitively simple and important
questions about context-free languages cannot be answered. This statement
may seem at first surprising and will need to be elaborated as we proceed.
In this section, we provide only a sample of some of the most important
results.

Closure of Context-Free Languages

The family of context-free languages is closed under union, concatenation,
and star-closure.

214

Chapter 8 PROPERTIES OF CONTEXT-FREE LANGUAGES

Proof: Let L; and Ly be two context-free languages generated by the
context-free grammars Gy = (4,71, 81, P1) and Gy = (Vo, T3, S, P»), re-
spectively. We can assume without loss of generality that the sets V3 and
Vs are disjoint.

Consider now the language L (G3), generated by the grammar

Gs = (ViuVaU{S3},T1 UTy, S3, Ps),

where S5 is a variable not in Vi U V5. The productions of Gy are all the
productions of Gy and s, together with an alternative starting production
that allows us to use one or the other grammars. More precisely,

Py=PF U]32U{S:3 - Sl|52}

Obviously, G'3 is a context-free grammar, so that L(G3) is a context-free
language. But it is easy to see that

L(G3) =L, U Lg. (8.8)
Suppose for instance that w € Ly. Then
Sy =8 S w

is a possible derivation in grammar G5. A similar argument can be made
for w € Ly, Also, if w € L (G35) then either

Sg = Sl (89)
or
= Sy (8.10)

must be the first step of the derivation. Suppose (8.9) is used. Since senten-
tial forms derived from &) have variables in V7, and V) and V4 are disjoint,
the derivation

51:*>’UJ

can involve productions in P; only. Hence w must be in L;. Alternatively,
if (8.10) is used first, then w must be in Ly and it follows that L (G3) is the
union of Ly and Ls.

Next, consider

G4 :(‘/le‘/zU{S/l},fl'lUTg,Sgl,Ph).

e
Here again 5, is a new variable and

P4 :Pl UPQU{S4 i Slsg}

8.2 CLOSURE PROPERTIES AND DECISION ALGORITHMS FOR CONTEXT-FREE LANGUAGES 215

Then
L(G4) = L(G1)L(G2)

follows easily.
Finally, consider L (Gs) with

Gs = (Vi U{S5},T1, 855, Ps),
where 55 is a new variable and
Py =P, U {S; — 9155|A}.
Then
L(Gs) = L(G1)".

Thus we have shown that the family of context-free languages is closed
under union, concatenation, and star-closure. m

The family of context-free languages is not closed under intersection and
complementation.

Proof: Consider the two languages

Ly ={a"b"c™ :n > 0,m > 0}
and

Ly ={a™™c™ :n>0,m > 0}.

There are several ways one can show that L; and Lo are context-free. For
instance, a grammar for Lq is

8§ — 5192,

Sl - aSlb|)\,

Sz b CSQI)\.

Alternatively, we note that L, is the concatenation of two context-free lan-
guages, 8o it is context-free by Theorem 8.3. But

LiNLy ={a"b"c" : n > 0},

which we have already shown not to be context-free. Thus, the family of
context-free languages is not closed under intersection.

16

Chapter 8 PROPERTIES OF CONTEXT-FREE LANGUAGES

The second part of the theorem follows from Theorem 8.3 and the set
identity

LiN Ly =T1 UL,

If the family of context-free languages were closed under complementation,
then the right side of the above expression would be a context-free language
for any context-free L; and Lp. But this contradicts what we have just
shown, that the intersection of two context-free languages is not necessar-
ily context-free. Consequently, the family of context-free languages is not
closed under complementation. m

While the intersection of two context-free languages may produce a
language that is not context-free, the closure property holds if one of the
languages is regular.

Let L, be a context-free language and L be a regular language. Then
Ly N Ly is context-free.

Proof: Let M; = (Q,%,T', 81,40, 2, F1) be an npda which accepts L; and
M; = (P,Z,62,p0, F2) be a dfa that accepts L. We construct a push-

down automaton M = (@,E,F,g, Zjo,z,ﬁ) which simulates the parallel

action of M, and M,: whenever a symbol is read from the input string, M
simultaneously executes the moves of My and Mj. To this end we let

@EQX-Ps
20 = (g0,P0) »
F=F x F,

and define 3 such that
((ar,p0)) € 5 ((a15),,B),
if and only if
(gr,x) € 81 (@, a,b),
and
b2 (pj,a) = pr1.-

In this, we also require that if @ = A, then p; = p;. In other words, the
states of M are labeled with pairs (g;, p;), representing the respective states

8.2 CLOSURE PROPERTIES AND DECISION ALGORITHMS FOR CONTEXT-FREE LANGUAGES 217

in which M, and M, can be after reading a certain input string. It is a
straightforward induction argument to show that
((Q(hp()) ,’Ll], Z) '_ﬁ((ths) !:1:) ¥

with ¢, € F} and p; € Fy if and only if

(90, w,2) Fpy, (@r,2),
and
s (Po, ’LU) = Ps-

Therefore, a string is accepted by M if and only if it is accepted by M; and
My, that is, if it isin L(My)NL(M2)=LiNLy. m

The property addressed by this theorem is called closure under regular
intersection. Because of the result of the theorem, we say that the family
of context-free languages is closed under regular intersection. This closure
property is sometimes useful for simplifying arguments in connection with
specific languages.

oy
Wi

e
TN

\Exa

ity i \\\\\ Adt i

& Show that the language

L={a"h":n>0,n +# 100}

is context-free.

It is possible to prove this claim by constructing a pda or a context-free
grammar for the language, but the process is tedious. We can get a much
neater argument with Theorem &.5.

Let

Ly = {awobloo}'
Then, because L; is finite, it is regular. Also, it is easy to see that
L={a"b":n>0}NL;.

Therefore, by the closure of regular languages under complementation and
the closure of context-free languages under regular intersection, the desired
result follows.

.

218

Chapter 8 PRrOPERTIES OF CONTEXT-FREE LANGUAGES

Show that the language
L={we {a,b,c}" : ng (w) =np (w) = n, (w)}

is not context-free.

The pumping lemma can be used for this, but again we can get a much
shorter argument using closure under regular intersection. Suppose that L
were context-free. Then

LNL(a*b*c*) = {a™b"c" :n > 0}

would also be context-free. But we already know that this is not so. We
conclude that L is not context-free. -

Closure properties of languages play an important role in the theory
of formal languages and many more closure properties for context-free lan-
guages can be established. Some additional results are explored in the
exercises at the end of this section.

Some Decidable Properties of Context-Free Languages

By putting together Theorems 5.2 and 6.6, we have already established the
existence of a membership algorithm for context-free languages. This is of
course an essential feature of any language family useful in practice. Other
simple properties of context-free languages can also be determined. For the
purpose of this discussion, we assume that the language is described by its
grammar.

Given a context-free grammar G = (V, T, S, P), there exists an algorithm
for deciding whether or not L (G) is empty.

Proof: For simplicity, assume that A ¢ L (G). Slight changes have to be
made in the argument if this is not so. We use the algorithm for removing
useless symbols and productions. If S is found to be useless, then L (G) is
empty; if not, then L (G) contains at least one element. =

Given a context-free grammar G = (V, T, S, P), there exists an algorithm
for determining whether or not L (G) is infinite.

Proof: We assume that ¢ contains no A-productions, no unit-productions,
and no useless symbols. Suppose the grammar has a repeating variable in
the sense that there exists some A € V for which there is a derivation

A zAy.

8.2 CLOSURE PROPERTIES AND DECISION ALGORITHMS FOR (CONTEXT-FREE LANGUAGES 219

Since G is assumed to have no A-productions and no unit-productions, z
and y cannot be simultaneously empty. Since A is neither nullable nor a
useless symbol, we have

S uAv S w
and
AS 2z,
where, u, v, and z are in 7. But then
S 2 uAv = ua" Ay™v = ux" 2y

is possible for all n, so that L (G) is infinite.

If no variable can ever repeat, then the length of any derivation is
bounded by [V|. In that case, L (G) is finite,

Thus, to get an algorithm for determining whether L (G) is finite, we
need only to determine whether the grammar has some repeating variables.
This can be done simply by drawing a dependency graph for the variables
in such a way that therc is an edge (A, B) whenever there is a corresponding
production

A — zBy.

Then any variable that is at the base of a cycle is a repeating one. Consc-
quently, the grammar has a repeating variable if and only if the dependency
graph has a cycle.
Since we now have an algorithm for deciding whether a grammar has
a repeating variable, we have an algorithm for determining whether or not
L (@) is infinite. m
]

Somewhat surprisingly, other simple properties of context-free languages
are not so easily dealt with. As in Theorem 4.7, we might look for an algo-
rithm to determine whether two context-free grammars generate the same
language. But it turns out that there is no such algorithm. For the moment,
we do not have the technical machinery for properly defining the meaning
of “there is no algorithm,” but its intuitive meaning is clear. This is an
important point to which we will return later.

EXERCISES

1. Is the complement of the language in Example 8.8 context-free? &

2. Consider the language Ly in Theorem 8.4. Show that this language is lincar.

220 Chapter 8 PROPERTIES OF CONTEXT-FREE LANGUAGES

3. Bhow that the family of context-free languages is closed under homomor-
phism.

Show that the family of linear languages is closed under homomorphism.,

5. Show that the family of context-free languages is closed under reversal. @
Which of the language families we have discussed are not closed under rever-
sal?

7. Show that the family of context-free languages is not closed under difference

in general, but is closed under regular difference, that is, if L; is context-free
and Ly is regular, then L1 — L3 is context-free.

8. Show that the family of deterministic context-free languages is closed under
regular difference,

9. Show that the family of linear languages is closed under union, but not closed
under concatenation.

10. Show that the family of linear languages is not closed under intersection.

11. Show that the family of deterministic context-free languages is not closed
under union and intersection.

12. Give an example of a context-free language whose complermnent is not context-
free.

*13. Show that if L; is linear and Lo is regular, then L, Ly is a linear language.

14. Show that the family of unambiguous context-free languages is not closed
under union.

15. Show that the family of unambiguous context-free languages is not closed
under intersection.

16. Let L be a deterministic context-free language and define a new language
Ly = {w:awe Lae X} Is it necessarily true that L; is a deterministic
context-free language?

17, Show that the language L = {a™b™ : n > 0,n is not a multiple of 5} is context-
free.

18. Show that the following language is context-free.
L = {w € {a,b}" : no (w) = ny (w) ,w does not contain a substring aab}
19. Is the family of deterministic context-free languages closed under homomor-
phism?
20. Give the details of the inductive argument in Theorem 8.5.

21. Give an algorithm which, for any given context-free grammar G, can deter-
mine whether or not A € L(G). @

22. Show that there cxists an algorithm to determine whether the language gen-
crated by some context-free grammar contains any words of length less than
some given number n.

23. Let L) be a context-free language and Ls be regular. Show that there exists
an algorithm to determine whether or not L; and Ly have a. common element.

Turing
Machines

n the foregoing discussion, we have encountered some fundamental

ideas, in particular the concepts of regular and context-free lan-

guages and their association with finite automata and pushdown

accepters. Our study has revealed that the regular languages form
a proper subset of the context-free languages, and therefore, that push-
down automata are more powerful than finite automata. We also saw that
context-free languages, while fundamental to the study of programming
languages, are limited in scope. This was made clear in the last chapter,
where our results showed that some simple languages, such as {a™b"c"} and
{ww}, are not context-free. This prompts us to look beyond context-free
languages and investigate how one might define new language families that
include these examples. To do so, we return to the general picture of an
automaton. If we compare finite automata with pushdown automata, we
see that the nature of the temporary storage creates the difference between
them. If there is no storage, we have a finite automaton; if the storage is
a stack, we have the more powerful pushdown automaton. Extrapolating
from this observation, we can expect to discover even more powerful lan-
guage families if we give the automaton more flexible storage. For example,

221

222

Chapter 9 TURING MACHINES

what would happen if, in the general scheme of Figure 1.3, we used two
stacks, three stacks, a queue, or some other storage device? Does each stor-
age device define a new kind of automaton and through it a new language
family? This approach raises a large number of questions, most of which
turn out to be uninteresting. It is more instructive to ask a more ambi-
tious question and consider how far the concept of an automaton can be
pushed. What can we say about the most powerful of automata and the
limits of computation? This leads to the fundamental concept of a Turing
machine and, in turn, to a precise definition of the idea of a mechanical or
algorithmic computation.

We begin our study with a formal definition of a Turing machine, then
develop some feeling for what is involved by doing some simple programs.
Next we argue that, while the mechanism of a Turing machine is quite
rudimentary, the concept is broad enough to cover very complex processes.
The discussion culminates in the Turing thesis, which maintains that any
computational process, such as those carried out by present-day computers,
can be done on a Turing machine.

The Standard Turing Machine

Although we can envision a variety of automata with complex and sophis-
ticated storage devices, a Turing machine’s storage is actually quite simple.
It can be visualized as a single, one-dimensional array of cells, each of which
can hold a single symbol. This array extends indefinitely in both directions
and is thercfore capable of holding an unlimited amount of information.
The information can be read and changed in any order. We will call such
a storage device a tape because it is analogous to the magnetic tapes used
in actual computers.

Definition of a Turing Machine

A Turing machine is an automaton whose temporary storage is a tape. This
tape is divided into cells, each of which is capable of holding one symbol.
Associated with the tape is a read-write head that can travel right or left
on the tape and that can read and write a single symbol on each move. To
deviate slightly from the general scheme of Chapter 1, the automaton that
we use as a Turing machine will have neither an input file nor any special
output mechanism. Whatever input and output is necessary will be done on
the machine’s tape. We will see later that this modification of our general
model in Section 1.2 is of little consequence. We could retain the input file
and a specific output mechanism without affecting any of the conclusions we
arc about to draw, but we leave them out because the resulting automaton
is a little easier to describe,

9.1 THE STANDARD TURING MACHINE 223

Figurc 9.1

Control unit

A
7% Read-write head

‘ Tape

A diagram giving an intuitive visualization of a Turing machine is shown
in Figure 9.1. Definition 9.1 makes the notion precise.

Definition 9.1

A Turing machine M is defined by
M= (szvFv(SaquD’F)v

where

() is the set of internal states,

% is the input alphabet,

I is a finite set of symbols called the tape alphabet,
d is the transition function,

O €T is a special symbol called the blank,

go € @ is the initial state,

F C () is the set of final states.

In the definition of a Turing machine, we assume that £ € I'— {0}, that
is, that the input alphabet is a subset of the tape alphabet, not including the
blank. Blanks are ruled out as input for reasons that will become apparent
shortly. The transition function ¢ is defined as

§:QxT = QxT x{L,R}.

In general, § is a partial function on @ x T'; its interpretation gives the
principle by which a Turing machine operates. The arguments of § are
the current state of the control unit and the current tape symbol being
read. The result is a new state of the control unit, a new tape symbol,

224

Figure 9.2

The situation

(a) before the move
and (b) after the
move.

Chapter 9 TurING MACHINES

Unternal state ¢, Internal state ¢,
a b c d b c

@) ®)

which replaces the old one, and a move symbol, L or R. The move symbol
indicates whether the read-write head moves left or right one cell after the
new symbol has been written on the tape.

Figure 9.2 shows the situation before and after the move caused by the
transition

8 (go,a) = {(q1,d, R).

We can think of a Turing machine as a rather simple computer. It
has a processing unit, which has a finite memory, and in its tape, it has
a secondary storage of unlimited capacity. The instructions that such a
computer can carry out are very limited: it can sense a symbol on its tape
and use the result to decide what to do next. The only actions the machine
can perform are to rewrite the current symbol, to change the state of the
control, and to move the read-write head. This small instruction set may
seem inadequate for doing complicated things, but this is not so. Turing
machines are quite powerful in principle. The transition function § defines
how this computer acts, and we often call it the “program” of the machine.

As always, the automaton starts in the given initial state with some
information on the tape. It then goes through a sequence of steps controlled
by the transition function §. During this process, the contents of any cell on
the tape may be examined and changed many times. Eventually, the whole
process may terminate, which we achieve in a Turing machine by putting
it into a halt state. A Turing machine is said to halt whenever it reaches
a configuration for which § is not defined; this is possible because J is a
partial function. In fact, we will assume that no transitions are defined for
any final state, so the Turing machine will halt whenever it enters a final

state.
_m

9.1 THE STANDARD TURING MACHINE 225

Figure 9.3 % 90 9o 71
A sequence of

INOVves.

[[eleT [[efel |

Consider the Turing machine defined by

Q= {901},
¥ = {a,b},
['={a,b,0},
F={aq},

and

5((]0,(1) = (q())b, R),
5(q07b) = (qo:ba R))
5(q0’|:,) = (thsL) .

If this Turing machine is started in state go with the symbol a under the
read-write head, the applicable transition rule is & (go, @) = (go, b, R). There-
fore the read-write head will replace the a with a b, then move right on the
tape. The machine will remain in state go. Any subsequent a will also be re-
placed with a b, but b’s will not be modified. When the machine encounters
the first blank, it will move left one cell, then halt in final state q.
Figure 9.3 shows several stages of the process for a simple initial con-
figuration.
||

Take Q, T, T as defined in the previous example, but let F be empty. Define
é by

4 (g0, a) = (q1,a,R),
6 (g0, b) = (g1, b, R),
8 (go,0) = (q1,O0, R),
d(q1,a) = (0,0, L),
¢ (q1,) = (g0,0, L),
6(q1,0) = (g0, 0,).

e

‘ 226

Chapter @ TurING MACHINES

To see what happens here, we can trace a typical case. Suppose that the
tape initially contains ab..., with the read-write head on the a. The machine
then reads the a, but does not change it. Its next state is ¢; and the read-
write head moves right, so that it is now over the b. This symbol is also
read and left unchanged. The machine goes back into state g and the read-
write head moves left. We are now back exactly in the original state, and
the sequence of moves starts again. It is clear from this that the machine,
whatever the initial information on its tape, will run forever, with the read-
write head moving alternately right then left, but making no modifications
to the tape. This is an instance of a Turing machine that does not halt. As
an analogy with programming terminology, we say that the Turing machine
is in an infinite loop.

— ——

Since one can make several different definitions of a Turing machine, it
is worthwhile to summarize the main features of our model, which we will
call a standard Turing machine:

1. The Turing machine has a tape that is unbounded in both directions,
allowing any number of left and right moves.

2. The Turing machine is deterministic in the sense that § defines at most
one move for each configuration.

3. There is no special input file. We assume that at the initial time the
tape has some specified content. Some of this may be considered input.
Similarly, there is no special output device. Whenever the machine
halts, some or all of the contents of the tape may be viewed as output.

These conventions were chosen primarily for the convenience of subse-
quent discussion. In Chapter 10, we will look at other versions of Turing
machines and discuss their relation to our standard model.

To exhibit the configurations of a Turing machine, we use the idea of
an instantaneous description. Any configuration is completely determined
by the current state of the control unit, the contents of the tape, and the
position of the read-write head. We will use the notation in which

T14xs
or
@102 Qp—14OKGk41 " Qn

is the instantaneous description of a machine in state ¢ with the tape de-
picted in Figure 9.4. The symbols ay, ..., a, show the tape contents, while
g defines the state of the control unit. This convention is chosen so that

Figure 9.4

9.1 THE STANDARD TURING MACHINE 227

Internal state g

the position of the read-write head is over the cell containing the symbol
immediately following g.

The instantancous description gives only a finite amount of information
to the right and left of the read-write head. The unspecified part of the tape
is assumed to coutain all blanks; normally such blanks are irrelevant and
are not shown explicitly in the instantaneous description. If the position
of blanks is relevant to the discussion, however, the blank symbol may
appear in the instantaneous description. For example, the instantancous
description qCw indicates that the read-write head is on the cell to the
immediate left of the first symbol of w and that this cell contains a blank.

The pictures drawn in Figure 9.3 correspond to the sequence of instanta-
neous descriptions qpaa, bgpa, bbgod, bgr b.

A move from one configuration to another will be denoted by . Thus,
if

5((117(:) = (que9R) 3
then the move
abgqied b abeqad

is made whenever the internal statc is g1, the tape contains abed, and the

read-write head is on the ¢. The symbol I has the usual meaning of an
arbitrary number of moves. Subscripts, such as s, are used in arguments
to distinguish between several machines.

The action of the Turing machine in Figure 9.3 can be represented by
goaa - bgoa + bbgod - bg1b
or

Qoo |i bgqb.

228

Chapter 9 TuriNg MACHINES

For further discussion, it is convenient to summarize the various obser-
vations just made in a formal way.

Definition 9.2

Let M =(Q,%,T',6,q0,0, F) be a Turing machine. Then any string a; - - -
Ok 1010k Gk+1 " - Op, With a; € T'and ¢4 € @, 1s an instantaneous description
of M. A move

a1+ Qp—1q10kGk+1 " Oy T @y - ag_tbgoagy - ay,
is possible if and only if

6 (q1,ax) = (qz,b, R).

A move

Ay Qp—1q10x k41 On = a1 Qaagp—1bag1 - ay
is possible if and only if

5(Q19ak) = (Q2ab7 L) .

M is said to halt starting from some initial configuration x,qxs if

T1¢:%2 & y1q;092

for any ¢; and a, for which d (¢;, a) is undefined. The sequence of configu-
rations leading to a halt state will be called a computation.

Example 9.3 shows the possibility that a Turing machine will never halt,
proceeding in an endless loop from which it cannot escape. This situation
plays a fundamental role in the discussion of Turing machines, so we use a
special notation for it. We will represent it by

*

T1qTe oo,

indicating that, starting from the initial configuration z1qzs, the machine
never halts.

9.1 THE STANDARD TURING MACHINE 229

Turing Machines as Language Accepters

Turing machines can be viewed as accepters in the following sense. A string
w is written on the tape, with blanks filling out the unused portions. The
machine is started in the initial state gy with the read-write head positioned
on the leftmost symbol of w. If, after a sequence of moves, the Turing
machine enters a final state and halts, then w is considered to be accepted.

Definition 9.3

Let M = (Q,%,T,6,q),0,F) be a Turing machine. Then the language
accepted by M is

L(M)= {w e Xt qow F w1gpas for some gy € Fu1,22 € F*} .

This definition indicates that the input w is written on the tape with
blanks on either side. The reason for excluding blanks from the input now
becomes clear: it assures us that all the input is restricted to a well-defined
region of the tape, bracketed by blanks on the right and left. Without this
convention, the machine could not limit the region in which it must look for
the input; no matter how many blanks it saw, it could never be sure that
there was not some nonblank input somewhere else on the tape.

Definition 9.3 tells us what must happen when w € L(M). It says
nothing about the outcome for any other input. When w is not in L (M),
one of two things can happen: the machine can halt in a nonfinal state or
it can enter an infinite loop and never halt. Any string for which M does
not halt is by definition not in L (M).

For ¥ = {0,1}, design a Turing machine that accepts the language denoted
by the regular expression 00*.

This is an easy exercise in Turing machine programming. Starting at
the loft end of the input, we read each symbol and check that it is a 0. If it
is, we continue by moving right. If we reach a blank without encountering
anything but 0, we terminate and accept the string. If the input contains
a 1 anywhere, the string is not in L (00*), and we halt in a nonfinal state.
To keep track of the computation, two internal states Q@ = {go, 1} and one
final state F' = {q,} are sufficient. As transition function we can take

5 (Q(),O) = (q()vovR)a
4 (quD) = (quvR) .

230

Example 9.7 ;\f\j

Chapter @ TuriNG MACHINES

As long as a 0 appears under the read-write head, the head will move to the
right. If at any time a 1 is read, the machine will halt in the nonfinal state
qo, since 6 (go, 1) is undefined. Note that the Turing machine also halts in
a final state if started in state ¢o on a blank. We could interpret this as
acceptance of A, but for technical reasons the empty string is not included
in Definition 9.3.

||

The recognition of more complicated languages is more difficult. Since
Turing machines have a primitive instruction set, the computations that we
can program easily in a higher level language are often cumbersome on a
Turing machine. Still, it is possible, and the concept is easy to understand,
as the next examples illustrate.

For ¥ = {a, b}, design a Turing machine that accepts
L={a"":n>1}.

Intuitively, we solve the problem in the following fashion. Starting at the
leftmost a, we check it off by replacing it with some symbol, say x. We
then let the read-write head travel right to find the leftmost b, which in
turn is checked off by replacing it with another symbol, say y. After that,
we go left again to the leftmost a, replace it with an z, then move to the
leftmost & and replace it with 3, and so on. Traveling back and forth this
way, we match each a with a corresponding b. If after some time no a’s or
b’s remain, then the string must be in L,
Working out the details, we arrive at a complete solution for which

Q ={90,91,92,93,44},
F={q},

Y ={a,b},
I'={a,b,z,y,0}.

The transitions can be broken into several parts. The set

4 (q0,0) = (@1, 2, R),
o(q1,a) = (q1,0,R),
9(a1,%) = (q1,9,R),
d(q1,b) = (q2,9, L),

replaces the leftmost a with an x, then causes the read-write head to travel
right to the first b, replacing it with a y. When the y is written, the machine
enters a state gz, indicating that an o has been successfully paired with a b.

9.1 THE STANDARD TURING MACHINE 231

The next set of transitions reverses the direction until an z is encoun-
tered, repositions the read-write head over the leftmost a, and returns con-
trol to the initial state.

5(612,1/) = (q2:va)7
6(Q2aa) = (Q2, avL) »
5(q2’$) = (qovva) .

We are now back in the initial state qo, ready to deal with the next a and b.
After one pass through this part of the computation, the machine will
have carried out the partial computation

qoaa---abb-- bk xqoa---ayb--b,

50 that a single a has been matched with a single b. After two passes, we
will have completed the partial computation

goaa---abb---bF zzgyayy- b,

and so on, indicating that the matching process is being carried out properly.

When the input is a string a™b", the rewriting continues this way, stop-
ping only when there are no more a’s to be erased. When looking for the
leftmost a, the read-write head travels left with the machine in state go.
When an z is encountered, the direction is reversed to get the a. But now,
instead of finding an a it will find a y. To terminate, a final check is made to
see if all a’s and b’s have been replaced (to detect input where an a follows
a b). This can be done by

& (QO'I 3/) = (qi?n U, R) 3
§ (q37 y) = (qaa Y, R)]
] (q37 D) = (q41 Da R) -
If we input a string not in the language, the computation will halt in
a nonfinal state. For example, if we give the machine a string a™b™, with
n > m, the machine will eventually encounter a blank in state g;. It will
halt because no transition is specified for this case. Other input not in the
language will also lead to a nonfinal halting state (see Exercise 3 at the end
of this section).
The particular input aabb gives the following successive instantaneous
descriptions
aqaabb - xqiabb - Tag bb Tgzayb
F gozayb b zqoayb F xrgiyb
Fzzyqb b zrgayy - 2gawyy
- zzqoyy b xrygsy - zeygst)
F zzyyOgyOl.

232

Example 9.8

Chapter 9 TurRING MACHINES

At this point the Turing machine halts in a final state, so the string aabb is
accepted.

You are urged to trace this program with several more strings in L, as
well as with some not in L. -

Design a Turing machine that accepts
L=A{a"bt"c" :n > 1}.

The ideas used to Example 9.7 are easily carried over to this case. We match
each a, b, and ¢ by replacing them in order by =z, y, z, respectively. At the
end, we check that all original symbols have been rewritten. Although
conceptually a simple extension of the previous example, writing the actual
program is tedious. We leave it as a somewhat lengthy, but straightforward
exercise. Notice that even though {a™b™} is a context-free language and
{a™b"c"} is not, they can be accepted by Turing machines with very similar

structures.

One conclusion we can draw from this example is that a Turing machine
can recognize some languages that are not context-free, a first indication
that Turing machines are more powerful than pushdown automata.

Turing Machines as Transducers

We have had little reason so far to study transducers; in language theory,
accepters are quite adequate. But as we will shortly see, Turing machines
are not only interesting as language accepters, they provide us with a simple
abstract model for digital computers in general. Since the primary purpose
of a computer is to transform input into output, it acts as a transducer. If
we want to model computers using Turing machines, we have to look at this
aspect more closely.

The input for a computation will be all the nonblank symbols on the
tape at the initial time. At the conclusion of the computation, the output
will be whatever is then on the tape. Thus, we can view a Turing machine
transducer M as an implementation of a function f defined by

W= f(w),
provided that

qow '_M Qfﬁ}a

for some final state g;.

9.1 THE STANDARD TURING MACHINE 233

A function f with domain D is said to be Turing-computable or just
computable if there exists some Turing machine M = (Q,X,T, 6, 40,0, F)
such that

*
gow Far qp f (w), g5 € F,

for all w € D.

As we will shortly claim, all the common mathematical functions, no
matter how complicated, are Turing-computable. We start by looking at
some simple operations, such as addition and arithmetic comparison.

Example 9.9

Given two positive integers = and vy, design a Turing machine that computes
Tr+y.

We first have to choose some convention for representing positive inte-
gers. For simplicity, we will use unary notation in which any positive integer
x is represented by w () € {1}, such that

lw(z)| = .

We must also decide how & and y are placed on the tape initially and
how their sum is to appear at the end of the computation. We will assume
that w(x) and w(y) are on the tape in unary notation, separated by a
single 0, with the read-write head on the leftmost symbol of w(z). After
the computation, w (z +y) will be on the tape followed by a single 0, and
the read-write head will be positioned at the left end of the result. We
therefore want to design a Turing machine for performing the computation

qow (z) 0w (y) - grw (z +) 0,
where gy is a final state. Constructing a program for this is relatively simple.,
All we need to do is to move the separating 0 to the right end of w (y), so
that the addition amounts to nothing more than the coalescing of the two

234 Chapter 9 TurING MACHINES

strings. To achieve this, we construct M = (Q), %, T, d,q9, 0, F), with

Q= {QO:Q1,Q2,Q3,Q4}7

F={q},
6 (q0,1) = (90,1, R),
6(qo,0) = (¢1,1, R),
d(q1,1) = (a1,1, R),
4 (q1,0) = (g.0,L),
6 (g2,1) = (¢3,0,L),
(3) (CI%l,L),
4 (g3,0) = (@1, 0, R).

Note that in moving the 0 right we temporarily create an extra 1, a fact
that is remembered by putting the machine into state g;. The transition
0 (g2,1) = (g3,0, R) is needed to remove this at the end of the computation.
This can be seen from the sequence of instantaneous descriptions for adding
111 to 11:

111011 F 1gp11011 + 11go1011 + 111p011
F1111q,11 F 1111111 F 111111¢,0
F11111g51 F 1111510

F gs0111110 F g, 111110,

Unary notation, although cumbersome for practical computations, is very
convenient for programming Turing machines. The resulting programs are
much shorter and simpler than if we had used another representation, such
as binary or decimal. n

Adding numbers is one of the fundamental operations of any computer,
one that plays a part in the synthesis of more complicated instructions.
Other basic operations are copying strings and simple comparisons. These
can also be done easily on a Turing machine.

Design a Turing machine that copies strings of 1’s. More precisely, find a
machine that performs the computation

*

qow F grww,

for any w € {1}*.

9.1 THE STANDARD TURING MACHINE 235

To solve the problem, we implement the following intuitive process:
1. Replace every 1 by an z.
2. Find the rightmost x and replace it with 1.

3. Travel to the right end of the current nonblank region and create a 1
there,

4. Repeat Steps 2 and 3 until there are no more z’s.

A Turing machine version of this is

4 (qo,) (QU,’C R),
6 (g0, 1) = (q1,0, L),
6 (q1,2) = (g2, 1, R),
§(g2,1) = (¢2,1, R),
8(q2,0) = (q1,1,L),
d(q1,1) = (1,1, L),
6(q1,0) = (g3, 0, R),

where g3 is the only final state. This may be a little hard to see at first,
80 let us trace the program with the simple string 11. The computation
performed in this case is

gll bzl - zeql bt zqx
FxlgObk g1l grell
FlgallE 11gal F 111¢20
F11gi11 F 1y 111
Fq 1111 F (31111 F g51111.

Example .11 Let # and y be two positive integers represented in unary notation. Con-
struct a Turing machine that will halt in a final state ¢, if # > y, and that
will halt in a nonfinal state g, if z < y. More specifically, the machine is to
perform the computation

gow () 0w (y) l— gyw (z) 0w (y), ifzx >y,

qow () Ow (y) - anw (z) 0w (y), ife<y.

236

Chapter 9 TURING MACHINES

To solve this problem, we can use the idea in Example 9.7 with some
minor modifications. Instead of matching a’s and b’s, we match each 1 on
the left of the dividing 0 with the 1 on the right. At the end of the matching,
we will have on the tape either

ax-+-110zx - - - O

ar
zx - rxlze--- 21100,

depending on whether z > y or y > . In the first case, when we attempt to
match another 1, we encounter the blank at the right of the working space.
This can be used as a signal to enter the state g,. In the second case, we
still find a 1 on the right when all 1’s on the left have been replaced. We
use this to get into the other state ¢,. The complete program for this is
straightforward and is lefl as an exercisc.

This example makes the important point that a Turing machine can be
programmed to make decisions based on arithmetic comparisons. This kind
of simple decision is common in the machine language of computers, where
alternate instruction streams are entered, depending on the outcome of an
arithmetic operation. -

EXERCISES

** 1, Write a Turing machine simulator in some higher-level programming lan-

guage. Such a simulator should accept as input the description of any Turing
machine, together with an initial configuration, and should produce as output
the result of the computation.

2. Design a Turing machine with no more than three states that accepts the
language L (a(a + b)*). Assume that ¥ = {a,b}. Is it possible to do this
with a two-state machine? @

3. Determine what the ‘Turing machine in Example 9.7 does when presented
with the inputs aba and aaabbbb.

4. Is there any input for which the Turing machine in Example 9.7 goes into an
infinite loop?

9.1 THE STANDARD TURING MACHINE 237

5. What language is accepted by the machine M = ({qo0,q1,q2,493}, {a,b},
{0’7 b, D} ,8, g0, 0, {qa}) with

(g0, a) = (q1,a, R),
6 (qu,b) = (g2, b, R) ,
8 (@,b) = (q1,b, 1),
8 (¢1,0) = (3,0, R),
(q2,) (q2vva)7
d(g2,a) = (g3,0, R).

6. What happens in Example 9.10 if the string w contains any symbol other
than 17

7. Construct Turing machines that will accept the following languages on {a, b}.
(a) L =L (aba'b) @
(b) L={w: [u] is even} @
(c) L ={w:|w| is a multiple of 3}
(d) L={a"b":n>1,n#m}
) L ={w:na (W) =ns (w)}
f) L={a"b"a""™ :n>0,m > 1}
(g) L= {a™"a"b" :n >0}
(h) L={a"p"":n>1}

(e
(

For each problem, write out 4 in complete detail, then check your answers by
tracing several test examples.

8. Design a Turing machine that accepts the language
L={ww:we {a,b}*}.
9. Construct a Turing machine to compute the function

f (w) = w®,

where w € {0,1}7.

10. Design a Turing machine that finds the middle of a string of cven length.
Specifically, if w = a1a2...an@ns)...Q2,, With a; € ¥, the Turing machine
should produce W = a1az...ancy 4t ...G2,, Where c€ T' — 2.

11. Design Turing machines to compute the following functions for z and y pos-
itive integers represented in unary.

(a) f(z) =3

(b) flz,y) =z —uy, x>y
=0, r<y

238 Chapter 9 TURING MACHINES

(c) f(zy) =22+ 3y

(d) f(z) =%, if x is even
= mT'H, if x is odd

(¢) f(x) =z mod 5

(f) f(z) = | 5], where |$] denotes the largest integer less than or

equal to Z.
12. Design a Turing machine with I' = {0, 1,0} that, when started on any cell
containing a blank or a 1, will halt if and only if its tape has a 0 somewhere

onit. &
13. Write out a complete solution for Example 9.8.

14. Give the sequence of instantaneous descriptions that the Turing machine
in Example 9.10 goes through when presented with the input 111. What
happens when this machine is started with 110 on its tape?

15. Give convincing arguments that the Turing machine in Example 9.10 does in
fact carry out the indicated computation.

16. Complete all the details in Example 9.11.

17. Supposc that in Example 9.9 we had decided to represent z and y in binary.
Write a Turing machine program for doing the indicated computation in this
representation.

18. Sketch how Example 9.9 could be solved if and y were represented in deci-
mal.

19. You may have noticed that all the examples in this scction had only one final
state. Is it generally true that for any Turing machine, there exists another
one with only one final state that accepts the same language?

20. Definition 9.2 excludes the empty string from any language accepted by a
Turing machine. Modify the definition so that languages that contain A may
be accepted.

Combining Turing Machines for
Complicated Tasks

We have shown explicitly how some important operations found in all com-
puters can be done on a Turing machine. Since, in digital computers, such
primitive operations are the building blocks for more complex instructions,
let us see how these basic operations can also be put together on a Turing
machine. To demonstrate how Turing machines can be combined, we follow
a practice common in programming. We start with a high-level description,
then refine it successively until the program is in the actual language with
which we are working. We can describe Turing machines several ways at a
high level; block diagrams or pseudocode are the two approaches we will usc

Figure 9.5

9.2 COoMBINING TURING MACHINES FOR COMPLICATED TASKS 239

———>{ Adder |®*¥

—— 3 4
| C . e e L
x y | | |Comparer | Iy -
) | (9} s T 1 j(x,y)
! = ‘-‘ Eraser | 0
B

most frequently in subsequent discussions. In a block diagram, we encap-
sule computations in boxes whose function is described, but whose interior
details are not shown. By using such boxes, we implicitly claim that they
can actually be constructed. As a first example, we combine the machines
in Examples 9.9 and 9.11.

Example 9.12

Design a Turing machine that computes the function

f(-’l?,y):ﬂ?‘i"y, lf'szv
=0, ifr<y.

For the sake of discussion, assume that z and y are positive integers in
unary representation. The value zero will be represented by 0, with the rest
of the tape blank.

The computation of f (z,y) can be visualized at a high level by means of
the diagram in Figure 9.5. The diagram shows that we first use a comparing
machine, like that in Example 9.11, to determine whether or not x > y. If
so, the comparer sends a start signal to the adder, which then computes
z+y. If not, an erasing program is started that changes every 1 to a blank.

In subsequent discussions, we will often use such high-level, black-
diagram representations of Turing machines. It is certainly quicker and
clearer than the corresponding extensive set of §’s. Before we accept this
high-level view, we must justify it. What, for example is meant by saying
that the comparer sends a start signal to the adder? There is nothing in
Definition 9.1 that offers that possibility. Nevertheless, it can be done in a
straightforward way.

The program for the comparer ' is written as suggested in Example
9.11, using a Turing machine having states indexed with C. For the adder,
we use the idea in Example 9.9, with states indexed with A. For the eraser
E, we construct a Turing machine having states indexed with E. The
computations to be done by C are

goow () 0w (y) F g4 0w (z) 0w (y), ifz >y,

and

geow (%) 0w (y) b gpow (z) 0w (y), ifo<y.

240

Example 9.13

Chapter 9 TurING MACHINES

If we take ga0 and ggp as the initial states of A and E, respectively, we
see that C starts either A or E.
The computations performed by the adder will be

qaow (z) 0w (y) - ga, 5w (z +y) 0,

and that of the eraser E will be

*
geow (z) 0w (y) F ¢z, 50.

The result is a single Turing machine that combines the action of C, A, and
E as indicated in Figure 9.5.
|

Another useful, high-level view of Turing machines is one involving pseu-
docode. In computer programming, pseudocode is a way of outlining a com-
putation using descriptive phrases whose meaning we claim to understand.
While this description is not usable on the computer, we assume that we
can translate it into the appropriate language when needed. Ome simple
kind of pseudocode is exemplified by the idea of a macroinstruction, which
is a single-statement shorthand for a sequence of lower level statements.
We first define the macroinstruction in terms of the lower level language.
We then use the macroinstruction in a program with the assumption that
the relevant low-level code is substituted for each occurrence of the macro-
instruction. This idea is very useful in Turing machine programming.

Consider the macroinstruction
if a then g¢; else g,

with the following interpretation. If the Turing machine reads an a, then
regardless of its current state, it is to go into state g; without changing the
tape content or moving the read-write head. If the symbol read is not an
a, the machine is to go into state g without changing anything,

To implement this macroinstruction requires several relatively obvious
steps of a Turing machine.

g;0, 0, R) for all ¢; € Q,

qro, b, R) forallg; e Qand all be T — {a},
gj,¢ L) forallceT,

gr, ¢, L) forallceT.

—~ e~ &
£
=]
Ty
N N D
Il
~

The states gjo and gro are new states, introduced to take care of complica-
tions arising from the fact that in a standard Turing machine the read-write

Figure 9.6

9.2 CoOMBINING TURING MACIHINES FOR COMPLICATED TASKS 241

head changes position in each move. In the macroinstruction, we want to
change the state, but leave the read-writc head where it is. We let the head
move right, but put the machine into a state g;o or ggo. This indicates that
a left move must be made before entering the desired state g; or gs.

_u

Going a step further, we can replace macroinstructions with subpro-
grams. Normally, a macroinstruction is replaced by actual code at each
occurrence, whereas a subprogram is a single piece of code that is invoked
repeatedly whenever needed. Subprograms are fundamental to high-level
programiing languages, but they can also be used with Turing machines.
To make this plausible, let us outline briefly how a Turing machine can be
used as a subprogram that can be invoked repeatedly by another Turing
machine. This requires a new feature: the ability to store information on
the calling program’s configuration so the configuration can be recreated
on return from the subprogram. For example, say machine A in state ¢,
invokes machine B. When B is finished, we would like to resume program
A in state ¢;, with the read-write head (which may have moved during B’s
operation) in its original place. At other times, A may call B from state
g5, in which case control should return to this state. To solve the control
transfer problem, we must be able to pass information from A to B and vice
versa, be able to recreate A’s configuration when it recovers control from
B, and to assure that the temporarily suspended computations of A are not
affected by the execution of B. To solve this, we can divide the tape into
several regions ag shown in Figure 9.6.

Before A calls B, it writes the information needed by B (e.g., A’s current
state, the arguments for B) on the tape in some region T. A then passes
control to B by making a transition to the start state of B. After transfer,
B will use T to find its input. The workspace for B is separate from T and
from the workspace for A, so no interference can occur. When B is finished,
it will return relevant results to region 7', where A will expect to find it.
In this way, the two programs can interact in the required fashion. Note
that this is very similar to what actually happens in a real computer when
a subprogram is called.

Region separator

Workspace for 4 T Workspace for B

-

242

Figure 9.7

Example 9.14

Chapter 9 TURING MACHINES

1111 @l = = lI:|1|110'111

X Xy y X

We can now program Turing machines in pseudocode, provided that we
know (in theory at least) how to translate this pseudocode into an actual
Turing machine program.

Design a Turing machine that multiplies two positive integers in unary no-
tation.

A multiplication machine can be constructed by combining the ideas
we encountered in adding and copying. Let us assurne that the initial and
final tape contents are to be as indicated in Figure 9.7. The process of mul-
tiplication can then be visualized as a repeated copying of the multiplicand
y for each 1 in the multiplier z, whereby the string y is added the appro-
priate number of times to the partially computed product. The following
pseudocode shows the main steps of the process.

1. Repeat the following steps until z contains no more 1’s.
Find a 1 in z and replace it with another symbol a.
Replace the leftmost 0 by Oy.

2. Replace all a’s with 1’s.
Although this pseudocode is sketchy, the idea is simple enough that

‘there should be no doubt that it can be done.

In spite of the descriptive nature of these examples, it is not too far-
fetched to conjecture that Turing machines, while rather primitive in prin-
ciple, can be combined in many ways to make them quite powerful. Our
examples were not general and detailed enough for us to claim that we
have proved anything, but it should be plausible at this point that Turing
machines can do some quite complicated things.

EXERCISES

1. Write out the complete solution to Example 9.14.

9.2 CoMBINING TURING MACHINES FOR COMPLICATED TASKS 243

2. Establish a convention for representing positive and negative integers in unary
notation. With your convention, sketch the construction of a subtracter for
computing z — y.

3. Using adders, subtracters, comparers, copiers, or multipliers, draw block di-
agrams for Turing machines that compute the functions

(a) f(n) =n(n+1),

(b) f(n) =n?,
(c) f(n)=2",
(d) f(n)=nl,
(€) f(n)=n",

for all positive integers n.
4. Use a block diagram to sketch the implementation of a function f defined for
all wy, we, wy € {1}T by
.f ('LU‘[,'Z.U2, 'LU3) = 7:,
where i is such that Jw;| = max(|w:]|, |ws|, |ws]) if no two w have the same
length, and ¢ = 0 otherwise.

5. Provide a “high-level” description for Turing machines that accept the fol-
lowing languages on {a,b}. For each problem, define a set of appropriate
macroinstructions that you feel are reasonably easy to implement. Then use
them for the solution.

(a) L= {wwh}

(b) L = {wiws : w1 # wy : |w1| = |wel}

(¢) The complement of the language in part (a) #)
(d) L= {a"™:m=nn> 1}
(e) L ={a" : n is a prime number}
6. Suggest a method for representing rational numbers on a Turing machine,

then sketch a method for adding and subtracting such numbers.

7. Sketch the construction of a Turing machine that can perform the addition
and multiplication of positive integers and y given in the usual decimal
notation.

. Give an implementation of the macroinstruction
searchright (a, ¢;, ¢;) ,

which indicates that the machine is to search its tape to the right of the
current position for the first occurrence of the symbol a. If an a is encountered
before a blank, the machine is to go into state g;, otherwise it is to go into
state g;. #0

244

Chapter 9 TURING MACHINES

9. Use the macroinstruction in the previous exercise to design a Turing machine
on ¥ = {a, b} that accepts the language L (ab™ab™a).

10. Use the macroinstruction searchright in Exercise 8 to create a Turing machine
program that replaces the symbol immediately to the left of the leftmost a by
a blank. If the input contains no a, replace the rightmost nonblank symbol
by a b.

3: Turing’s Thesis

The preceding discussion not only shown how a Turing machine can be con-
structed from simpler parts, but also illustrates a negative aspect of working
with such low-level automata. While it takes very little imagination or in-
genuity to translate a block diagram or pseudocode into the corresponding
Turing machine program, actually doing it is time consuming, error prone,
and adds little to our understanding. The instruction set of a Turing ma-
chine is so restricted that any argument, solution, or proof for a nontrivial
problem is quite tedious.

We now face a dilemma: we want to claim that Turing machines can
perform not only the simple operations for which we have provided explicit
programs, but more complex processes as well, describable by block dia-
grams or pseudocode. To defend such claims against challenge, we should
show the relevant programs explicitly. But doing so is unpleasant and dis-
tracting, and ought to be avoided if possible. Somehow, we would like to find
a way of carrying out a reasonably rigorous discussion of Turing machines
without having to write lengthy, low-level code. There is unfortunately no
completely satisfactory way of getting out of the predicament; the best we
can do is to reach a reasonable compromise. 'To see how we might achieve
such a compromise, we turn to a somewhat philosophical issue.

We can draw some simple conclusions from the examples in the previous
section. The first is that Turing machines appear to be more powerful than
pushdown automata (for a comment on this, sec Exercise 2 at the end of
this section). In Example 9.8, we sketched the construction of a Turing ma-
chine for a language which is not context-free and for which, consequently,
no pushdown automaton exists. Examples 9.9, 9.10, and 9.11 show that
Turing machines can do some simple arithmetic operations, perform string
manipulations, and make some simple comparisons. The discussion also il-
lustrates how primitive operations can be combined to solve more complex
problems, how several Turing machines can be composed, and how one pro-
gram can act as a subprogram for another. Since very complex operations
can be built this way, we might suspect that a Turing machine beging to
approach a typical computer in power,

Suppose we were to make the conjecture that, in some sensc, Turing
machines are equal in power to a typical digital computer? How could we

9.3 TURING’S THESIS 245

defend or refute such a hypothesis? To defend it, we could take a sequence of
increasingly more difficult problems and show how they are solved by some
Turing machine. We might also take the machine language instruction set
of a specific computer and design a Turing machine that can perform all
the instructions in the set. This would undoubtedly tax our patience, but
it ought to be possible in principle if our hypothesis is correct. Still, while
every success in this direction would strengthen our conviction of the truth
of the hypothesis, it would not lead to a proof. The difficulty lies in the fact
that we don’t know exactly what is meant by “a typical digital computer”
and that we have no means for making a precise definition.

We can also approach the problem from the other side. We might try
to find some procedure for which we can write a computer program, but for
which we can show that no Turing machine can exist. If this were possible,
we would have a basis for rejecting the hypothesis. But no one has yet been
able to produce a counterexample; the fact that all such tries have been
unsuccessful must be taken as circumstantial evidence that it cannot be
done. Every indication is that Turing machines are in principle as powerful
as any computer.

Arguments of this type led A. M. Turing and others in the mid-1930’s to
the celebrated conjecture called the Turing thesis. This hypothesis states
that any computation that can be carried out by mechanical means can be
performed by some Turing machine.

This is a sweeping statement, so it is important to keep in mind what
Turing’s thesis is. It is not something that can be proved. To do so, we would
have to define precisely the term “mechanical means.” This would require
some other abstract model and leave us no further ahead than before. The
Turing thesis is morce properly viewed as a definition of what constitutes a
mechanical computation: a computation is mechanical if and only if it can
be performed by some Turing machine.

If we take this attitude and regard the Turing thesis simply as a defini-
tion, we raise the question as to whether this definition is sufficiently broad.
Is it far-reaching enough to cover everything we now do (and conceivably
might do in the future) with computers? An unequivocal “yes” is not pos-
sible, but the evidence in its favor is very strong. Some arguments for
accepting the Turing thesis as the definition of a mechanical computation
are

1. Anything that can be done on any existing digital computer can also
be done by a Turing machine.

2. No one has yet been able to suggest a problem, solvable by what we
intuitively consider an algorithm, for which a Turing machine program
cannot be written.

3. Alternative models have been proposed for mechanical computation,
but none of them are more powerful than the Turing machine model.

246

Chapter ¢ TuriNG MACHINES

These arguments are circumstantial, and Turing’s thesis cannot be
proved by them. In spite of its plausibility, Turing’s thesis is still an as-
sumption. But viewing Turing’s thesis simply as an arbitrary definition
misses an important point. In some sense, Turing’s thesis plays the same
role in computer science as do the basis laws of physics and chemistry.
Classical physics, for example, is based largely on Newton’s laws of motion.
Although we call them laws, they do not have logical necessity; rather, they
are plausible models that explain much of the physical world. We accept
them because the conclusions we draw from them agree with our experience
and our observations. Such laws cannot be proved to be true, although they
can possibly be invalidated. If an experimental result contradicts a conclu-
sion based on the laws, we might begin to question their validity. On the
other hand, repeated failurc to invalidate a law strengthens our confidence
in it. This is the situation for Turing’s thesis, so we have some reason for
considering it a basic law of computer science. The conclusions we draw
from it agree with what we know about real computers, and so far, all
attempts to invalidate it have failed. There is always the possibility that
someone will come up with another definition that will account for some
subtle situations not covered by Turing machines but which still fall within
the range of our intuitive notion of mechanical computation. In such an
eventuality, some of our subsequent discussions would have to be modified
significantly. However, the likelihood of this happening seems to be very
small.

Having accepted Turing’s thesis, we are in a position to give a precise
definition of an algorithm,

.
Definition
R A A R L

An algorithm for a function f : D — R is a Turing machine M, which given
as input any d € D on its tape, eventually halts with the correct answer
f (d) € R on its tape. Specifically, we can require that

qd Far g5 f (d) ,q5 € F,

forall d € D.

Identifying an algorithm with a Turing machine program allows us to
prove rigorously such claims as “there exists an algorithm . . .7 or “there
is no algorithm. . . .” However, to construct explicitly an algorithm for
even relatively simple problems is a very lengthy undertaking., To avoid
such unpleasant prospects, we can appeal to Turing’s thesis and claim that
anything we can do on any computer can also be done on a Turing machine.

9.3 TuriNg’s THESIS 247

Consequently, we could substitute “Pascal program” for “Turing machine”
in Definition 9.5. This would ease the burden of exhibiting algorithms con-
siderably. Actually, as we have already done, we will go one step further
and accept verbal descriptions or block diagrams as algorithms on the as-
sumption that we could write a Turing machine program for them if we were
challenged to do so. This greatly simplifies the discussion, but it obviously
leaves us open to criticism. While “Pascal program” is well defined, “clear
verbal description” is not, and we are in danger of claiming the existence
of nonexistent algorithms. But this danger is more than offset by the fact
that we can keep the discussion simple and intuitively clear, and that we
can give concise descriptions for some rather complex processes. The reader
who has any doubt of the validity of these claims can dispel them by writing
a suitable program in some programming language.

EXERCISES

*% 1. Consider the set of machine language instructions for a computer of your
choice. Sketch how the various instructions in this set could be carried out
by a Turing machine.

2. In the above discussion, we stated at one point that Turing machines appear
to be more powerful than pushdown automata. Since the tape of a Turing
machine can always be made to behave like a stack, it would seem that we
can actually claim that a Turing machine is more powerful. What important
factor is not taken into account in this argument?

% 3. There are a number of enjoyable articles on Turing machines in the popular
literature. A good one is a paper in Scientific American, May 1984, by J.
E. Hopcroft, titled “Turing Machines.” This paper talks about the ideas we
have introduced here and also gives some of the historical context in which
the work of Turing and others was done. Get a copy of this article and read
it, then write a brief review of it.

Other Models of
Turing Machines

| ur definition of a standard Turing machine is not the only possible
one; there are alternative definitions that could serve equally well.
The conclusions we can draw about the power of a Turing machine
are largely independent of the specific structure chosen for it. In
this chapter we look at several variations, showing that the standard Turing
machine is equivalent, in a sense we will define, to other, more complicated
models.

If we accept Turing’s thesis, we expect that complicating the standard
Turing machine by giving it a more complex storage device will not have
any effect on the power of the automaton. Any computation that can be
performed on such a new arrangement will still fall under the category
of a mechanical computation and, therefore, can be done by a standard
model. It is nevertheless instructive to study more complex models, if for
no other reason than that an explicit demonstration of the expected result
will demonstrate the power of the Turing machine and thereby increase
our confidence in Turing’s thesis. Many variations on the basic model of
Definition 9.1 are possible. For example, we can consider Turing machines
with more than one tape or with tapes that extend in several dimensions.

249

250

Chapter 10 Oruer MODELS OF TURING MACHINES

We will consider variants that will be useful in subscquent discussions.

We also look at nondeterministic Turing machines and show that they
are no more powerful than deterministic ones. This is unexpected, since
Turing’s thesis covers only mechanical computations and does not address
the clever guessing implicit in nondeterminism. Another issue that is not
immediately resolved by Turing’s thesis is that of one machine executing
different programs at different times. This leads to the idea of a “repro-
grammable” or “universal” Turing machine.

Finally, in preparation for later chapters, we look at linear bounded
automata. These are Turing machines that have an infinite tape, but that
can make use of the tape only in a restricted way.

Minor Variations on the Turing
Machine Theme

We first consider some relatively minor changes in Definition 9.1 and inves-
tigate whether these changes make any difference in the general concept.
Whenever we change a definition, we introduce a new type of automata and
raise the question whether these new automata are in any real sense different
from those we have already encountered. What do we mean by an cssential
difference between one class of automata and another? Although there may
be clear differences in their definitions, these differences may not have any
interesting consequences. We have seen an example of this in the case of
deterministic and nondeterministic finite automata. These have quite dif-
ferent definitions, but they are equivalent in the sense that they both are
identified exactly with the family of regular languages. Extrapolating from
this, we can define equivalence or nonequivalence for classes of automata in
general.

Equivalence of Classes of Automata

Whenever we define equivalence for two automata or classes of automata,
we must carefully state what is to be understood by this equivalence. For
the rest of this chapter, we follow the precedence established for nfa’s and
dfa’s and define equivalence with respect to the ability to accept languages.

\ N \\\ el
iDefinition: 103
\\\ A i A \W T

Two automata are equivalent if they accept the same language. Consider
two classes of automata C; and Cy. If for every automaton M; in Cy there

10.1 MINOR VARIATIONS ON THK TURING MACHINE THEME 251

is an automaton My in (s such that
L (M) =L (M),

we say that Cs is at least as powerful as C;. If the converse also holds and
for every Mj in Cy there is an My in Cy such that L (M;) = L (M,), we say
that C) and C3 are equivalent.

There are many ways to establish the equivalence of automata. The
construction of Theorem 2.2 does this for dfa’s and nfa’s. For demonstrating
the equivalence in connection with Turing’s machines, we often use the
important technique of simulation. .

Let M be an automaton. We say that another automaton M can sim-
ulate a computation of M, if M can mimic the computation of M in the
following manner. Let dy,ds, ... be the sequence of instantaneous descrip-
tions of the computation of M, that is

do bpady Fag oo by, e

Then M simulates this computation if it carries out a computation analo-
gous to that of M,

- ¥ o~ ~

do"ﬁdl l_:;\'j'“'lif\;fdn”‘a

where [i;,«fh ... are instantaneous descriptions, such that each of them is
associated with a unique configuration of M. In other words, if we know
the computation carried out by M, we can determine from it exactly what
computations M would have done, given the corresponding starting config-
uration.

Note that the simulation of a single move d; I~,,d; 1 of M may involve

several moves of M. The intermediate configurations in d Fa c‘i;-_,_l may not
correspond to any configuration of M, but this does not affect anything if we
can tell which configurations of M are relevant. As long as we can determine
from the computation of M what M would have done, the simulation is
proper. If M can simulate every computation of M, we say that M can
simulate M. It should be clear that if M can simulate M, then matters
can be arranged so that M and M accept the same language, and the two
automata are equivalent. To demonstrate the equivalence of two classes of
automata, we show that for cvery machine in one class, there is a machine
in the second class capable of simulating it.

Turing Machines with a Stay-Option

In our definition of a standard Turing machine, the read-write head must
move either to the right or to the left. Sometimes it is convenient to provide

-

252

Theorem 10.1

Chapter 10 OrHER MODELS OF TURING MACHINES

a third option, to have the read-write head stay in place after rewriting the
cell content. Thus, we can define a Turing machine with stay-option by
replacing & in Definition 9.1 by

§:QxTI—>QxIx{L,R,S}

with the interpretation that § signifies no movement of the read-write head.
This option does not extend the power of the automaton.

The class of Turing machines with stay-option is equivalent to the class of
standard Turing machines.

Proof: Since a Turing machine with stay-option is clearly an extension of
the standard model, it is obvious that any standard Turing machine can be

simulated by one with a stay-option.
To show the converse, let M = (Q,%,T,9,¢,0, F) be a Turing ma-

chine with stay-option to be simulated by a standard Turing machine M =
(@, 2 1,8,q0,0F) For each move of M, the simulating machine M does

the following. If the move of M does not involve the stay-option, the sim-
ulating machine performs one move, essentially identical to the move to be
simulated. If § is involved in the move of M, then M will make two moves:
the first rewrites the symbol and moves the read-write head right; the sec-
ond moves the read-write head left, leaving the tape contents unaltered.
The simulating machine can be constructed by M by defining 4 as follows:
For each transition

8 (gi,a) = (g;,b,L or RR),
we put into 5
3(211-,@) = (g;,b,L or R).
For cach S-transition
5 (gi,a) = (g;,b,9),

we put into § the corresponding transitions

d (Gira) = (Gjs. b R)
and
Zl)‘:-(Ei)t‘u‘?cl) = ((7]7 & L) ?

forallceT.
It is reasonably obvious that every computation of M has a correspond-
ing computation of M, so that M can simulate M. m

Figure 10.1

10.1 MINOR VARIATIONS ON THE TURING MACHINE THEME 253

¥
e s T o Nl Wy — B Track 1
) P || SR S 2 T R R _Track2
— L Track 3

Simulation is a standard technique for showing the equivalence of au-
tomata, and the formalism we have described makes it possible, as shown in
the above theorem, to talk about the process precisely and prove theorcms
about equivalence. In our subsequent discussion, we use the notion of simu-
lation frequently, but we generally make no attempt to describe everything
in a rigorous and detailed way. Complete simulations with Turing machines
are often cumbersome. To avoid this, we keep our discussion descriptive,
rather than in theorem-proof form. The simulations are given only in broad
outline, but it should not be hard to see how they can be made rigorous.
The reader will find it instructive to sketch each simmlation in some higher
level language or in pseudocode.

Before introducing other models, we make one remark on the standard
Turing machine. It is implicit in Definition 9.1 that each tape symbol can
be & composite of characters rather than just a single one. This can be
made more explicit by drawing an expanded version of Figure 9.1 (Figure
10.1), in which the tape symbols are triplets from some simpler alphabet.

In the picture, we have divided each cell of the tape into three parts,
called tracks, each containing one member of the triplet. Based on this
visualization, such an automaton is sometimes called a Turing machine with
multiple tracks, but such a view in no way extends Definition 9.1, since
all we need to do is make I' an alphabet in which each symbol is composed
of several parts.

However, other Turing machine models involve a change of definition, so
the equivalence with the standard machine has to be demonstrated. Here
we look at two such models, which are sometimes used as the standard
definition. Some variants that are less common are explored in the exercises
at the end of this section.

Turing Machines with Semi-Infinite Tape

Many authors do not consider the model in Figure 9.1 as standard, but use
one with a tape that is unbounded only in one direction. We can visualize
this as a tape that has a left boundary (Figure 10.2). This Turing machine
is otherwise identical to our standard model, except that no left move is
permitted when the read-write head is at the boundary.

It is not difficult to see that this restriction does not affect the power
of the machine. To simulate a standard Turing machine M by a machine
M with a semi-infinite tape, we use the arrangement shown in Figure 10.3.

254

Figure 10.2

Figure 10.3

Figure 10.4
(a) Machine to
be simulated.
(b) Simulating
machine.

Chapter 10 OTHER MODELS OF TURING MACHINES

Track 1 for right part of
standard tape

Track 2 for left part of
standard tape

The simulating machine M has a tape with two tracks. On the upper
one, we keep the information to the right of some reference point on M’s
tape. The reference point could be, for example, the position of the read-
write head at the start of the computation. The lower track contains the
left part of M’s tape in reverse order. M is programmed so that it will use
information on the upper track only as long as M’s read-write head is to the
right of the reference point, and work on the lower track as M moves into the
left part of its tape. The distinction can be made by partitioning the state
set of M into two parts, say Qu and @Qr: the first to be used when working
on the upper track, the second to be used on the lower one. Special end
markers # are put on the left boundary of the tape to facilitate switching
from one track to the other. For example, assume that the machine to be
simulated and the simulating machine are in the respective configurations
shown in Figure 10.4 and that the move to be simulated is generated by

5(%'!&) = (Q.’ivcv L) .

The simulating machine will first move via the transition

6 (@i, (a,)) = (g, (c,b), L),

where §; € Qu. Because §; belongs to Qp, only information in the upper
track is considered at this point. Now, the simulating machine sees (#, #)

Reference point

L

(a) (b)

Figure 10.5
Sequence of
configurations
in simulating
d (Qi, a) =

(Qiy ¢, L) .

Figure 10.6

10.1 MINOR VARIATIONS ON THH TURING MACHINE THEME 255

in state g5 € Qu. It next uses a transition

8 (@, (#.#) = @, #,#) R)

with p; € Qy,, putting it into the configuration shown in Figure 10.5. Now
the machine is in a state from @, and will work on the lower track. Further
details of the simulation are straightforward.

The Off-Line Turing Machine

The general definition of an automaton in Chapter 1 contained an input
file as well as temporary storage. In Definition 9.1 we discarded the input
file for reasons of simplicity, claiming that this made no difference to the
Turing machine concept. We now expand on this claim.

If we put the input file back into the picture, we get what is known as
an off-line Turing machine. In such a machine, each move is governed
by the internal state, what is currently read from the input file, and what
is seen by the read-write head. A schematic representation of an off-line
machine is shown in Figure 10.6, A formal definition of an off-line Turing
machine is easily made, but we will leave this as an exercise. What we

a | & | ¢ ‘ 4 | Read-only input file

‘ Control unit

‘ e ! g | Tape

256

Figure 10.7

Chapter 10 OTHER MODELS OF TURING MACHINES

Control unit
of M

N E-N RN
by

want to do briefly is to indicate why the class of off-line Turing machines is
equivalent to the class of standard machines.

First, the behavior of any standard Turing machine can be simulated by
some off-line model. All that needs to be done by the simulating machine
is to copy the input from the input file to the tape. Then it can proceed in
the same way as the standard machine. .

The simulation of an off-line machine M by a standard machine M
requires a lengthier description. A standard machine can simulate the com-
putation of an off-line machine by using the four-track arrangement shown
in Figure 10.7. In that picture, the tape contents shown represent the spe-
cific configuration of Figure 10.6. Each of the four tracks of M plays a
specific role in the simulation. The first track has the input, the second
marks the position at which the input is read, the third represents the tape
of M, and the fourth shows the position of M’s read-write head. .

The simulation of each move of M requires a number of moves of M.
Starting from some standard position, say the left end, and with the relevant
information marked by special end markers, M secarches track 2 to locate
the position at which the input file of M is read. The symbol found in the
corresponding cell on track 1 is remembered by putting the control unit of
M into a state chosen for this purpose. Next, track 4 is searched for the
position of the read-write head of M. With the remembered input and the
symbol on track 3, we now know that M is to do. This information is again
remembered by M with an appropriate internal state. Next, all four tracks
of Ms tape are modified to reflect the move of M. Finally, the read-write
head of M returns to the standard position for the simulation of the next
move.

EXERCISES

1. Give a formal definition of a Turing machine with a semi-infinite tape. Then

[~

10.

11.

10,1 MINOR VARIATIONS ON THE TURING MACHINE THEME 257

prove that the class of Turing machines with semi-infinite tape is equivalent
to the class of standard Turing machines.

Give a formal definition of an off-line Turing machine.

Give convincing arguments that any language accepted by an off-line Turing
machine is also accepted by some standard machine.

Consider a Turing machine that, on any particular move, can either change
the tape symbol or move the read-write head, but not both.

(a) Give a formal definition of such a machine.

(b) Show that the class of such machines is equivalent to the class of
standard Turing machines. &

Consider a model of a Turing machine in which each move permits the read-
write head to travel more than one cell to the left or right, the distance and
direction of travel being one of the arguments of §. Give a precise definition
of such an automaton and sketch a simulation of it by a standard Turing
machine.

A nonerasing Turing machine is one that cannot change a nonblank symbol
to a blank. This can be achieved by the restriction that if

5(q’i)a) = (Qj,D,L or R)a

then @ must be 0. Show that no generality is lost by making such a restriction.

Consider a Turing machine that cannot write blanks; that is, for all § (g:, a) =
(¢;,b, L or R), b must be in I' — {{1}. Show how such a machine can simulate
a standard Turing machine.

Suppose we make the requirement that a Turing machine can halt only in
a final state, that is, we ask that & (g,a) be defined for all pairs (g,a) with
a el and q ¢ F. Does this restrict the power of the Turing machine?

Suppose we make the restriction that a Turing machine must always write a
symbol different from the one it reads, that is, if

§(qi,a) = (gj,b,L or R},

then a and b must be different. Does this limitation reduce the power of the
automaton? @&

Consider a version of the standard Turing machine in which transitions can
depend not only on the cell directly under the read-write head, but also on
the cells to the immediate right and left. Make a formal definition of such a
machine, then sketch its simulation by a standard Turing machine.

Consider a Turing machine with a different decision process in which transi-
tions are made if the current tape symbol is not one of a specified set. For
example '

5 (q‘iv {a! b}) = (qja c, R)

258

Figure 10.8

Chapter 10 OTHER MODELS OF TURING MACHINES

will allow the indicated move if the current tape symbol is neither a nor b.

Formalize this concept and show that this modification is equivalent to a
standard Turing machine. #

Turing Machines with More
Complex Storage

The storage device of a standard Turing machine is so simple that one might
think it possible to gain power by using more complicated storage devices.
But this is not the case as we now illustrate with two examples.

Multitape Turing Machines

A multitape Turing machine is a Turing machine with several tapes, each
with its own independently controlled read-write head (Figure 10.8).

The formal definition of a multitape Turing machine goes beyond Def-
inition 9.1, since it requires a modified transition function. Typically, we
define an n-tape machine by M = (Q,X,T',4, go,0, F), where Q, %, T, qo, F
are as in Definition 9.1, but where

§:QxI" - Q@QxTI"x{L R}"

specifies what happens on all the tapes. For example, if n = 2, with a
current configuration shown in Figure 10.8, then

Y (Q(),Cl, e) = ((Ilv :c,y,L,R)

is interpreted as follows. The transition rule can be applied only if the
machine is in state go and the first read-write head sees an a and the second
an e. The symbol on the first tape will then be replaced with an z and
its read-write head will move to the left. At the same time, the symbol on

Figure 10.9

Figure 10.10

10.2 TURING MACHINES WITH MORE COMPLEX STORAGE 259

4
—— I |
1 W
|
x | b ¢ (4 |y | f ‘)
Tapc]n Tape 2

the sccond tape is rewritten as y and the read-write head moves right. The
control unit then changes its state to q; and the machine goes into the new
configuration shown in Figure 10.9.

To show the equivalence between multitape and standard Turing ma-
chines, we argue that any given multitape Turing machine M can be simu-
lated by a standard Turing machine M and, conversely, that any standard
Turing machine can be simulated by a multitape one. The second part of
this claim needs no elaboration, since we can always elect to run a multitape
machine with only one of its tapes doing useful work. The simulation of a
multitape machine by one with a single tape is a little more complicated,
but conceptually straightforward.

Consider, for example, the two-tape machine in the configuration de-
picted in Figure 10.10. The simulating single-tape machine will have four

d l ;:' e Vi | £ A .

260 Chapter 10 OTHER MODELS 0OF TURING MACHINES

Figure 10.11

tracks (Figure 10.11). The first track represents the contents of tape 1 of
M. The nonblank part of the second track has all zeros, except for a single
1 marking the position of M’s read-write head. Tracks 3 and 4 play a sim-
ilar role for tape 2 of M. Figure 10.11 makes it clear that, for the relevant
configurations of M (that is, the ones that have the indicated form), there
is a unique corresponding configuration of M.

The representation of a multitape machine by a single-tape machine is
similar to that used in the simulation of an off-line machine. The actual
steps in the simulation are also much the same, the only difference being that
there are more tapes to consider. The outline given for the simulation of off-
line machines carries over to this case with minor modifications and suggests
a procedure by which the transition function § of M can be constructed
from the transition function § of M. While it is not difficult to make the
congtruction precise, it takes a lot of writing. Certainly, the computations
of M given the appearance of being lengthy and elaborate, but this has no
bearing on the conclusion. Whatever can be done of M can also be done
on M.

It is important to keep in mind the following point. When we claim that
a Turing machine with multiple tapes is no more powerful than a standard
one, we are making a statement only about what can be done by these
machines, particularly, what languages can be accepted.

Consider the language {a™b"}. In Example 9.7, we described a laborious
method by which this language can be accepted by a Turing machine with
one tape. Using a two-tape machine makes the job much easier. Assume
that an initial string a™b™ is written on tape 1 at the beginning of the
computation. We then read all the a’s, copying them onto tape 2. When
we reach the end of the a’s, we match the b’s on tape 1 against the copied a’s
on tape 2. This way, we can determine whether there are an cqual number
of a’s and b’s without repeated back-and-forth movement of the read-write
head.

]

Figure 10.12

10.2 TuriING MAcCHINES WITH MORE COMPLEX STORAGE 261

Remember that the various models of Turing machines are considered
equivalent only with respect to their ability to do things, not with respect
to easc of programming or any other efficiency measure we might consider.
We will return to this important point in Chapter 14,

Multidimensional Turing Machines

A multidimensional Turing machine is one in which the tape can be viewed
as extending infinitely in more than one dimension. A diagram of a two-
dimensional Turing machine is shown in Figure 10.12.

The formal definition of a two-dimensional Turing machine involves a
transition function 4 of the form

5:QxT - Qx1I"x {L,R,U,D},

where U and D specify movement of the read-write head up and down,
respectively.

To simulate this machine on a standard Turing machine, we can use the
two-track model depicted in Figure 10.13. First, we associate on ordering
or address with the cells of the two-dimensional tape. This can be done in
a number of ways, for example, in the two-dimensional fashion indicated
in Figure 10.12. The two-track tape of the simulating machine will use
one track to store cell contents and the other one to keep the associated
address. In the scheme of Figure 10.12, the configuration in which cell
(1,2) contains a and cell (10, —3) contains b is shown in Figure 10.13. Note
one complication: the cell address can involve arbitrarily large integers, so
the address track cannot use a fixed-size field to store addresses. Instead,
we must use a variable field-size arrangement, using some special symbols
to delimit the fields, as shown in the picture.

Let us assume that, at the start of the simulation of each move, the read-
write head of the two-dimensional machine M and the read-write head of
the simulating machine M are always on corresponding cells. To simulate
a move, the simulating machine M first computes the address of the cell to

-

|) .]
L | 1,-111,1]1,2 | | e Two-dimensional
i . 1 Sl | address scheme

262

Figure 10.13

Chapter 10 OTier MODELS OF TURING MACHINES

which M is to move. Using the two-dimensional address scheme, this is a
simple computation. Once the address is computed, M finds the cell with
this address on track 2 and then changes the cell contents to account for
the move of M. Again, given M, there is a straightforward construction for

M.

EXERCISES

The purpose of much of our discussion of Turing machines is to lend cre-
dence to Turing’s thesis by showing how seemingly more complex situations
can be simulated on a standard Turing machine. Unfortunately, detailed
simulations are very tedious and conceptually uninteresting. In the exer-
cises below, describe the simulations in just enough depth to show that the
details can be worked out.

1. A multihead Turing machine can be visualized as a Turing machine with a
single tape and a single control unit but with multiple, independent read-
write heads. Give a formal definition of a multihead Turing machine, and
then show how such a machine can be simulated with a standard Turing

machine. @

2. Give a formal definition of a multihead-multitape Turing machine. Then show
how such a machine can be simulated by a standard Turing machine.

3. Give a formal definition of a Turing machine with a single tape but multiple
control units, cach with a single read-write head. Show how such a machine
can be simulated with a multitape machine,

* 4. A queue automaton is an automaton in which the temporary storage is
a queue. Assume that such a machine is an on-line machine, that i, it has
no input file, with the string to be processed placed in the queue prior to
the start of the computation. Give a formal definition of such an automaton,
then investigate its power in relation to Turing machines.

* 5. Show that for every Turing machine there exists an equivalent standard Tur-
ing machine with no more than six states.

~.6: Reduce the number of required states in Exercise 5 as far as you can (Hint:
the smallest possible number is three).

* 7. A counter is a stack with an alphabet of exactly two symbols, a stack start
symbol and a counter symbol. Only the counter symbol can be put on the
stack or removed from it. A counter automaton is a deterministic automa-
ton with one or more counters as storage. Show that any Turing machine can
be simulated using a counter automaton with four counters.

10.3 NONDETERMINISTIC T'URING MACHINES 263

8. Show that every computation that can be done by a standard Turing machine
can be done by a multitape machine with a stay-option and at most two states.

®

9. Whrite out a detailed program for the computation in Example 10.1.

Nondeterministic Turing Machines

While Turing’s thesis makes it plausible that the specific tape structure is
immaterial to the power of the Turing machine, the same cannot be said of
nondeterminism. Since nondeterminism involves an element of choice and
s0 has a nonmechanistic flavor, an appeal to Turing’s thesis is inappropriate.
We must look at the effect of nondeterminism in more detail if we want to
argue that nondeterminism adds nothing to the power of a Turing machine.
Again we resort to simulation, showing that nondeterministic behavior can
be handled deterministically.

Definition 10.2

A nondeterministic Turing machine is an automaton as given by Definition
9.1, except that § is now a function

S Q X T — ZQXFX{L,R}_

As always when nondeterminism is involved, the range of § is a set of possible
transitions, any of which can be chosen by the machine.

If a Turing machine has transitions specified by
8 (q0,a) = {(a1,b,R) ,(g2,¢,L)}
it is nondeterministic. The moves
goaaa F bgyaa
and
goaaa - gzlcaa

are both possible.

264

Figure 10.14

Chapter 10 OTHER MODELS OF TURING MACHINES

Since it is not clear what role nondeterminism plays in computing fune-
tions, nondeterministic automata are usually viewed as accepters. A non-
deterministic Turing machine is said to accept w if there is any possible
sequence of moves such that

*

qow F x1q572,

with ¢y € F. A nondeterministic machine may have moves available that
lead to a nonfinal state or to an infinite loop. But, as always with nonde-
terminism, these alternatives are irrelevant; all we are interested in is the
existenice of some sequence of moves leading to acceptance.

To show that a nondeterministic Turing machine is no more powerful
than a deterministic one, we need to provide a deterministic equivalent for
the nondeterminism. We have already alluded to one. Nondeterminism can
be viewed as a deterministic backtracking algorithm, and a deterministic
machine can simulate a nondeterministic one as long as it can handle the
bookkeeping involved in the backtracking. To see how this can be done
simply, let us consider an altcrnative view of nondeterminism, one which is
uscful in many arguments: a nondeterministic machine can be seen as one
that has the ability to replicate itself whenever necessary. When more than
one move is possible, the machine produces as many replicas as needed and
gives each replica the task of carrying out one of the alternatives.

This view of nondeterminisin may seem particularly nonmechanistic.
Unlimited replication is certainly not within the power of present-day com-
puters. Nevertheless, the process can be simulated by a deterministic Turing
machine. Consider a Turing machine with a two-dimensional tape (Figure
10.14). Each pair of horizontal tracks represents one machine; the top track
containing the machine’s tape, the bottom one for indicating its internal
state and the position of the read-write head. Whenever a new machine is
to be created, two new tracks are started with the appropriate information.
Figure 10.15 represents the initial configuration of the machine in Example
10.2 and its successor configurations. The simulating machine searches all
active tracks; they are bracketed with special markers and so can always be
found. It then carries out the indicated moves, activating new machines as
needed. Quite a few details have to be resolved before we can claim to have
a reasonable outline of the simulation, but we will leave this to the reader.

| ' ' Tape contents
Internal state and position of head

Machine 1 !

| _ | Tape contents
| | Internal state and position of head

Machine 2-

Figure 10.15
Simulation of a
nondeterministic
move,

S0 <\ \ W = e
LTSRN 8 M e

10.3 NONDETERMINISTIC TURING MACHINES 265

Bl # #|# # AT A
[#]alalal# ¥ [3a|als
Tl 4 ’ EE
[#|#[#]# #| |c|a]al#
7 #
o H # #

Based on this simulation, our conclusion is that for every nondeterministic
Turing machine there exists an equivalent deterministic one. Because of its
importance, we state this formally.

The class of deterministic Turing machines and the class of nondeterministic
Turing machines are equivalent.

Proof; Use the construction suggested above to show that any nondeter-
ministic Turing machine can be simulated by a deterministic one. =

EXERCISES

. Discuss in detail the simulation of a nondeterministic Turing machine by a

deterministic one. Indicate explicitly how new machines are created, how
active machines are identified, and how machines that halt are removed from
further consideration.

Show how a two-dimensional nondeterministic Turing machine can be simu-
lated by a deterministic machine.

Write a program for a nondeterministic Turing machine that accepts the
language

L={ww:we {a,b}*}.

Contrast this with a deterministic solution. #

Outline how one would write a program for a nondeterministic Turing ma-
chine to accept the language

L= {wwa cw € {a, b}+} .

Write a simple program for a nondeterministic Turing machine that accepts
the language

L= {mww”y TELY,WE {a’b}+ ’ |J‘[> |y|} .

How would you solve this problem deterministically?

266

Chapter 10 OTHER MODELS OF TURING MACHINES

6. Design a nondeterministic Turing machine that accepts the language
L= {a" : n is not a prime number} . &
* 7. A two-stack automaton is a nondeterministic pushdown automaton with two

independent stacks. To define such an automaton, we modify Definition 7.1
so that

§:Qx (ZU{A}) xI"x T — finite subsets of Q x I'" x I'*,

A move depends on the tops of the two stacks and results in new values being
pushed on these two stacks. Show that the class of two-stack automata is
equivalent to the class of Turing machines. @&

A Universal Turing Machine

Consider the following argument against Turing’s thesis: “A Turing machine
as presented in Definition 9.1 is a special purpose computer. Once § is
defined, the machine is restricted to carrying out one particular type of
computation. Digital computers, on the other hand, are general purpose
machines that can be programmed to do different jobs at different times.
Consequently, Turing machines cannot be considered equivalent to gencral
purpose digital computers.”

This objection can be overcome by designing a reprogrammable Turing
machine, called a universal Turing machine. A universal Turing machine
M, is an automaton that, given as input the description of any Turing
machine A and a string w, can simulate the computation of M on w. To
construct such an M,,, we first choose a standard way of describing Turing
machines. We may, without loss of generality, assume that

Q = {QI') qz, -~-7Q'n,})

with ¢; the initial state, g the single final state, and

I'= {CL],C!Q, "'sa’m} 3

where a; represents the blank. We then select an encoding in which ¢, is
represented by 1, ¢z is represented by 11, and so on. Similarly, a1 is encoded
as 1, az as 11, etc. The symbol 0 will be used as a separator between the 1's,
With the initial and final state and the blank defined by this convention,
any Turing machine can be described completely with § only. The transition
function is encoded according to this scheme, with the arguments and result
in some prescribed sequence. For example, §(g1,a2) = (g2,a3, L) might
appear as

---10110110111010---.

Figure 10.16

10.4 A UNIVERSAL TURING MACHINE 267

Control unit
of M,

¥

I SR I

Internal state of A

| —=

Description of M

Tape contents of M

It follows from this that any Turing machine has a finite encoding as a string
on {0, 1}+, and that, given any encoding of M, we can decode it uniquely.
Some strings will not represent any Turing machine (e.g., the strong 00011},
but we can easily spot these, so they are of no concern.

A universal Turing machine M, then has an input alphabet that in-
cludes {0, 1} and the structure of a multitape machine, as shown in Figure
10.16.

For any input M and w, tape 1 will keep an encoded definition of M.
Tape 2 will contain the tape contents of M, and tape 3 the internal state
of M. M, looks first at the contents of tapes 2 and 3 to determine the
configuration of M. It then consults tape 1 to see what M would do in this
configuration. Finally, tapes 2 and 3 will be modified to reflect the result
of the move.

Tt is within reason to construct an actual universal Turing machine
(see, for example, Denning, Dennis, and Qualitz 1978), but the process is
uninteresting. Woe prefer instead to appeal to Turing’s hypothesis. The
implementation clearly can be done using some programming language; in
fact, the program suggested in Exercise 1, Section 9.1 is a realization of a
universal Turing machine in a higher level language. Therefore, we expect
that it can also be done by a standard Turing machine. We are then justified
in claiming the existence of a Turing machine that, given any program, can
carry out the computations specified by that program and that is therefore
a proper model for a general purpose computer.

The observation that every Turing machine can be represented by a
string of 0’s and 1's has important implications. But before we explore
these implications, we need to review some results from sct theory.

Some sets are finite, but most of the interesting scts (and languages) are
infinite. For infinite sets, we distinguish between sets that are countable
and sets that are uncountable. A set is said to be countable if its elements
can be put into a one-to-one correspondence with the positive integers. By
this we mean that the elements of the set can be written in some order,
say, T1,Ta, T3, ..., 50 that every element of the set has some finite index. For
example, the set of all even integers can be written in the order 0,2,4,....

268 Chapter 10 OTHER MODELS OF TURING MACHINES

Figure 10.17 I —1 1 L

Since any positive integer 2n occurs in position n + 1, the set is countable.
This should not be too surprising, but there are more complicated examples,
some of which may seem counterintuitive. Take the set of all quotients of
the form p/q, where p and q are positive integers. How should we order this
set to show that it is countable? We cannot write

1111

12’374
because then 2 § would never appear. This does not imply that the set is
uncountable; in this case, there is a clever way of ordering the set to show
that it is in fact countable. Look at the scheme depicted in Figure 10.17,
and write down the element in the order encountered following the arrows.
This gives us

12Ty
Here the element 2 % occurs in the eighth place, and every element has some
place in the sequence. The set is therefore countable.

We see from this example that we can prove that a set is countable if
we can produce a method by which its elements can be written in some
sequence. We call such a method an enumeration procedure. Since an
enumeration procedure is some kind of mechanical process, we can use a
Turing machine model to define it formally.

Definition :10.3

Let S be a set of strings on some alphabet . Then an enumeration proce-
dure for S is a Turing machine that can carry out the sequence of steps

* *
QU & qsx1 # 511 qoza # 52 ...,

with #; € I'* — {#},s; € §, in such a way that any s in § is produced in a
finite number of steps. The state g, is a state signifying membership in S;
that is, whenever g is entered, the string following # must be in S.

10.4 A UNIVERSAL TURING MACHINE 269

Not every set is countable. As we will see in the next chapter, there are
some uncountable sets. But any set for which an enumeration procedure
exists is countable because the enumeration gives the required sequence.

Strictly speaking, an enumeration procedure cannot be called an algo-
rithm, since it will not terminate when S is infinite. Nevertheless, it can
be considered a meaningful process, because it produces well-defined and
predictable results.

Theorem 10.3

Let ¥ = {a,b, c}. We can show that the & = £ is countable if we can find
an enumeration procedure that produces its elements in some order, say in
the order in which they would appear in a dictionary. However, the order
used in dictionaries is not suitable without modification. In a dictionary,
all words beginning with a are listed before the string 5. But when there
are an infinite number of a words, we will never reach b, thus violating the
condition of Definition 10.3 that any given string be listed after a finite
number of steps.

Instead, we can use a modificd order, in which we take the length of
the string as the first criterion, followed by an alphabetic ordering of all
equal-length strings. This is an enumeration procedure that produces the
sequence

a, b, ¢, aa, ab, ac, ba, bb, be, ca, cb, cc, aaa,

As we will have several uses for such an ordering we will call it the proper
order.

An important consequence of the above discussion is that Turing ma-
chines are countable.

The set of all Turing machines, although infinite, is countable.

Proof: We can encode each Turing machine using 0 and 1. With this en-
coding, we then construct the following enumeration procedure.

1. Generate the next string in {0, 1}+ in proper order.

2. Check the generated string to see if it defines a Turing machine. If so,
write it on the tape in the form rcquired by Definition 10.3. If not,
ignore the string.

3. Return to Step 1.

Since every Turing machine has a finite description, any specific machine
will eventually be generated by this process. m
I

270

Chapter 10 OTiER MODELS OF TURING MACHINES

The particular ordering of Turing machines depends on the encoding
we use; if we use a different encoding, we must expect a different ordering.
This is of no consequence, however, and shows that the ordering itself is
unimportant. What matters is the existence of some ordering.

EXERCISES

1. Sketch an algorithm that examines a string.in {0, 1}" to determine whether
or not it represents an encoded Turing machine.

2. Give a complete encoding, using the suggested method, for the Turing ma-
chine with

5(QI7111) = (ql:ala R):
3 (qr,a2) = (gz,a1,L),
3 (g3, a1) = (g2, 02, L) .

3. Sketch a Turing machine program that ecnumerates the set {0, 1} " in proper
order.

What is the index of 0°1Y in Exercise 37

Design a Turing machine that enumerates the following set in proper order,
L={a"b":n>1}

6. For Example 10.3, find a function f (w) that gives for each w its index in the
proper ordering.

7. Show that the set of all triplets, (4, J, k) with ¢, j, k positive integers, is count-
able.

8. Suppose that S; and S are countable sets. Show that then S) U 83 and
Sy x Sz arc also countable. @

9. Show that the Cartesian product of a finite number of countable sets is count-
able.

#}¥0:8: Linear Bounded Automata

While it is not possible to extend the power of the standard Turing machine
by complicating the tape structure, it is possible to limit it by restricting
the way in which the tape can be used. We have already seen an example of
this with pushdown automata. A pushdown automaton can be regarded as
a nondeterministic Turing machine with a tape that is restricted to being
used like a stack. We can also restrict the tape usage in other ways; for
cxample, we might permit only a finite part of the tape to be used as work
space. It can be shown that this leads us back to finite automata (see

10.5 LiNkArR BOUNDED AUTOMATA 271

Excreise 3 at the end of this section), so we need not pursue this. But there
is a way of limiting tape use that leads to a more interesting situation: we
allow the machine to use only that part of the tape occupied by the input.
Thus, more space is available for long input strings than for short ones,
generating another class of machines, the linear bounded automata {(or
lba).

A linear bounded automaton, like a standard Turing machine, has an
unbounded tape, but how much of the tape can be used is a function of
the input. In particular, we restrict the usable part of the tape to exactly
the cells taken by the input. To enforce this, we can envision the input as
bracketed by two special symbols, the left~end marker ([) and the right-
end marker (]). For an input w, the initial configuration of the Turing
machine is given by the instantaneous description gq [w]. The end markers
cannot be rewritten, and the read-write head cannot move to the left of |
or to the right of |. We sometimes say that the read-write head “bounces”
off the end markers.

itio

A linear bounded automaton is a nondeterministic Turing machine M =
(@,%,T,4,q0,0, F), as in Definition 10.2, subject to the restriction that X
must contain two special symbols [and], such that § {g;, [) can contain only
elements of the form (g;, [, R), and 6 (g;,]) can contain only elements of the
form (g;,], L).

A string w is accepted by a linear bounded automaton if there is a possible
sCquence (_)f mMoves :

go [w0] [z1g522]

for some gy € F, a1, 22 € I'. The language accepted by the lba is the set
of all such accepted strings.

Note that in this definition a linear bounded automaton is assumed to
be nondeterministic. This is not just a matter of convenience but essential
to the discussion of lba’s. While one can define deterministic 1ba’s, it is not
known whether they are equivalent to the nondeterministic version. For
some exploration of this, see Exercise 8 at the end of this section.

272

Exu\m_ple 10,4

Example 10

Figure 10.18

S

Chapter 10 OTHER MODELS OF TURING MACHINES

The language
L={a""c" :n>1}

is accepted by some linear bounded automaton. This follows from the dis-
cussion in Example 9.8. The computation outlined there does not require
space outside the original input, so it can be carried out by a linear bounded
automatorn.

n

Find a linear bounded automaton that accepts the language
L:{a”! :n 20},

One way to solve the problem is to divide the number of a’s successively
by 2,3,4, ..., until we can either accept or reject the string. If the input
is in L, eventually there will be a single a left; if not, at some point a
nonzero remainder will arise. We sketch the solution to point out one tacit
implication of Definition 10.4. The tape of a linear bounded automaton may
be multitrack, and the extra tracks can be used as scratch space. For this
problem, we can use a two-track tape. The first track contains the number
of a’s left during the process of division, and the second track contains the
current divisor (Figure 10.18). The actual solution is fairly simple. Using
the divisor on the second track, we divide the number of ¢’s on the first
track, say by removing all symbols except those at multiples of the divisor.
After this, we increment the divisor by one, and continue until we either
find a nonzero remainder or are left with a single a. -

The last two examples suggest that linear bounded automata are more
powerful than pushdown automata, since neither of the languages are con-
text-free. To prove such a conjecture, we still have to show that any context-
free language can be accepted by a linear bounded automaton. We will
do this later in a somewhat roundabout way; a more direct approach is
suggested in Exercises 5 and 6 at the end of this section. It is not so easy
to make a conjecture on the relation between Turing machines and linear
bounded automata. Problems like Example 10.5 are invariably solvable by
a linear bounded automaton, since an amount of scratch space proportional

[a @ a a a | a | a's to be examined

[a a a 1 Current divisor

10.5 LiNrAR BOUNDED AUTOMATA 273

to the length of the input is available. In fact, it is quite difficult to come up
with a concrete and explicitly defined language that cannot be accepted by
any linear bounded automaton. In Chapter 11 we will show that the class
of linear bounded automata is less powerful than the class of unrestricted
Turing machines, but a demonstration of this requires a lot more work.

EXERCISES

1. Give details for the solution of Example 10.5.

2. Find a solution for Example 10.5 that does not require a second track as
scratch space.

3. Consider an off-line Turing machine in which the input can be read only once,
moving left to right, and not rewritten. On its work tape, it can use at most
n extra cells for work space, where n is fixed for all inputs. Show that such
a machine is equivalent to a finite automaton.

4. Find linear bounded automata for the following languages.
(@ L={a" :n=m*m>1}
(b) L = {a" : n is a prime number}

(¢) L={a" : n is not a prime number}

(d) L={ww:we {a,b}"}

() L={w™:we{ab} ,n>1} &
() L= {www” :w e {a,b}*}

5. Find an lba for the complement of the language in Example 10.5, assuming
that = = {a, b}.

6. Show that for every context-free language there exists an accepting pda, such
that the number of symbols in the stack never exceeds the length of the input
string by more than one. @

7. Use the observation in the above exercise to show that any context-free lan-
guage not containing X is accepted by some linear bounded automaton.

8. To define a deterministic linear bounded automaton, we can use Definition
10.4, but require that the Turing machine be deterministic. Examine your
solutions to Exercise 4. Are the solutions all deterministic linear bounded
automata? If not, try to find solutions that are.

A Hierarchy of
Formal Languages
and Automata

e now return our attention to our main interest, the study of formal

languages. Qur immediate goal will be to examine the languages

associated with Turing machines and some of their restrictions. Be-

cause Turing machines can perform any kind of algorithmic com-
putation, we expect to find that the family of languages associated with
them is quite broad. It includes not only regular and context-free lan-
guages, but also the various examples we have encountered that lie outside
these families. The nontrivial question is whether there are any languages
that are not accepted by some Turing machine. We will answer this ques-
tion first by showing that there are more languages than Turing machines,
80 that there must be some languages for which there are no Turing ma-
chines. The proof is short and clegant, but nonconstructive, and gives little
insight into the problem. For this reason, we will establish the existence
of languages not recognizable by Turing machines through more explicit
examples that actually allow us to identify one such language. Another
avenue of investigation will be to look at the relation between Turing ma-
chines and certain types of grammars and to establish a connection between
these grammars and regular and context-free grammars. This leads to a

275

276

Chapter 11 A HIERARCHY OF FORMAL LANGUAGES AND AUTOMATA

hierarchy of grammars and through it 1o a method for classifying language
families. Some set-theoretic diagrams illustrate the relationships between
various language families clearly.

Strictly speaking, many of the arguments in this chapter are valid only
for languages that do not include the empty string. This restriction arises
from the fact that Turing machines, as we have defined them, cannot accept
the empty string. To avoid having to rephrase the definition or having to
add a repeated disclaimer, we make the tacit assumption that the languages
discussed in this chapter, unless otherwise stated, do not contain A, It is a
trivial matter to restate cverything so that A is included, but we will leave
this to the reader.

i

Akid: Recursive and Recursively
Enumerable Languages

We start with some terminology for the languages associated with Turing
machines. In doing so, we must make the important distinction between
languages for which there exists an accepting Turing machine and languages
for which there exists a membership algorithm. Because a Turing machine
does not necessarily halt on input that it does not accept, the first does not
imply the second.

Definition 11.1

A language L is said to be recursively enumerable if there exists a Turing
machine that accepts it.

This definition implies only that there exists a Turing machine M, such
that, for every w € L,

*

qow Far T1qras,

with gy a final state. The definition says nothing about what happens for
w not, in L; it may be that the machine halts in a nonfinal state or that
it never halts and goes into an infinite loop. We can be more demanding
and agk thal the machine tell us whether or not any given input is in its
language.

Figure 11.1

11.1 RECURSIVE AND RECURSIVELY ENUMERABLE LANGUACES 277

A language L on X is said to be recursive if there exists a Turing machine
M that accepts L and that halts on every w in XF. In other words, a
language is recursive if and only if there exists a membership algorithm for
it.

If a language is recursive, then there exists an easily constructed enu-
meration procedure. Suppose that M is a Turing machine that determines
membership in_a recursive language L. We first construct another Turing
machine, say M, that generates all strings in %+ in proper order, let us
say wy,ws,.... As these strings are generated, they become the input to M,
which is modified so that it writes strings on its tape only if they are in L.

That there is also an enumeration procedure for cvery recursively enu-
merable language is not as easy to sce. We cannot use the above argument
as it stands, because if some w; is not in L, the machine M, when started
with w; on its tape, may never halt and therefore never get to the strings
in L that follow w; in the enumeration. To make sure that this does not
happen, the computation is performed in a different way. We first get M
to generate wy and let M execute one move on it. Then we let M generate
wy and let M execute one move on wq, followed by the second move on w;.
After this, we gencrate wy and do one step on ws, the second step on ws,
the third step on wy, and so on. The order of performance is depicted in
Figure 11.1. From this, it is clear that M will never get into an infinite
loop. Since any w € L is generated by M and accepted by M in a finite
number of steps, every string in L is cventually produced by M.

It is easy Lo see that every language for which an enumeration procedure
exists is recursively enumerable. We simply compare the given input string
against successive strings generated by the enumeration procedure. If w &
L, we will eventually get a match, and the process can be terminated.

Definitions 11.1 and 11.2 give us very little insight into the nature of
either recursive or recursively enumerable languages. These definitions at-
tach names to language families associated with Turing machines, but shod

'ZUI 'wz 'LU3 'w4 s

First move

Second move

Third move

278

Figure 11.2

Chapter 11 A HieraRCHY OF FORMAL LANGUAGES AND AUTOMATA

no light on the nature of representative languages in these families. Nor
do they tell us much about the relationships between these languages or
their connection to the language families we have encountered before. We
are therefore immediately faced with question such as “Are there languages
that are recursively enumerable but not recursive?” and “Are there lan-
guages, describable somehow, that are not recursively enumerable?” While
we will be able to supply some answers, we will not be able to produce very
explicit examples to illustrate these questions, especially the second one.

Languages That Are Not Recursively Enumerable

We can establish the existence of languages that are not recursively enu-
merable in a variety of ways. One is very short and uses a very fundamental
and elegant result of mathematics.

Let S be an infinite countable set. Then its powerset 2% is not countable.

Proof: Let S = {si, $2, 83,...}. Then any element ¢ of 2° can be represented
by a sequence of 0’s and 1’s, with a 1 in position ¢ if and only if s; is in
t. For example, the set {sq,ss,sq} is represented by 01100100..., while
{s1,83, 85, ...} is represented by 10101.... Clearly, any element of 2% can be
represented by such a sequence, and any such sequence represents a unique
element of 2°. Suppose that 2° were countable; then its elements could be
written in some order, say ¢, ta, ..., and we could enter these into a table, as
shown in Figure 11.2. In this table, take the elements in the main diagonal,
and complement each entry, that is, replace 0 with 1, and vice versa. In the
example in Figure 11.2, the elements are 1100..., so we get 0011... as the
result. The new sequence represents some element of 25 say t; for some
i. But it cannot be t; because it differs from ¢; through s;. For the same

-b.*
-
S
o
=/
|

11.1 RECURSIVE AND RECURSIVELY ENUMERABLE LANGUAGES 279

reason it cannot be ts, f3, or any other ¢;. This contradiction creates a
logical impasse that can be removed only by throwing out the assumption
that 2° is countable. m

This kind of argument, because it involves a manipulation of the di-
agonal elements of a table, is called diagonalization. The technique is
attributed to the mathematician G. F. Cantor, who used it to demonstrate
that the set of real numbers is not countable. In the next few chapters, we
will see a similar argument in several contexts. Theorem 11.1 is diagonal-
ization in its purest form.

As an immediate consequence of this result, we can show that, in some
sense, there are fewer Turing machines than there are languages, so that
there must be some languages that are not recursively enumerable.

For any nonempty X, there exist languages that are not recursively enumer-
able.

Proof: A language is a subset of £*, and every such subset is a language.
Thercfore the set of all languages is exactly 2%, Since ¥* is infinite, The-
orem 11.1 tells us that the set of all languages on T is not countable. But
the set of all Turing machines can be enumerated, so the set of all recur-
sively enumerable languages is countable. By Exercise 16 at the end of this
section, this implies that there must be some languages on T that are not
recursively enumerable. =

This proof, although short and simple, is in many ways unsatisfying.
It is completely nonconstructive and, while it tells us of the existence of
some languages that are not recursively enumerable, it gives us no feeling
at all for what these languages might look like. In the next set of results,
we investigate the conclusion more explicitly.

A Language That Is Not Recursively Enumerable

Since every language that can be described in a direct algorithmic fashion
can be accepted by a Turing machine and hence is recursively enumerable,
the description of a language that is not recursively enumerable must be
indirect. Nevertheless, it is possible. The argument involves a variation on
the diagonalization theme.

There exists a recursively enumerable language whose complement is not
recursively enumerable.

280

Chapter 11 A HIERARCHY OF FORMAL LANGUAGES AND AUTOMATA

Proof: Let ¥ = {a}, and consider the set of all Turing machines with this
input alphabet. By Theorem 10.3, this set is countable, so we can associate
an order My, My, ... with its clements. For each Turing machine M;, there
is an associated recursively enumerable language L (M;). Conversely, for
each recursively enumerable language on X, there is some Turing machine
that accepts it.

We now consider a new language L defined as follows. For each ¢ > 1,
the string o’ is in L if and only if a® € L (M;). It is clear that the language
L is well defined, since the statement o’ € L (M;), and hence o' € L, must
either be true or false. Next, we consider the complement of L,

L={d":a" ¢ L(M)}, (11.1)

which is also well defined but, as we will show, is not recursively enumerable.

We will show this by contradiction, starting from the assumption that
L is recursively enumerable. If this is so, then there must be some Turing
machine, say My, such that

L=L(M;). (11.2)

Consider the string a*. Is it in L or in L? Suppose that a* € L. By (11.2)
this implies that

a* € L(My).
But (11.1) now implies that
a* ¢ T.

Conversely, if we assume that ¢® is in L, then o* ¢ L and (11.2) implies
that

a* ¢ L(My).
But then from (11.1) we get that
a* eT.

The contradiction is inescapable, and we must conclude that our assumption
that I is receursively enumerable is false.

To complete the proof of the theorem as stated, we must still show that
L is recursively enumerable. We can use for this the known enumeration
procedure for Turing machines. Given a’, we first find i by counting the
number of a’s. We then use the enumeration procedure for Turing machines
to find M,;. Finally, we give its description along with a’ to a universal
Turing machine M,, that simulates the action of M on a'. If a* is in L, the
computation carried out by M, will eventually halt. The combined effect of
this is a Turing machine that accepts every a* € L. Therefore, by Definition
11.1, L is recursively enumerable. =

Theorem 11.5

heorem ‘|'|.4

11.1 RECURSIVE AND RECURSIVELY ENUMERABLE LANGUAGES 281

The proof of this theorem explicitly exhibits, through (11.1), a well-
defined language that is not recursively enumerable. This is not to say
that there is an easy, intuitive interpretation of I; it would be difficult to
exhibit more than a few trivial members of this language. Nevertheless, L
is properly defined.

A Language That Is Recursively Enumerable But
Not Recursive

Next, we show there are some languages that are recursively enumerable
but not recursive. Again, we need do so in a rather roundabout way. We
begin by establishing a subsidiary result.

If a language L and its complement L are both recursively enumerable, then
both languages are recursive. If L is recursive, then L is also recursive, and
consequently both are recursively enumerable,

Proof: If Land L are both recursively enumerable, then there exist Turing
machines M and M that serve as enumeration procedures for L and L,
respectively. The first will produce wy,wy, ... in L, the second @y, @, ... in
L. Suppose now we are given any w € &, We first let M generate wy and
compare it with w. If they are not the same, we let M generate 0; and
compare again. If we need to continue, we next let M generate ws, then
M gencrate @y, and so on. Any w € X7 will be generated either by M or
M, so eventually we will get a match. If the matching string is produced
by M, w belongs to L, otherwise it is in L. The process is a membership
algorithm for both L and L, so they are both recursive.

For the converse, assume that L is recursive. Then there exists a mem-
bership algorithm for it. But this becomes a membership algorithm for I by
simply complementing its conclusion. Therefore L is recursive. Since any
recursive language is recursively enumerable, the proof is completed. =

From this, we conclude directly that the family of recursively enumer-
able languages and the family of recursive languages are not identical. The
language L in Theorem 11.3 is in the first but not in the second family.

There exists a recursively enumerable language that is not recursive; that
is, the family of recursive languages is a proper subset of the family of
recursively enumerable languages.

Proof: Consider the language L of Theorem 11.3. This language is recur-
sively enumerable, but its complement is not. Therefore, by Theorem 11.4,
it is not recursive, giving us the looked-for example. =

282 Chapter 11 A HIERARCHY OF FORMAL LANGUAGES AND AUTOMATA

We conclude from this that there arc indeed well-defined languages for

which one cannot construct a membership algorithm.

EXERCISES

ot

Prove that the set of all real numbers is not countable.

. Prove that the set of all languages that are not recursively enumerable is not

countable. &

Let L be a finite language. Show that then L1 is recursively enumerable.
Suggest an enumeration procedure for LT,

. Let L be a context-free language. Show that LT is recursively enumerable

and suggest an enumeration procedure for it.

. Show that, if a language is not recursively enumerable, its complement cannot

be recursive.

. Show that the family of recursively enumerable languages is closed under

union.

7. Is the family of recursively enumerable languages closed under intersection?

10.
11.
12.

13.

14.
15,

16.

17.
18.
19.

. Show that the family of recursive languages is closed under union and inter-

section.

. Show that the families of recursively enumerable and recursive languages are

closed under reversal.
Is the family of recursive languages closed under concatenation?
Prove that the complement of a context-free language must be recursive. &

Let L, be recursive and Lo recursively enumerable. Show that Lz — Li is
necessarily recursively enumerable.

Suppose that L is such that there cxists a Turing machine that enumerates
the elements of L in proper order. Show that this means that L is recursive.

Tf L is recursive, is it necessarily true that LT is also recursive? ®

Choosc a particular encoding for Turing machines, and with it, find one
clement of the language L in Theorem 11.3.

Let S1 be a countable set, Sz a set that is not countable, and §y C S2. Show
that S2 must then contain an infinite number of elements that are not in Sj.

In Exercise 16, show that in fact S2 — S; cannot be countable.
Why does the argument in Theorem 11.1 fail when S is finite? ®

Show that the set of all irrational numbers is not countable.

11.2 UNRESTRICTED GRAMMARS 283

Unrestricted Grammars

To investigate the connection between recursively enumerable languages
and grammars, we return to the gencral definition of a grammar in Chapter
1. In Definition 1.1 the production rules were allowed to take any form,
but various restrictions were later made to get specific grammar types. If
we take the general form and impose no restrictions, we get unrestricted
gramimars.

4

Definition.
i, i
haiiabibisiaibinniiitiata

)

A grammar G = (V,T, 5, P) is called unrestricted if all the productions
are of the form
U — v

?

where u is in (VUT)" and v is in (V UT)*.

In an unrestricted grammar, essentially no conditions are imposed on
the productions. Any number of variables and terminals can be on the left
or right, and these can occur in any order. There is only one restriction: A
is not allowed as the left side of a production.

As we will see, unrestricted grammars are much more powerful than
restricted forms like the regular and context-free grammars we have studied
so far. In fact, unrestricted grammars correspond to the largest family
of languages so we can hope to recognize by mechanical means; that is,
unrestricted grammars generate exactly the family of recursively enumerable
languages. We show this in two parts; the first is quite straightforward, but
the second involves a lengthy construction.

Any language generated by an unrestricted grammar is recursively enumer-
able.

Proof: The grammar in cffect defines a procedure for enumerating all
strings in the language systematically. For example, we can list all w in
L such that

S = w,

that is, w is derived in one step. Since the set of the productions of the
grammar is finite, there will be a finite number of such strings, Next, we

284

Chapter 11 A HIERARCHY OF FORMAL LANGUAGES AND AUTOMATA

list all w in L that can be derived in two steps
S=1r=w,

and so on. We can simulate these derivations on a Turing machine and,
therefore, have an enumeration procedure for the language. Hence it is
recursively enumerable. =

This part of the correspondence between recursively enumerable lan-
guages and unrestricted grammars is not surprising. The grammar gener-
ates strings by a well-defined algorithmic process, so the derivations can
be done on a Turing machine. To show the converse, we describe how any
Turing machine can be mimicked by an unrestricted grammar.

We are given a Turing machine M = (@, X,T, 4, qo,0, F)) and want to
produce a grammar G such that L (G) = L (M). The idea behind the con-
struction is relatively simple, but its implementation becomes notationally
cumbersome.

Since the computation of the Turing machine can be described by the
sequence of instantaneous descriptions

qow F zqry, (11.3)

we will try to arrange it so that the corresponding grammar has the property
that '

Jow :*> €rqry, (114)
if and only if (11.3) holds. This is not hard to do; what is more difficult to
see is how to make the connection between (11.4) and what we really want,
namely,

S 5w

for all w satisfying (11.3). To achieve this, we construct a grammar which,
in broad outline, has the following properties:

1. § can derive gow for all w € 7.
2. (11.4) is possible if and only if (11.3) holds.

3. When a string zqyy with ¢ € F is generated, the grammar transforms
this string into the original w.

11.2 UNRESTRICTED (:RAMMARS 285

The complete sequence of derivations is then
S = gow = Tqry = 1w, (11.5)

The third step in the above derivation is the troublesome one. How can the
grammar remember w if it is modified during the second step? We solve this
by encoding strings so that the coded version originally has two copies of
w. The first is saved, while the second is used in the steps in (11.4). When
a final configuration is cntered, the grammar erases everything except the
saved w.

To produce two copies of w and to handle the state symbol of M (which
eventually has to be removed by the grammar), we introduce variables Vy;
and Vi for all a € XU {0}, b € T, and all ¢ such that ¢; € Q. The variable
Vup cncodes the two symbols o and b, while V,,;;, encodes a and b as well as
the state ¢;.

The first step in (11.5) can be achieved (in the encoded form) by

S — VanS |SVoo| T, (11.6)
T — TVaa|VaOa, (“7)

for all o € £. These productions allow the grammar to generate an encoded
version of any string gow with an arbitrary number of leading and trailing
blanks.

For the second step, for cach transition

§(qi,c) = (g;,d, R)
of M, we put into the grammar productions
VaicVpg = VadViiq, (11.8)
for all a, p e U {0}, q € I'. For cach
§(gisc) = (¢,d, L)
of M, we include in G
Vg Vaie = Vp;qVed, (11.9)
foralla, pe ZU {0}, g eI
If in the sccond step, M enters a final state, the grammar must then

get rid of everything excepl w, which is saved in the first indices of the V's.
Therefore, for every ¢; € F, we include productions

Vaib — @, (11.10)

286

Chapter 11 A Hizrarciy OF FORMAL LANGUAGES AND AUTOMATA

for all a € X U {0}, b € I'. This creates the first terminal in the string,
which then causes a rewriting in the rest by
cVap — caq, (11.11)
Vape — ac, (11.12)

for all @, c€ T U {03}, b € T. We need one more special production
00— A (11.13)

This last production takes care of the case when M moves outside that part
of the tape occupied by the input w. To make things work in this case, we
must first use (11.6) and (11.7) to generate

O...O¢w0d...0O,

representing all the tape region used. The extraneous blanks are removed
at the end by (11.13).

The following example illustrates this complicated construction. Care-
fully check each step in the example to see what the various productions do
and why they are needed.

Let M = (Q,%.T,6,40,d, F) be a Turing machine with

Q = {q09q1}9
I'= {aab’D})
% = {a,b},
b= {QI}a

and

) (Qo, (1) = (Ql'h @, R))
5(Q07D) = (thvL) .

This machine accepts L (aa*).
Consider now the computation

goaa F agoa - aageld F agall (11.14)

which accepts the string aa. To derive this string with G, we first use rules
of the form (11.6) and (11.7) to get the appropriate starting string,

S = SVoo = TVon = TV, Voo = VaoaVaa Voo

The last sentential form is the starting point for the part of the derivation
that mimics the computation of the Turing machine. It contains the original

11.2 UNRESTRICTED GRAMMARS 287

input eel in the sequence of first indices and the initial instantaneous
description gpaal) in the remaining indices. Next, we apply

VaoaVaa = VaaVaoa,
and
Vave Voo — Vi Vooo,
which are spocific instances of (11.8), and
VeaVooo — Va1 Voo
coming from (11.9). Then the next steps in the derivation are
VaoaVaa Voo = VaaVaoe Voo = VaaVaa Vooo = VaaVaraVoo-

The sequence of first indices remains the same, always remembering the
initial input. The sequence of the other indices is

0aad, a0all, aa00), aleld,

which is equivalent to the sequence of instantancous descriptions in (11.14).
Finally, (11.10) to (11.13) are used in the last steps

V;mV;J.IaVDD = V:.'Laa'VDD = V:wa'D = aall = aa.

The construction described in (11.6) to (11.13) is the basis of the proof of
the following result,
|

For every recursively enumerable language L, there exists an unrestricted
grammar G, such that L = L (G).

Proof: The construction described guarantees that if
zk oy,
then

e(z) = e(y),

where e (z) denotes the encoding of a string according to the given conven-
tion. By an induction on the number of steps, we can then show that

e(gow) = e(y),

288

Chapter 11 A HierARCHY OF FORMAL LANGUAGES AND AUTOMATA

if and only if

qow F y.

We also must show that we can gencrate every possible starting configura-
tion and that w is properly reconstructed if and only if M enters a final
configuration. The details, which are not too difficult, are left as an exer-
cise.

—————

These two theorems establish what we set out to do. They show that
the family of languages associated with unrestricted grammars is identical
with the family of recursively enumerable languages.

EXERCISES

1. What language does the unrestricted grammar
5 — S51B
Sl — aSlb
bB -~ bbbB
aSib — aa
D — A

derive? &

2. What difficulties would arise if we allowed the empty string as the left side
of a production in an unrestricted grammar?

3. Consider a variation on grammars in which the starting point for any deriva-
tion can be a finite set of strings, rather than a single variable. Formalize
this concept, then investigate how such grammars relate to the unrestricted
grammars we have used here. @

4. In Example 11.1, prove that the constructed grammar cannot generate any
sentence with a b in it.

Give the details of the proof of Theorem 11.7.

Construct a Turing machine for L (01 (01)"), then find an unrestricted gram-
mar for it using the construction in Theorem 11.7. Give a derivation for 0101
using the resulting grammar.

7. Show that for every unrestricted grammar there exists an equivalent unre-
stricted grammar, all of whose productions have the form

u — v,
with u, v € (VUT)" and |u| < |v]|, or

A—),
with AcV. B

11.3 CONTEXT-SENSITIVE GRAMMARS AND LANGUAGES 289

8. Show that the conclusion of Exercise 7 still holds if we add the further con-
ditions |u| < 2 and |v| < 2.

9. Some authors give a definition of unrestricted grammars that is not quite the
same as our Dcfinition 11.3. In this alternate definition, the productions of
an unrestricted grammar are required to be of the form

T =y,
where
ze(VuD)'v(vul)"
and
ye(VuT®

The difference iz that here the left side must have at least one variable.

Show that this alternate definition is basically the same as the one we
use, in the sensc that for every grammar of one type, there is an equivalent
grammar of the other type.

Context-Sensitive Grammars
and Languages

Between the restricted, context-free grammars and the general, unrestricted
grammars, a great variety of “somewhat restricted” grammars can be de-
fined. Not all cases yield interesting results; among the ones that do, the
context-sensitive grammars have received considerable attention. These
grammars generate languages associated with a restricted class of Turing
machines, lincar bounded automata, which we introduced in Section 10.5.

Definition:
RVRAARIERAY y\\\\\\\\\\ \\V\

A grammar G = (V,T, 5, P) is said to be context-sensitive if all produc-
tions are of the form

T =y,
where z, y € (VUT)" and

lz| < [yl (11.15)

290

Chapter 11 A HiERARCHY OF FORMAL LANGUAGES AND AUTOMATA

This definition shows clearly one aspect of this type of grammar; it
is noncontracting, in the sense that the length of successive sentential
forms can never decrease. It is less obvious why such grammars should be
called contcxt-sensitive, but it can be shown (see, for example, Salomaa
1973) that all such grammars can be rewritten in a normal form in which
all productions are of the form

T Ay — zvy.
This is equivalent to saying that the production
A—>vw
can be applied only in the situation where A occurs in a context of the string
z on the left and the string y on the right. While we use the terminology

arising from this particular interpretation, the form itself is of little interest
to us here, and we will rely entirely on Definition 11.4.

Context-Sensitive Languages and Linear Bounded Automata

As the terminology suggests, context-sensitive grammars are associated with
a language family with the same name.

Definition 11.5

A language I is said to be context-sensitive if there exists a context-sensitive
grammar (7, such that L =L(G) or L = L(G) U {A}.

In this definition, we reintroduce the empty string. Definition 11.4
implies that £ — A is not allowed, so that a context-sensitive grammar
can never generate a language containing the empty string. Yet, every
context-free language without A can be generated by a special case of a
context-sensitive grammar, say by one in Chomsky or Greibach normal
form, both of which satisfy the conditions of Definition 11.4. By including
the empty string in the definition of a context-sensitive language (but not
in the grammar), we can claim that the family of context-free languages is
a subset of the family of context-sensitive languages.

11.3 CONTEXT-SENSITIVE GRAMMARS AND LANGUAGES 291

AR
o,

N
s

i
\M\\\ﬁ y
KB

The language L = {a"b™¢" : n > 1} is a context-sensitive language. We
show this by exhibiting a context-sensitive grammar for the language. One
such grammar is

S — abclaAbe,
Ab — bA,
Ac — Bbee,
bB — Bb,

aB — aalacA.
We can see how this works by looking at a derivation of a®b®c?.

S = aAbc = abAc = abBbec
= aDBbbcc = aaAbbee = aabAbec
= aabbAcc = aabbBbece
= aabBbbcce = aaBbbbece
= aaabbbcce.

The solution effectively uses the variables A and B as messengers. An A
is created on the left, travels to the right to the first ¢, where it creates
another b and ¢. It then sends the messenger B back to the left in order
to create the corresponding a. The process is very similar to the way one
might program a Turing machine to accept the language L. -

Since the language in the above example is not context-free, we see
that the family of context-free languages is a proper subset of the family
of context-sensitive languages. Example 11.2 also shows that it is not an
easy malter to find a context-sensitive grammar even for relatively simple
examples. Often the solution is most easily obtained by starting with a
Turing machine program, then finding an equivalent grammar for it. A
few examples will show that, whenever the language is context-sensitive,
the corresponding Turing machine has predictable space requirements; in
particular, it can be viewed as a linear bounded automaton.

For every context-sensitive language L not including A, there exists some
linear bounded automaton M such that L = L (M).

Proof: If L is context-sensitive, then there exists a context-sensitive gram-
mar for L—{A}. We show that derivations in this grammar can be simulated
by a linear bounded automaton. The linear bounded automaton will have

292

Chapter 11 A HIERARCHY OF FORMAL LANGUAGES AND AUTOMATA

two tracks, one containing the input string w, the other containing the sen-
tential forms derived using G. A key point of this argument is that no
possible sentential form can have length greater than |w|. Another point to
notice is that a linear bounded automaton is, by definition, nondeterminis-
tic. This is necessary in the argument, since we can claim that the correct
production can always be guessed and that no unproductive alternatives
have to be pursued. Therefore, the computation described in Theorcm 11.6
can be carried out without using space except that originally occupied by
w; that is, it can be done by a linear bounded automaton. =

If a language L is accepted by some linear bounded automaton M, then
there exists a context-sensitive grammar that generates L.

Proof: The construction here is similar to that in Theorem 11.7. All
productions generated in Theorem 11.7 are noncontracting except (11.13),

O Al

But this production can be omitted. It is necessary only when the Turing
machine moves outside the bounds of the original input, which is not the case
here. The grammar obtained by the construction without this unnecessary
production is noncontracting, completing the argument. =

Relation Between Recursive and Context-Sensitive
Languages

Theorem 11.9 tells us that every context-sensitive language is accepted by
some Turing machine and is therefore recursively enumerable. Theorem
11.10 follows easily from this.

Every context-sensitive language L is recursive.
Proof: Consider the context-sensitive language L with an associated context-
sensitive grammar &, and look at a derivation of w

S=r = 2= =1, =W,

We can assume without any loss of generality that all sentential forms in a
single derivation are different; that is, x; # x; for all ¢ # j. The crux of
our argument is that the number of steps in any derivation is a bounded
function of |w|. We know that

|25 < [2j41],

11.3 CONTEXT-SENSITIVE (GRAMMARS AND LANGUAGES 293

because G is noncontracting. The only thing we need to add is that there
exist some m, depending only on G and w, such that

|74 < |zj4ml

for all j, with m = m(|Jw|) a bounded function of |V UT| and |w|. This
follows because the finiteness of |V U T'| implies that there are only a finite
number of strings of a given length. Therefore, the length of a derivation of
w € L is at most |w|m (Jw|).

This observation gives us immediately a membership algorithm for L.
We check all derivations of length up to |[w|m (jw|). Since the set of pro-
ductions of G is finite, there are only a finite number of these. If any of
them give w, then w € L, otherwise it is not. m

There exists a recursive language that is not context-sensitive.

Proof: Consider the set of all context-sensitive grammars on T = {a,b}.
We can use a convention in which each grammar has a variable set of the
form

V = {Vo, Vi, Vo, ..}

Every context-sensitive grammar is completely specified by its productions,;
we can think of them as written as a single string

L1 = YTz = Y25--- 5 Tm = Ym-

To this string we now apply the homomorphism

h(a) = 010,
h (b) = 0120,
h (=) = 01°0,
h(;) = 0140,
)

Thus, any context-sensitive grammar can be represented uniqucly by a
string from L ((011*0)*). Furthermore, the representation is invertible in
the sense that, given any such string, there is at most one context-sensitive
grammar corresponding to it.

Let us introduce a proper ordering on {0, 1}+, 80 we can write strings in
the order wy, we, etc. A given string w; may not define a context-sensitive
grammar; if it does, call the grammar G;. Next, we define a language L by

L = {w; : w; defines a context-sensitive grammar G; and w; ¢ L(G;)} .

294 Chapter 11 A HIERARCHY OF FORMAL LANGUAGES AND AUTOMATA

L is well defined and is in fact recursive. To see this, we construct a member-
ship algorithm. Given w;, we check it to sce if it defines a context-sensitive
grammar G;. If not, then w; ¢ L. If the string does define a grammar, then
L (G;) is recursive, and we can use the membership algorithm of Theorem
11.10 to find out if w; € L (G;). If it is not, then w; belongs to L.

But L is not context-sensitive. If it were, there would exist some w;
such that L = L(G;). We can then ask if w; is in L(G;). If we assume
that w; € L (Gj;), then by definition w; is not in L. But L = L (G,), so we
have a contradiction. Conversely, if we assume that w; ¢ L (G,), then by
definition w; € L and we have another contradiction. We must therefore
conclude that L is not context-sensitive. m

The result in Theorem 11.11 indicates that linear bounded automata
are indeed less powerful than Turing machines, since they accept only a
proper subset of the recursive languages. It follows from the same re-
sult that linear bounded automata are more powerful than pushdown au-
tomata. Context-free languages, being generated by context-free grammars,
are a subset of the context-sensitive languages. As various examples show,
they are a proper subset. Because of the essential equivalence of linear
bounded automata and context-sensitive languages on one hand, and push-
down automata and context-free languages on the other, we see that any
language accepted by a pushdown automaton is also accepted by some lin-
ear bounded automaton, but that there are languages accepted by some
linear bounded automata for which there are no pushdown automata.

EXERCISES

* 1., Find context-sensitive grammars for the following Janguages.
(a) L= {a"b"" ' :n>1}.
(b) L= {a“b"a,?'”‘ in > 1}
(¢) L={a"b"c"d":n>1,m>1} @&
(d) L={ww:we {a,b}"}

* 2. Find context-sensitive grammars for the following languages.
(a) L ={w:n, (w) =mny (w) =nc(w)}
(b) L={w:ng(w)=mns(w) <n.(w)}
3. Show that thc family of context-sensitive languages is closed under union.

4. Show that the family of context-sensitive languages is closed under reversal. #)

Figure 11.3

11.4 THe CHOMSKY HIERARCHY 295

5. For m in Theorem 11.10, give explicit bounds for m as a function of |w| and
[V uTi

6. Without explicitly constructing it, show that there exists a context-free gram-
mar for the language L = {wuw : w,u € {a,b}7} @

: The Chomsky Hierarchy

We have now encountered a number of language families, among them the
recursively enumerable languages (Lgy), the context-sensitive languages
(Lcg), the context-free languages (Lor), and the regular languages (Lrpa)-
One way of exhibiting the relationship between these families is by the
Chomsky hierarchy. Noam Chomsky, a founder of formal language the-
ory, provided an initial classification into four language types, type 0 to
type 3. This original terminology has persisted and one finds frequent ref-
erences to it, but the numeric types are actually different names for the
language families we have studied. Type 0 languages are those generated
by unrestricted grammars, that is, the recursively enumerable languages.
Type 1 consists of the context-sensitive languages, type 2 consists of the
context-free languages and type 3 consists of the regular languages. As we
have seen, each language family of type i is a proper subset of the family of
type i —1. A diagram (Figure 11.3) exhibits the relationship clearly. Figure
11.3 shows the original Chomsky hierarchy. We have also met several other
language families that can be fitted into this picture. Including the fami-
lies of deterministic context-free languages (Lper), and recursive languages
(Lpee), we arrive at the extended hierarchy shown in Figure 11.4.

Other language families can be defined and their place in Figure 11.4
studicd, although their relationships do not always have the neatly nested
structure of Figures 11.3 and 11.4. In some instances, the relationships are
not completely understood.

Chapter 11 A HierarRcHY OF FORMAL LANGUAGES AND AUTOMATA

296
Figure 11.4 Tl
T Ly T
B .y
2
B .

W

t . We have previously introduced the context-free language

“\\ i M i N\ AN N W\\\\\N\\\\\\\\W\w
xample!] m%\\\“r

L Exam
L={w:n, (w) = (w)}
and shown that it is deterministic, but not linear. On the other hand, the
language
L= {a""} U {a"b?"}

is linear, but not deterministic. This indicates that the relationship between
regular, linear, deterministic context-free, and nondeterministic context-free

languages is as shown in Figure 11.5. -

Figure 11.5

11.4 Tar CHOMSKY HIERARCHY 297

There is still an unresolved issue. We introduced the concept of a
deterministic linear bounded automaton in Exercise 8, Section 10.5. We
can now ask the question we asked in connection with other automata:
What role does nondeterminism play here? Unfortunately, there is no easy
answer. At this time, it is not known whether the family of languages
accepted by deterministic linear bounded automata is a proper subset of
the context-sensitive languages.

To summarize, we have explored the relationships between several lan-
guage families and their associated automata. In doing so, we established
a hierarchy of languages and classified automata by their power as lan-
guage accepters. Turing machines are more powerful than lincar bounded
auntomata. These in turn are more powerful than pushdown automata. At
the bottom of the hierarchy are finite accepters, with which we began our
study.

EXERCISES

1. Collect examples given in this book that demonstrate that all the subset
relations depicted in Figure 11.4 are indeed proper ones.

2. Find two examples (excluding the one in Example 11.3) of languages that are
linear but not deterministic context-free.

3. Find two examples (excluding the one in Example 11.3) of langnages that are
deterministic context-free but not linear.

Limits of Algorithmic
Computation

l,l aving talked about what Turing machines can do, we now look at
" what they cannot do. Although Turing’s thesis leads us to believe
" that there are few limitations to the power of a Turing machine,
" we have claimed on several occasions that there could not exist any
algorithms for the solution of certain problems. Now we make more explicit
what we mean by this claim. Some of the results came about quite simply;
if a language is nonrecursive, then by definition there is no membership
algorithm for it. If this were all there was to this issue, it would not be
very interesting; nonrecursive languages have little practical value. But the
problem goes deeper. For example, we have stated (but not yet proved) that
there exists no algorithm to determine whether a context-free grammar is
unambiguous, This question is clearly of practical significance in the study
of programming languages.

We first define the concept of decidability and computability to pin
down what we mean when we say that somecthing cannot be done by a
Turing machine. We then look at several classical problems of this type,
among them the well-known halting problem for Turing machines. From this
follow a number of related problems for Turing machines and recursively

299

300

Chapter 12 Livits or ALGORITHMIC COMPUTATION

cnumerable languages. After this, we look at some questions relating to
context-free languages. Here we find quite a few important problems for
which, unfortunately, there are no algorithms.

Some Problems That Cannot Be Solved by
Turing Machines

The argument that the power of mechanical computations is limited is not
surprising. Intuitively we know that many vague and speculative questions
require special insight and reasoning well beyond the capacity of any com-
puter that we can now construct or even plausibly foresce. What is more
interesting to computer scientists is that there are questions that can be
clearly and simply stated, with an apparent possibility of an algorithmic
solution, but which are known to be unsolvable by any computer.

Computability and Decidability

In Definition 9.4, we stated that a function f on a certain domain is said
to be computable if there exists a Turing machine that computes the value
of f for all arguments in its domain. A function is uncomputable if no such
Turing machine exists. There may be a Turing machine that can compute
f on part of its domain, but we call the function computable only if there
is a Turing machine that computes the function on the whole of its domain.
We see from this that, when we classify a function as computable or not
computable, we must be clear on what its domain is.

Our concern here will be the somewhat simplified setting where the
result of a computation is a simple “yes” or “no.” In this case, we talk
about a problem being decidable or undecidable. By a problem we will
understand a set of related statements, each of which must be either true or
false. For example, we consider the statement “For a context-free grammar
G, the language L (G) is ambiguous.” For some G this is true, for others
it is false, but clearly we must have one or the other. The problem is to
decide whether the statement is true for any G we are given. Again, there is
an underlying domain, the set of all context-free grammars. We say that a
problem is decidable if there exists a Turing machine that gives the correct
answer for every statement in the domain of the problem.

When we state decidability or undecidability results, we must always
know what the domain is, because this may affect the conclusion. The prob-
lem may be decidable on some domain but not on another. Specifically, a
single instance of a problem is always decidable, since the answer is either
true or false. In the first case, a Turing machine that always answers “true”
gives the correct answer, while in the second case one that always answers
“falge” is appropriate. This may seem like a facetious answer, but it ernpha-
sizes an important point. The fact that we do not know what the correct

12.1 SoME PRroBLEMS THAT CANNOT BE SOLVED BY TURING MACHINES 301

answer is makes no difference, what matters is that there exists some Turing
machine that does give the correct response.

The Turing Machine Halting Problem

We begin with some problems that have some historical significance and
that at the same time give us a starting point for developing later results.
The best-known of these is the Turing machine halting problem. Simply
stated, the problem is: given the description of a Turing machine M and
an input w, does M, when started in the initial configuration gow, perform
a computation that eventually halts? Using an abbreviated way of talking
about the problem, we ask whether M applied to w, or simply (M, w), halts
or does not halt. The domain of this problem is to be taken as the set of
all Turing machines and all w; that is, we arc looking for a single Turing
machine that, given the description of an arbitrary M and w, will predict
whether or not the computation of M applied to w will halt.

We cannot find the answer by simulating the action of M on w, say by
performing it on a universal Turing machine, because there is no limit on
the length of the computation. If M enters an infinite loop, then no matter
how long we wait, we can never be sure that M is in fact in a loop. It may
simply be a case of a very long computation. What we need is an algorithmn
that can determine the correct answer for any M and w by performing some
analysis on the machine’s description and the input. But as we now show,
no such algorithm exists.

For subsequent discussion, it is convenient to have a precise idea of
what we mean by the halting problem; {or this reason, we make a specific
definition of what we stated somewhat loosely above.

Let wps be a string thal describes a Turing machine M = (Q, %, T, §, gy, 0, F),
and let w be a string in M’s alphabet. We will assume that wy; and w are
encoded as a string of 0’s and 1’s, ag suggested in Section 10.4. A solution
of the halting problem is a Turing machine H, which for any was and w
performs the computation

*

Quwpw F x1gyirs,

it M applied to w halts, and

#*

qowarw E Yy gry2,

if M applicd to w does not halt. Here g, and g,, are both final states of H.

302

Fignre 12.1

Chapter 12 Livits OF ALGORITHMIC COMPUTATION

There does not exist any Turing machine H that hchaves as required by
Definition 12.1. The halting problem is therefore undecidable.

Proof: We assume the contrary, namely, that there exists an algorithm,
and consequently some Turing machine H, that solves the halting problem.
The input to H will be the string wprw. The requirement is then that, given
any wyw, the Turing machine H will halt with either a yes or no answer.
We achieve this by asking that A halt in one of two corresponding final
states, say, q, or ¢,. The situation can be visualized by a block diagram
like Figure 12.1. The intent of this diagram is to indicate that, if M is
started in state gg with input wasw, it will eventually halt in state g, or
gn- As required by Definition 12.1, we want H to operate according to the
following rules:

*

Qowpmw FHT1Gy T2,

if M applied to w halts, and

Gowpmw IQH Y1anye,

if M applied to w does not halt.

Next, we modify H to produce a Turing machine H’ with the structure
shown in Figure 12.2. With the added states in Figure 12.2 we want to
convey that the transitions between state ¢, and the new states g, and g
are to be made, regardless of the tape symbol, in such a way that the tape
remains unchanged. The way this is done is straightforward. Comparing
H and H' we see that, in situations where H reaches g, and halts, the
modified machine H’ will enter an infinite loop. Formally, the action of I’
is described by

*

Gowparw Fgr 0o,

if M applied to w halts, and

#

GoWMW = Y19ny2,

if M applied to w does not halt.

Figure 12.2

12.1 SOME PROBLEMS THAT CANNOT BE SOLVED BY TURING MACHINES 303

From H’ we construct another Turing machine H. This new machine
takes as input wys and copies it, ending in its initial state go. After that, it
behaves exactly like H’. Then the action of H is such that

Qowm btz gwmwn Fg oo,

if M applied to wy, halts, and

* *
QoW F g Qowmwnm F g Yigaye,

if M applied to wps does not halt.

Now H is a Turing machine, so it has a description in {0,1}", say, @.
This string, in addition to being the description of H, also can be used as
input string. We can therefore legitimately ask what would happen if H is
applied to @. From the above, identifying M with H, we get

Gow gz 00,
if i applied to @ halts, and

*
QoW F g Y1gny2,

it H applied to @ does not halt. This is clearly nonsense. The contradiction
tells us that our assumption of the existence of H, and hence the assumption
of the decidability of the halting problem, must be false. =

One may object to Definition 12.1, since we required that, to solve the
halting problem, H had to start and end in very specific configurations. It
is, however, not hard to see that these somewhat arbitrarily chosen con-
ditions play only a minor role in the argument, and that essentially the
same reasoning could be used with any other starting and ending configu-
rations. We have tied the problem to a specific definition for the sake of the
discussion, but this does not affect the conclusion.

It is important to keep in mind what Theorem 12.1 says. It does not
preclude solving the halting problem for specific cases; often we can tell by
an analysis of M and w whether or not the Turing machine will halt. What

304

Chapter 12 LiMITS OF ALGORITHMIC COMPUTATION

the theorem says is that this cannot always be done; there is no algorithm
that can make a correct decision for all wys and w.

The arguments for proving Theorem 12.1 were given because they are
classical and of historical interest. The conclusion of the theorem is actually
implied in previous results as the following argument shows.

If the halting problem were decidable, then every recursively enumerable
language would be recursive. Consequently, the halting problem is unde-
cidable.

Proof: To see this, let L be a recursively enumerable language on X, and let
M be a Turing machine that accepts L. Let H be the Turing machine that
solves the halting problem. We construct from this the following procedure:

1. Apply H to wyw. If H says “no,” then by definition w is not in L.

2. If H says “yes,” then apply M to w. But M must halt, so it will
eventually tell us whether w is in L or not,

This constitutes a membership algorithm, making L recursive. But we
already know that there are recursively enumerable languages that arc not
recursive. The contradiction implies that H cannot exist, that is, that the
halting problem is undecidable.

The simplicity with which the halting problem can be obtained from
Theorem 11.5 is a consequence of the fact that the halting problem and
the membership problem for recursively enumerable languages are nearly
identical. The only difference is that in the halting problem we do not
distinguish between halting in a final and nonfinal state, whereas in the
membership problem we do. The proofs of Theorems 11.5 (via Theorem
11.3) and 12.1 are closely related, both being a version of diagonalization.

Reducing One Undecidable Problem to Another

The above argument, connecting the halting problem to the membership
problem, illustrates the very important technique of reduction. We say that
a problem A is reduced to a problem B if the decidability of A follows
from the decidability of B. Then, if we know that A is undecidable, we can
conclude that B is also undecidable. Let us do a few examples to illustrate
this idea.

Example 12.1

The state-entry problem is as follows. Given any Turing machine M =
(Q,%,T,6,q0,lJ, F)and any g € Q, w € ¥ T, decide whether or not the state
q is ever entered when M is applied to w. This problem is undecidable.

12.1 SoME PROBLEMS THAT CANNOT BE SOLVED BY TURING MACGHINES 305

To reduce the halting problem to the state-entry problem, suppose that
we have an algorithm A that solves the state-entry problem. We could then
use it to solve the halting problem. For example, given any M and w, we
first modify M to get M in such a way that M halts in state g if and only
if M halts. We can do this simply by looking at the transition function ¢
of M. Tf M halts, it does so because some § (¢;, a) is undefined. To get M,
we change every such undefined § to

4 (Qia CL) = (qvayR) s

where ¢ is a final state. We apply the state-entry algorithm A to (ﬁ .4, w).

If A answers yes, that is, the state ¢ is entered, then (M, w) halts. If A says
no, then (M, w) does not halt.

Thus, the assumption that the state-entry problem is decidable gives
us an algorithm for the halting problem. Because the halting problem is
undecidable, the state-entry problem must also be undecidable.

|

The blank-tape halting problem is another problem to which the halting
problem can be reduced. Given a Turing machine M, determine whether
or not M halts if started with a blank tape. This is undecidable.

To show how this reduction is accomplished, assume that we are given
some M and some w. We first construct from M a new machine M,
that starts with a blank tape, writes w on it, then positions itself in a
configuration gow. After that, M,, acts like M. Clearly M, will halt on a
blank tape if and only if M halts on w.

Suppose now that the blank-tape halting problem were decidable. Given
any (M, w), we first construct M,,, then apply the blank-tape halting prob-
lem algorithm to it. The conclusion tells us whether M applied to w will
halt. Since this can be done for any M and w, an algorithm for the blank-
tape halting problem can be converted into an algorithm for the halting
problem. Since the latter is known to be undecidable, the same must be
true for the blank-tape halting problem. -

The construction in the arguments of these two examples illustrates an
approach common in establishing undecidability results. A block diagram
often helps us visualize the process. The construction in Example 12.2 is
summarized in Figure 12.3. In that diagram, we first usc an algorithm that
transforms (M, w) into M,,; such an algorithm clearly exists. Next, we use
the algorithm for solving the hlank-tape halting problem, which we assume
exists. Putting the two together yields an algorithm for the halting problem.
But this is impossible, and we can conclude that A cannot exist.

306

Figure 12.3
Algorithm for
halting problern.

[xcﬁmple 12.3

Chapter 12 Tuivirs oF ALCORITHMIC CCOMPUTATION

M Blank-tape | Has L Halts

Maw | (Tt’l\ﬂlﬁmﬂ' % o halting
11|_nr1rhm A - * Does not hale
_ S Does not

halt

A decision problem is cffectively a function with a range {0,1}, that
is, a true or false answer. We can look also at more general functions to
see if they are computable; to do so, we follow the established method and
reduce the halting problem (or any other problem known to be undecidable)
to the problem of computing the function in question. Because of Turing’s
thesis, we expect that functions cncountered in practical circumstances will
be computable, so for examples of uncomputable functions we must look
a little further. Most examples of uncomputable functions are associated
with attempts to predict the behavior of Turing machines,

Let T'= {0, 1,0}. C‘on&ldor the function f (n) whose value is the maximum
number of moves that can be made by any n-state Turing machine that
halts when started with a blank tapc. This function, as it turns out, is not
computable.

Before we set out to demonstrate this, let us make sure that f(n) is
defined for all n. Notice first that there are only a finite number of Turing
machines with n states. This is because @ and 1" are finite, so 6 has a
finite domain and range. This in turn implies that there are only a finite
number of different §’s and therefore a finite number of different n-state
Turing machines.

Of all of the n-state machines, there are some that always halt, for
example machines that have ouly final states and therefore make no moves.
Some of the n-state machines will not halt when started with a blank tape,
but they do not enter the definition of f. Every machine that does halt
will execute a certain number of moves; of these, we take the largest to give
7 (n).

Take any Turing machine M and positive number m. It is easy to
modify M to produce M insuch a way that the latter will always halt with
one of two answers: M applied to a blank tape halts in nd more than m
moves, or M applied to a blank tape makes morc than m moves. All we
have to do for this is to have M count its moves and terminate when this
count exceeds m. Assume now that f(n) is computable by some Turing

12.1 SoME PROBLEMS THAT CANNOT Br SOLVED BY TURING MACHINES

Figure 12.4
Algorithm for
blank-tape halting
problem.

M halts in

‘ ‘ m Steps.
= Construct | M ,! M | How
’,‘_ M | M does not Does not hale
M| . - halt in m steps.
| 1 =__.f-f |Q!]
|

307

machine F', We can then put M and F together as shown in Figure 12.4.
First we compute f (|Q]), where @ is the state set of M. This tells us the
maximum number of moves that M _can make if it is to halt. The value we
get is then used as m to construct M as outlined, and a description of M is
given to a universal Turing machine for exccution, This tells us whether M
applied to a blank tape halts or does not halt in less than f (]Q|) steps. If we
find that M applied to a blank tape makes more than f (|Q]) moves, then
becanse of the definition of f, the implication is that M never halts. Thus
we have a solution to the blank tape halting problem. The impossibility of
the conclusion forces us to accept that f is not computable.

EXERCISES

Deseribe in detail how H in Theorem 12.1 can be modified to produce H'.

*

Suppose we change Definition 12.1 to require that gowarw F g,w or gowarw F
gnw, depending on whether M applied to w halts or not. Reexamine the proof
of Theorem 12.1 to show that this difference in the definition does not affect
the proof in any significant way.

Show that the following problem is undecidable. Given any Turing machine
M,a €T, and w ¢ ¥, determine whether or not the symbol a is ever written
when M is applied to w.

In the general balting problem, we ask for an algorithm that gives the correct
answer for any M and w. We can relax this generality, for example, by looking
for an algorithm that works for all M but only a single w. We say that such a
problem is decidable if for every w there exists a (possibly different) algorithm
that determines whether or not (M, w) halts. Show that even in this restricted
setting the problem is undecidable.

308

Chapter 12 LIMITS OF ALGORITHMIC COMPUTATION

&

Show that there is no algorithm to decide whether or not an arbitrary Turing
machine halts on all input.

Consider the question: “Does a Turing machine in the course of a computa-
tion revisit the starting cell (i.e. the cell under the read-write head at the
beginning of the computation)?” Is this a decidable question?

Show that there is no algorithm for deciding if any two Turing machines M;
and M, accept the same language. #

8. How is the conclusion of Exercise 7 affected if My is a finite automaton?

9. Is the halting problem solvable for deterministic pushdown automata; that

10.

11.
12,

13.

14.

ig, given a pda as in Definition 7.2, can we always predict whether or not the
automaton will halt on input w?

Let M be any Turing machine and x and y two possible instantaneous de-
scriptions of it. Show that the problem of determining whether or not

&

mey

is undecidable. @
In Example 12.3, give the values of f (1) and f (2).

Show that the problem of determining whether a Turing machine halts on
any input is undecidable.

Let B be the set of all Turing machines that halt when started with a blank
tape. Show that this set is recursively cnumerable, but not recursive. ®

Consider the set of all n-state Turing machines with tape alphabet I' =
{0,1,00}. Give an expression for m (n), the number of distinct Turing ma-
chines with this I',

. Let I' = {0,1,0} and let b (n) be the maximum number of tape cells examined

by any n-state Turing machine that balts when started with a blank tape.
Show that b(n) is not computable,

. Determine whether or not the following statement is true: Any problem whose

domain is finite is decidable. &

Undecidable Problems for Recursively
Enumerable Languages

We have determined that there is no membership algorithm for recursively
enumerable languages. The lack of an algorithm to decide on some property
is not an exceptional state of affairs for recursively enumerable languages,
but rather is the general rule. As we now show, there is little we can say
about these languages. Recursively enumerable languages are so general
that, in essence, any question we ask about them is undecidable. Invariably,

12.2 UNDECIDABLE PROBLEMS FOR RECURSIVELY ENUMERABLE LANGUAGES 309

Theorem 12.3

Figure 12.5
Mermnbership
algorithm.

when we ask a question about recursively emumerable languages, we find
that there is some way of reducing the halting problem to this question. We
give here some examples to show how this is done and from these examples
derive an indication of the general situation.

Let G be an unrestricted grammar. Then the problem of determining
whether or not

LG =w
is undecidable.

Proof: We will reduce the membership problem for recursively enumerable
languages to this problem. Suppose we are given a Turing machine M and
some string w. We can modify M as follows. M first saves its input on some
special part of its tape. Then, whenever it enters a final state, it checks its
saved input and accepts it if and only if it is w. We can do this by changing
d in a simple way, creating for cach w a machine M,, such that

L(My)=L(M)n{w}.

Using Theorem 11.7, we then construct a corresponding grammar G,.
Clearly, the construction leading from M and w to Gy, can always be done.
Equally clear is that L (G,,) is nonempty if and only if w € L (M).

Assume now that there exists an algorithm A for deciding whether or
not L (G) = @. If we let T denote an algorithm by which we generate G,,,
then we can put T and A together as shown in Figure 12.5. Figure 12.5
is a Turing machine which for any M and w tells us whether or not w is
in L (M). If such a Turing machine existed, we would have a membership
algorithm for any recursively cnumerable language, in direct contradiction
to a previously established result. We conclude therefore that the stated
problem “L (G) = @” is not decidable. m

T L(G,w) not empty
_,‘ L_rn,str 1ct | | Empriness B - weliM)

[algorithm 4 | L saweLiM)
| | L(G,,) empry

310

Example 12.4

Figure 12.6

Chapter 12 LimiTs OF ALGORITHMIC COMPUTATION

Let M be any Turing machine. Then the question of whether or not L (M)
is finite is undecidable.

Proof: Consider the halting problem (M, w). From M we construct an-
other Turing machine M that does the following. First, the halting states
of M are changed so that if any one is reached, all input is accepted by M.
This can be done by having any halting configuration go to a final state.
Second, the original machine is modified so that the new machine M first
generates w on its tape, then performs the same computations as M, using
the newly created w and some otherwise unused space. In other words, the
moves made by M after it has written w on its tape are the same as would
have been made by M had it started in the original configuration gow. 1f
M halts in any configuration, then M will halt in a final state.
Therefore, if (M,w) halts, M will reach a final state for all input. If
(M, w) does not halt then M will not halt either and so will accept nothing.
In other words, M either accepts the infinite language X7 or the finite
language &.
If we now assume the existence of an algorithm A that tells us whether

or not L (M) is finite, we can construct a solution to the halting problem

as shown in Figure 12.6. Therefore no algorithm for deciding whether or
not L (M) is finite can exist. =

Notice that in the proof of Theorem 12.4, the specific nature of the
question asked, namely “Is L (M) finite?”, is immaterial. We can change
the nature of the problem without significantly affecting the argument.

Show that for an arbitrary Turing machine M with ¥ = {a, b}, the problem
“L (M) contains two different strings of the same length” is undecidable.
To show this, we use exactly the same approach as in Theorem 12.4,
except that when M reaches a halting configuration, it will be modified to
accept the two strings a and b, For this, the initial input is saved and at the

L(M) finite

M Gencrate | M | Finiteness Does not halt

SRR M-S |

| | M l algorithm A |

—> Halts

L{M) not finite

12.2 UNDECIDABLE PROBLEMS FOR RECURSIVELY ENUMERABLE LANGUAGES 311

end of the computation compared with a and b, accepting only these two
strings. Thus, if (M, w) halts, M will accept two strings of equal length,
otherwise M will accept nothing. The rest of the argument then proceeds
as in Theorem 12.4.

|

In exactly the same manner, we can substitute other questions such as
“Does L (M) contain any string of length five? or “Is L (M) regular?”
without affecting the argument essentially. These questions, as well as simi-
lar questions, are all undecidable. A general result formalizing this is known
as Rice’s theorem. This theorem states that any nontrivial property of a
recursively enumerable language is undecidable. The adjective “nontrivial”
refers to a property possessed by some but not all recursively enumerable
languages. A precise statement and a proof of Rice’s theorem can be found
in Hopcroft and Ullman (1979).

EXERCISES

Show in detail how the machine M in Theorem 12.4 is constructed.
2. Show that the two problemé mentioned at the end of the preceding section,
namely
(a) L (M) contains any string of length five,
(b) L (M) is regular,

are undecidable.

Let M; and M: be arbitrary Turing machines. Show that the problem
“L(M1) C L(Mz)" is undecidable. @

4. Let G be any unrestricted grammar. Does there exist an algorithm for deter-
mining whether or not L (G)% is recursively enumerable?

L

5. Let G be any unrestricted grammar. Does there exist an algorithm for deter-
mining whether or not L (@) = L (G)%?

6. Let G1 be any unrestricted grammar, and G» any regular grammar. Show
that the problem
L(GWi)NL(G:) =9

is undecidable.

7. Show that the question in Exercise 6 is undecidable for any fixed G2, as long
as L {G2) is not empty.

8. For an unrestricted grammar G, show that the question “Is L (G) = L (G)*?”
is undecidable. Argue (a) from Rice's Theorem and (b) from first principles.

312

Chapter 12 LiMITS OF ALGORITHMIC COMPUTATION

The Post Correspondence Problem

The undecidability of the halting problem has many consequences of practi-
cal interest, particularly in the area of context-frec languages. But in many
instances it is cumbersome to work with the halting problem directly, and
it is convenient to establish some intermediate results that bridge the gap
between the halting problem and other problems. These intermediate re-
sults follow from the undecidability of the halting problem, but are more
closely related to the problems we want to study and therefore make the ar-
guments easier. One such intermediate result is the Post correspondence
problem.

The Post correspondence problem can be stated as follows. Given two
sequences of n strings on some alphabet X, say

A= Wi, Way ey Wy
and
B= U1, V2, .-, Un

we say that there exists a Post correspondence solution (PC-solution) for
pair (A, B) if there is a nonempty sequence of integers 4, 4, ..., k, such that

Wiy - - Wg = VyVj - - - Vg

The Post, correspondence problem is to devise an algorithm that will tell us,
for any (A4, B), whether or not there exists a PC-solution.

Figure 12.7

Let £ = {0,1} and take 4 and B as

wy = 11, ws = 100, w3 = 111
vy = 111, w9 = 001, vg = 11

For this case, there exists a PC-solution as Figure 12.7 shows.
If we take

w; = 00, ws = 001, ws = 1000
vy = 0,vy = 11,v3 =011

12.3 THe PosT CORRESPONDENCE PROBLEM 313

there cannot be any PC-solution simply because any string composed of
clements of A will be longer than the corresponding string from B.
|

In specific instances we may be able to show by explicit construction
that a pair (A4, B) permits a PC-solution, or we may be able to argue, as
we did above, that no such solution can exist. But in general, there is
no algorithm for deciding this question under all circumstances. The Post
correspondence problem is therefore undecidable.

To show this is a somewhat lengthy process. For the sake of clarity, we
break it into two parts. In the first part, we introduce the modified Post
correspondence problem. We say that the pair (4, B) has a modified
Post correspondence solution (MPC-solution) if there exists a sequence of
integers 14, 7, ..., k, such that

W Wy - - Wy = VI VV5 - - - Vg

In the modified Post correspondence problem, the first elements of the se-
quences A and B play a special role. An MPC solution must start with
wi on the left side and with vy on the right side. Note that if there exists
an MPC-solution, then there is also a PC-golution, but the converse is not
true.

The modified Post correspondence problem is to devise an algorithm for
deciding if an arbitrary pair (A, B) admits an MPC-solution. This problem
is also undecidable. We will demonstrate the undecidability of the modified
Post correspondence problem by reducing a known undecidable problem,
the membership problem for recursively enumerable languages, to it. To
this end, we introduce the following construction. Suppose we are given an
unrestricted grammar G = (V, 7,5, P) and a target string w. With these,
we create the pair (A, B) as shown in Figure 12.8. In Figure 12.8, the string
FS = is to be taken as wy and the string F' as v;. The order of the rest of
the strings is immaterial.

We want to claim eventually that w € L (G) if and only if the sets A
and B constructed in this way have an MPC-solution. Since this is perhaps
not immediately obvious, let us illustrate it with a simple example.

Let G = ({A,B,C},{a,b,c, }, S5, P) with productions

S — aABb|Bbb,
Bb— C,
AC — aac,

314

Figure 12.8

Chapter 12 LIMITS OF ALGORITHMIC COMPUTATION

4 B |
|
F§ o F | Fis a symbol notin ¥ UT
a a foreverya €T
i
V; Y for every VeV
|
I |
|
E > wE Eisasymbol notin ¥UT
Yi x, for every x, -y, in P
> =

and take w = aaac. The sequences A and B obtained from the suggested
construction are given in Figure 12.9. The string w = aaac is in L (@) and
has a derivation

S = aABb = aAC = aaac.

How this derivation is paralleled by an MPC-solution with the constructed
sets can be seen in Figure 12.10, where the first two steps in the derivation
are shown. The integers above and below the derivation string show the
indices for w and v, respectively, used to create the string.

Figurc 12.9

I
1 S>> | F
2 a a
30 5 b
4 c 4
5 4 A
6| B B
7 C c
8| 8 s
9| E = aaacE
10 | «4Bb s
11| Bp | 8
12| ¢ Bb
13 | aac | 4¢
14 | = >

Figure 12.10

Figure 12.11

12.3 THE PosT CORRESPONDENCE PROBLEM 315

W Wi

rls[=fe]a]s]>

Yy i
wy Wi Wiy Wy Wy Wy
F| 8 | 2| a | A|B ‘)] :>| a ‘ c
Uy Uy Yy Y T Y12
w Wiy Wiy Wy Wy Wiy Wy Wy Wys W
‘ ‘ S I > | a { A | B bl > a 4| C ‘ > | a a | a c | E
Y Y T Y7 U5 Y12 Vg U T3 Yy

Examine Figure 12.10 carefully to see what is happening. We want to
construct an MPC-solution, so we must start with w,, that is, F'S =. This
string contains .5, so to match it we have to use vig or v11. In this instance,
we use v1o; this brings in wyg, leading us to the second string in the partial
derivation. Looking at several more steps, we see that the string W W Wy ...
is always longer than the corresponding string viv;v;..., and that the first
is exactly one step ahead in the derivation. The only exception is the last
step, where wy must be applied to let the v-string catch up. The complete
MPC-solution is shown in Figure 12.11. The construction, together with
the example, indicate the lines along which the next result is established.

Let G = (V,T, S, P) be any unrestricted grammar, with w any string in
T+t. Let (A,B) be the correspondence pair constructed from G and w
be the process exhibited in Figure 12.8. Then the pair (4, B) permits an
MPC-solution if and only if w € L(G).

Proof: The proof involves a formal inductive argument based on the out-
lined reasoning. We will omit the details. =

With this result, we can reduce the membership problem for recursively
enumerable languages to the modified Post correspondence problem and
thereby demonstrate the undecidability of the latter.

316

Figure 12.12
Membership
algorithm.

Chapter 12 LiMmiTs OF ALGORITHMIC COMPUTATION

f—— - MP(- solution

— Construct 4 | IR we L(G)
W | . andBasin F2 S IMPC algorithm (
: L | ,weL(G)
Flgurcﬂ | No MPC- solution

| |
|]

The modified Post correspondence problem is undecidable.

Proof: Given any unrestricted grammar G = (V, T, S, P) and w € T, we
construct the sets A and B as suggested above. By Theorem 12.5, the pair
(A, B) has an MPC-solution if and only if w € L (G).

Suppose now we assume that the modified Post correspondence prob-
lem is decidable. We can then construct an algorithm for the membership
problem of G as sketched in Figure 12.12. An algorithm for constructing
A from B from G and w clearly exists, but a membership algorithm for
G and w does not. We must therefore conclude that there cannot be any
algorithm for deciding the modified Post correspondence problem. =

With this preliminary work, we are now ready to prove the Post corre-
spondence problem in its original form.

The Post correspondence problem is undecidable.

Proof: We argue that if the Post correspondence problem were decidable,
the modified Post correspondence problem would be decidable.

Suppose we are given sequences A = wi, W, ..., W and B = v}, vy, ..., 1,
on some alphabet £. We then introduce new symbols ¢ and § and the new
gequernces

C= Yo, Y153 Yn+1s
D= 205 £1y ooy Zntls

defined as follows. For i =1,2,...,n

Yi = Wi QWi2¢ - - - Wi, ¢,
Zy = QUiIQURE - Vipy,

where w;; and wv;; denole the 7t letter of w; and v;, respectively, and
m; = lw;],r; = |v)|. In words, y; is created from w; by appending ¢ to cach

12.3 THE PosT CORRESPONDENCE PPROBLEM 317

— MPC-solution

Figure 12.13
MPC algorithm.

i —— ‘ e PC— ql‘]]llT‘l“'['l
Construct | G D, | ppy algorithm

6D ——————— = No MPC-solution
N — — " No PC-solution

AB|

character, while z; is obtained by prefixing each character of v; with ¢..To
complete the definition of C' and D, we take

Yo = qYi,
Yn+1 = §7

2y = 2,
Zpt1 = ¢§

Consider now the pair (C, D), and suppose it has a PC-solution. Because
of the placement of ¢ and §, such a solution must have yg on the left and
Yn+1 on the right and so must look like

qW11GW12 - QWG - GWh - 48 = gU11¢U1s - - QUG - - - QU - - - €8,
Ignoring the characters ¢ and §, we see that this implies
Wity - Wy = MU; - U,

so that the pair (A, B) permits an MPC-solution.

We can turn the argument around to show that if there is an MPC-
solution for (A, B) then there is a PC-solution for the pair (C, D).

Assume now that the Post correspondence problem is decidable. We
can then construct the machine shown in Figurc 12.13. This machine clearly
decides the modified Post correspondence problem. But the modified Post
correspondence problem is undecidable, consequently, we cannot have an
algorithm for deciding the Post correspondence problem. wm

EXERCISES

1. Let A = {001,0011,11,101} and B = {01,111,111,010}. Does the pair
(A, B) have a PC-solution? Does it. have an MPC-solution? @

2. Provide the details of the proof of Theorem 12.5.

318 Chapter 12 LiviTs OF ALGORITHMIC COMPUTATION

3. Show that for |X| = 1, the Post correspondence problem is decidable, that is,
there is an algorithm that can decide whether or not (A, B) has a PC-solution
for any given (A4, B) on a single-letter alphabet.

4. Suppose we restrict the domain of the Post correspondence problem to include
only alphabcts with exactly two symbols. Is the resulting correspondence
problem decidable?

5. Show that the following modifications of the Post correspondence problem
are undecidable.

(a) There is an MPC-solution if there is a scquence of integers such
that wiw; - - - wrw1 = vivy - - - VEVL.

(b) There is an MPC-solution if there is a sequence of integers such
that wywewiw; - Wi = vivawivy - - - V.

6. The correspondence pair (A4, B) is said to have an even PC-solution if and
only if there exists a nonempty sequence of even integers 4,7, ...k such that
WiW; -+ - Wk = Vv -+ - vg. Show that the problem of deciding whether or not
an arbitrary pair (A, B) has an even PC-solution is undecidable.

Undecidable Problems for Context-Free
Languages

The Post correspondence problem is a convenient tool for studying unde-
cidable questions for context-free languages. We illustrate this with a few
selected results.

There exists no algorithm for deciding whether any given context-free gram-
mar is ambiguous.

Proof: Consider two sequences of strings A = (wy,ws,...,w,) and B =
(v1,vg,...vy) over some alphabet ¥. Choose a new set of distinct symbols
G1, a2, ..., Opn, Such that

{a,a2,..,a,} NE =@,
and consider the two languages
L = {wyw; - - wywgoga; - - - a;a;}
and
Lp = {vw; - - - vivkaga - - - ajeq}.
Now look at the context-free grammar

G = ({S, SA,SB},E U {al,ag, ...an},P, S)

12.4 UNDECIDABLE PROBLEMS FOR CONTEXT-FREE LANGUAGES 319

where the set of productions P is the union of the two subsets: the first set
P4 consists of

S — Sa,

Sa — wiSaa;|w;a;, i=1,2,...,n,

the second set PPg has the productions

5 — S,
Sp — v;5pa;|v;a,, i=1,2,..,n
Now take
Ga=({554},20U{a1,as,...,a,},Pa,5)
and

Gp = ({S, Sn} , LU {(11,0,2, ...,an} ,PB,S) .

Then clearly

and
L (G) =LaULpg.

It is easy to see that G4 and G by themselves are unambiguous. If
a given string in L (G) ends with a;, then its derivation with grammar G4
must have started with § = w;Sa,. Similarly, we can tell at any later stage
which rule has to be applied. Thus, if G is ambiguous it must be because
there is a w for which there are two derivations

S = S4 = w;Saa; = wiw; - WG -+ @@ =W

and
S = Sp = v;8p0; = ViV Vgl t Q0 = W,

Consequently, if G is ambiguous, then the Post correspondence problem
with the pair (A, B) has a solution. Conversely, if G is unambiguous, then
the Post correspondence problem cannot have a solution.

If there existed an algorithm for solving the ambiguity problem, we
could adapt it to solve the Post correspondence problem as shown in Figure
12.14. But since there is no algorithm for the Post correspondence problem,
we conclude that the ambiguity problem is undecidable. m

320 Chapter 12 LimiTs o ALGORITIMIC COMPUTATION

Figure 12.14
PC algorithm.

G is ambiguous.

L PC-solution

| = = G Ambiguity

48 Construct G e L=
algorithm |

' Gis not ambiguous.

—= N PC-solution

There exists no algorithm for deciding whether or not
L(G)NL(Gey=w
for arbitrary context-frec grammars GGy and Gs.

Proof: Take as (G; the grammar G 4 and as G5 the grammar Gp as defined
in the proof of Theorem 12.8. Suppose that L(G4) and L (Gg) have a
common element, that is

-y *
Sa = WiW,j - WeAg ** Qa4
and
#
Sp = vV Uk - - @50,

Then the pair (A, B) has a PC-solution. Conversely, if the pair does not have
a PC-solution, then L (G 4) and L (Gg) cannot have a common element. We
conclude that L (Ga) N L(Gg) is nonempty if and only if (A4, B) has a PC-
solution. This reduction proves the theorem. m

T |

There is a variety of other known results along these lines. Some of
them can be reduced to the Post correspondence problem, while others are
more easily solved by establishing different intermediate results first (see for
example Exercises 6 and 7 at the end of this section). We will not give the
arguments here, but point to some additional results in the exercises.

That there are many undecidable problems connected with context-free
languages seems surprising at first and shows that there are limitations to
computations in an area in which we might be tempted to try an algorithmic
approach. For example, it would be helpful if we could tell if a programming
language defined in BNF is ambiguous, or if two different specifications of a
language are in fact equivalent. But the results that have been established
tell us that this is not possible, and it would be a waste of time to look for
an algorithm for either of these tasks. Keep in mind that this does not rule
out the possibility that there may be ways of getting the answer for specific

12.4 UNDECIDABLE PROBLEMS FOR CONTEXT-FREE LANGUAGES 321

cases or perhaps even most interesting ones. What the undecidability results
tell us is that there is no completely general algorithm and that no matter
how many different cases a method can handle, there are invariably some
situations for which it will break down.

EXERCISES

1.

* 2.

* 6,

* 7,

Prove the claim made in Theorem 12.8 that G4 and Gg by themselves are
unambiguous.

Show that the problem of determining whether or not

L(Gy) C L(G)

is undecidable for context-free grammars G1, Ga.

Show that, for arbitrary context-free grammars G4 and G, the problem
“L{G1) N L (G2) is context-free” is undecidable.

Show that if the language L (Ga) N L (Gg) in Theorem 12.8 is regular, then
it must be empty. Use this to show that the problem “L (G) is regular” is
undecidable for context-free G.

Let Ly be a regular language and G a context-free grammar. Show that the
problem “L; € L(G)” is undecidable.

Let M be any Turing machine. We can assume without loss of generality
that every computation involves an even number of moves. For any such
computation

QW Ere b by,
we can then construct the string
qowl—mfti—mz |—£L'§"|— PR ol

This is called a valid computation.

Show that for every M we can construct three context-free grammars G1, Ga,
(3, such that

(a) the set of all valid computations is L (G1) N L (Gz),

(b) the set of all invalid computations (that is, the complement of the
get of valid computations) is L (G3).

Use the results of the above exercise to show that “L () = £*” is undecidable
over the domain of all context-free grammars G.

Let 1 be a context-free grammar and G2 a regular grammar. Is the problem
L(GI)NL(G:) =2

decidable?

322 Chapter 12 Livits or ALGORITIIMIC COMPUTATION

* 9, Let G; and (3 be grammars with G regular. Is the problem
L(G1) = L(G2)
decidable when

(a) G2 is unrestricted,
(b) when G2 is context-free,

(c) when G2 is regular?

Other Models

of Computation

lthough Turing machines are the most general models of compu-

tation we can construct, they are not the only ones. At various

times, other models have been proposed, some of which at first

glance seemed to be radically different from Turing machines. Even-
tually, however, all the models were found to be equivalent. Much of the
pioneering work in this area was done in the period between 1930 and 1940
and a number of mathematicians, A. M. Turing among them, contributed
to it. The results that were found shed light not only on the concept of a
mechanical computation, but on mathematics as a whole.

Turing’s work was published in 1936. No commercial computers were
available at that time. In fact, the whole idea had been considered only
in a very peripheral way. Although Turing’s ideas eventually became very
important in computer science, his original goal was not to provide a foun-
dation for the study of digital computers. To understand what Turing was
trying to do, we must briefly look at the state of mathematics at that time.

With the discovery of differential and integral calculus by Newton and
Leibniz in the seventeenth and eighteenth centuries, interest in mathematics
increased and the discipline entered an era of explosive growth. A number of

323

324

Chapter 13 O1nEr MODELS OF COMPUTATION

different areas were studied, and significant advances were made in almost
all of them. By the end of the nineteenth century, the body of mathematical
knowledge had become quite large. Mathematicians also had become suf-
ficiently sophisticated to recognize that some logical difficulties had arisen
that required a more careful approach. This led to a concern with rigor in
reasoning and a consequent examination of the foundations of mathemati-
cal knowledge in the process. To see why this was necessary, consider what
is involved in a typical proof in just about every book and paper dealing
with mathematical subjects. A sequence of plausible claims is made, inter-
spersed with phrases like “it can be seen easily” and “it follows from this.”
Such phrases are conventional, and what one means by them is that, if
challenged to do so, one could give more detailed reasoning. Of course, this
is very dangerous, since it is possible to overlook things, use faulty hidden
assumptions, or make wrong inferences. Whenever we see arguments like
this, we cannot help but wonder if the proof we are given is indeed correct.
Often there is no way of telling, and long and involved proofs have been
published and found erroneous only after a considerable amount of time.
Because of practical limitations, however, this type of reasoning is accepted
by most mathematicians. The arguments throw light on the subject and at
least increase our confidence that the result is true. But to those demanding
complete reliability, they are unacceptable.

One alternative to such “sloppy” mathematics is to formalize as far
as possible. We start with a sct of assumed givens, called axioms, and
precisely defined rules for logical inference and deduction. The rules are
used in a sequence of steps, cach of which takes us from one proven fact to
another. The rules must be such that the correctness of their application
can be checked in a routine and completely mechanical way. A proposition is
considered proven true if we can derive it from the axioms in a finite sequence
of logical steps. If the proposition conflicts with another proposition that
can be proved to be true, then it is considered false.

Finding such formal systems was a major goal of mathematics at the
end of the nineteenth century. Two concerns immediately arose. The first
was that the system should be conmsistent. By this we mean that there
should not be any proposition that can be proved to be truc by one se-
quence of steps, then shown to be false by another equally valid argument.
Consistency is indispensable in mathematics, and anything derived from an
inconsistent system would be contrary to all we agree on. A second concern
was whether a system is complete, by which we mean that any proposition
expressible in the system can be proved to be true or false. For some time
it was hoped that consistent and complete systems for all of mathemat-
ics could bhe devised thereby opening the door to rigorous but completely
mechanical theorem proving. DBut this hope was dashed by the work of
K. Gédel. In his famous Incompleteness Theorem, Godel showed that
any interesting consistent system must be incomplete; that is, it must con-

13.1 RECURSIVE FUNCTIONS 325

tain some unprovable propositions. Gddel’s revolutionary conclusion was
published in 1931.

Godel’s work left unanswered the question of whether the unprovable
statements could somehow be distinguished from the provable ones, so that
there was still some hope that most of mathematics could be made precise
with mechanically verifiable proofs. It was this problem that Turing and
other mathematicians of the time, particularly A. Church, 5. C. Kleene,
and E. Post, addressed. In order to study the question, a variety of for-
mal models of computation were established. Prominent among them were
the recursive functions of Church and Kleene and Post systems, but there
are many other such systems that have been studied. In this chapter we
briefly review some of the ideas that arosc out of these studies. There is a
wealth of material here that we cannot cover. We will give only a very bricf
presentation, referring the reader to other refercnces for detail. A quite
accessible account of recursive functions and Post systems can be found in
Denning, Dennis, and Qualitz (1978), while a good discussion of various
other rewriting systems is given in Salomaa (1973) and Salomaa (1985).

The models of computation we study here, as well as others that have
been proposed, have diverse origins. But it was eventually found that they
were all equivalent in their power to carry out computations. The spirit
of this observation is generally called Church’s thesis. This thesis states
that all possible models of computation, if they are sufficiently broad, must
be equivalent. It also implies that there is an inherent limitation in this and
that there are functions that cannot be expressed in any way that gives an
explicit method for their computation. The claim is of course very closely
related to Turing’s thesis, and the combined notion is sometimes called the
Church-Turing thesis. It provides a general principle for algorithmic
computation and, while not provable, gives strong evidence that no more
powerful models can be found.

“}8¢¥: Recursive Functions

The concept of a function is fundamental to much of mathematics. As sum-
marized in Section 1.1, a function is a rule that assigns to an element of one
set, called the domain of the function, a unique value in another set, called
the range of the function. This is very broad and general and immedi-
ately raises the question of how we can explicitly represent this association.
There are many ways in which functions can be defined. Some of them we
use frequently, while others are less common,

We are all familiar with functional notation in which we write expres-
sions like

f(n)=n%+1.

326

Chapter 13 OTHER MODELS OF COMPUTATION

This defines the function f by means of a recipe for its computation:
given any value for the argument n, multiply that value by itself, and then
add one. Since the function is defined in this explicit way, we can compute
its values in a strictly mechanical fashion. To complete the definition of f,
we also must specify its domain. If, for example, we take the domain to be
the set of all integers, then the range of f will be some subset of the set of
positive integers.

Since many very complicated functions can be specified this way, we
may well ask to what extent the notation is universal. If a function is
defined (that is, we know the relation between the elements of its domain
and its range), can it be expressed in such a functional form? To answer the
question, we must first clarify what the permissible forms are: for this we
introduce some basic functions, together with rules for building from them
some more complicated ones.

Primitive Recursive Functions

To keep the discussion simple, we will consider only functions of one or two
variables, whose domain is either I, the set of all non-negative integers, or
I x I, and whose range is in I. In this setting, we start with the basic
functions:

1. The zero function 2 (z) =0, for all z € I.

2. The successor function s(x), whose value is the integer next in se-
quence to x, that is, in the usual notation, s (z) =z + 1.

3. The projector functions
Pk (1, 12) = 241, k=12
There are two ways of building more complicated functions from these:

1. Composition, by which we construct
f(@,y) = h(g1(z,y),92 (z,9))

from defined functions gy, g2, h.

2. Primitive recursion, by which a function can be defined recursively
through

f(,0) = g1 (x),
f(may+ l) = h(92 (Sv,y),f(m,y)),

from defined functions ¢,, g2, and h.

13.1 RECURSIVE FUNCTIONS 327

We illustrate how this works by showing how the basic operations of
integer arithmetic can be constructed in this fashion.

Example 13.1

Addition of integers x and y can be implemented with the function add (z, y),
defined by

add (x,0) = x,
add(z,y + 1) = add (z,y) + L.
To add 2 and 3, we apply these rules successively:
add (3,2) = add (3,1) +1
=(add (3,0) +1)+1

—(3+1)+1
—4+1=5.

Example 13.2

Using the add function defined in Example 13.1, we can now define multi-
plication by

mult (z,0) =0,
mult (z,y + 1) = add (z, mult (z,7)) -

Formally, the second step is an application of primitive recursion, in which
h is identified with the add function, and gg (z,y) is the projector function

py (2,) -

Example 13.3

Substraction is not quite so obvious. First, we must define it, taking into
account that negative numbers are not permitted in our system. A kind of
subtraction is defined from usual subtraction by

r—y=ua—yifx >y,
r—y=0ifz <.

The operator — is sometimes called the monus; it defines subtraction so
that its range is I.

328

Chapter 13 OTHER MODELS OF COMPUTATION

Now we define the predecessor function

pred (0) =0,
pred(y+1) =y,

and from it, the subtracting function

subtr (x,0) = x,
subtr (z,y + 1) = pred (subtr (z,y)) .

To prove that 5—3 == 2, we reduce the proposition by applying the definitions
a number of times:

subtr (5,3) = pred (subtr (5,2))
= pred (pred (subtr (5,1)))
= pred (pred (pred (subtr (5,0))))
= pred (pred (pred (5)))
= pred (pred (4))
= pred (3)
= 2.

In much the same way, we can define integer division, but we will leave
the demonstration of it as an exercise. If we accept this as given, we see
that the basic arithmetic operations are all constructible by the elementary
processes described. With the algebraic operations precisely defined, other
more complicated ones can now be constructed, and very complex computa-
tions built from the simple ones. We ¢all functions that can be constructed
in such a manner primitive recursive.

A function is called primitive recursive if and only if it can be constructed
from the basic functions z, s, pg, by successive composition and primitive
recursion.

Note that if g1, g2, and h are total functions, then f defined by compo-
sition and primitive recursion is also a total function. It follows from this
that every primitive recursive function is a total function on I or I x I.

13.1 RECURSIVE FUNCTIONS 329

The expressive power of primitive recursive functions is considerable,
and most common functions are primitive recursive. However, not all func-
tions are in this class, as the following argument shows.

Let F' denote the set of all functions from I to I. Then there is some
function in F that is not primitive recursive.

Proof: Every primitive recursive function can be described by a finite string
that indicates how it is defined. Such strings can be encoded and arranged
in standard order. Therefore, the set of all primitive recursive functions is
countable.

Suppose now that the set of all functions is also countable. We can
then write all functions in some order, say, fi, fz,.... We next construct a
function g defined as

g(@) = fi(9)+1, i=1,2,...

Clearly, g is well defined and is therefore in F', but equally clearly, g differs
from every f; in the diagonal position. This contradiction proves that F
cannot be countable.

Combining these two observations proves that there must be some func-
tion in F that is not primitive recursive. m

Actually, this goes even further; not only are there functions that are
not primitive recursive, there are in fact computable functions that are not
primitive recursive.

Let C be the set of all total computable functions from I to I. Then there
is some function in C that is not primitive recursive.

Proof: By the argument of the previous theorem, the set of all primitive
recursive functions is countable. Let us denote the functions in this set as
T1,T32,... and define a function g by

g (1) =r; (i) + 1.
By construction, the function g differs from every r; and is therefore not

primitive recursive. But clearly g is computable, proving the theorem. u
(S = T

The nonconstructive proof that there are computable functions that
are not primitive recursive is a fairly simple exercise in diagonalization.
The actual construction of an example of such a function is a much more
complicated matter. We will give here one example that looks quite simple;
however, the demonstration that it is not primitive recursive is quite lengthy.

330

Chapter 13 OTHER MODELS OF COMPUTATION

Ackermann’s Function

Ackermann’s function is a function from I x I to I, defined by

A y)=y+1,
Az, 0)=A(z—1,1),

It is not hard to see that A is a total, computable function. In fact, it is quite
elementary to write a recursive computer program for its computation. But
in spite of its apparent simplicity, Ackermann’s function is not primitive
recursive.

Of course, we cannot argue directly from the definition of A. Even
though this definition is not in the form required for a primitive recursive
function, it is possible that an appropriate alternative definition could exist.
The situation here is similar to the one we encountered when we tried to
prove that a language was not regular or not context-free. We need to appeal
to some general property of the class of all primitive recursive functions
and show that Ackermann’s function violates this property. For primitive
recursive functions, one such property is the growth rate. There is a limit to
how fast a primitive recursive function can grow as ¢ — oo, and Ackermann’s
function violates this limit. That Ackermann’s function grows very rapidly
is easily demonstrated; see, for example, Exercises 9 to 11 at the end of this
section. How this is related to the limit of growth for primitive recursive
functions is made precise in the following theorem. Its proof, which is
tedious and technical, will be omitted.

Let f be any primitive recursive function. Then there exists some integer
n such that

f@) <An,i),

foralli=n,n+1,...

Proof: For the details of the argument, see Denning, Dennis, and Qualitz
(1978, p. 534). =

If we accept this result, it follows easily that Ackermann’s function is
not primitive recursive.

Ackermann’s function is not primitive recursive.

Proof: Consider the function

9() = A(i,9).

13.1 RECURSIVE FUNCTIONS 331

If A were primitive recursive, then so would g. But then, according to
Theorem 13.3, there exists an n such that

g (i) < A(n,1),
for all i. If we now pick ¢ = n, we get the contradiction

g(n)=A(n,n)
< A(n,n),

proving that A cannot be primitive recursive, =
ey

(-Recursive Functions

To extend the idea of recursive functions to cover Ackermann’s function
and other computable functions, we must add something to the rules by
which such functions can be constructed. One way is to introduce the p or
minimalization operator, defined by

1y (g (z,y)) = smallest y such that g (z,y) = 0.

In this definition, we assume that g is a total function.

i
\\\Y \w\ i\

N

« i

\\\\\\\M\ \\
‘ \”

Let
g(z,y) =z+y-3,
which is a total function. If z < 3, then
y=3—=zx

is the result of the minimalization, but if z > 3, then there is no y € I such
that z + y — 3 = 0. Thercfore,

py(g(zy)=3—=x, forz<3
= undcfined, for z > 3.

We see from this that even though g (x,y) is a total function, uy (g (z,v))
may only be partial.
L

As the above example shows, the minimalization operation opens the
possibility of defining partial functions recursively. But it turns out that it

332

Chapter 13 OTuikR MODELS OF COMPUTATION

also extends the power to define total functions so as to include all com-
putable functions. Again, we merely quote the major result with references
to the literaturc where the details may be found.

‘Wﬁﬂ i w'&mwm s
bt & w QUR A% A
SRR AR \\\\\vttm A\%\ PR
i MR BRI

A function is sald to be p-recursive if it can be constructed from the basis
functions by a sequence of applications of the p-operator and the operations
of composition and primitive recursion.

A function is p-recursive if and only if it is computable.

Proof: Yor a proof, see Denning, Dennis, and Qualitz (1978, Chapter
13). =

The p-recursive functions therefore give us another model for algorith-
mic computation.

EXERCISES

1. Use the definitions in Examples 13.1 and 13.2 to prove that 3 + 4 = 7 and
2%3=6.

2. Define the funciion

greater (z,y) =1ifz >y
=0ifr <y

Show that this function is primitive recursive. i

3. Consider the function

equals (z,y) =1 if z =y,
=0 ifzx+#uy.

Show that this function is primitive recursive.

4. Let f be defined by

flay)=2 fz#y,
=0 ifr=y.

Show that this function is primitive recursive.

* 5,

10.
11.
12.
13.
14.

16.

13.1 RECURSIVE FUNCTIONS 333

Integer division can be defined by two functions div and rem:
div (z,y) = n,
where n is the largest integer such that ¢ > ny, and
rem (x,y) =z — ny.

Show that the functions div and rem are primitive recursive,

Show that
f () =2
is primitive recursive.
. Show that the function
glz,y) =¥

is primitive recursive. &b

Write a computer program for computing Ackermann’s function. Use it to
evaluate A(2,5) and A(3,3).

. Prove the following for the Ackermann function.

(a) A(Ly)=y+2 @&

(b) A2y)=2y+3 &

(¢) A(3,y)=2v"3 -3

Use Exercise 9 to compute A (4,1) and A (4, 2).

Give a gencral expression for A (4, y).

Show the sequence of recursive calls in the computation of A (5,2).
Show that Ackermann’s function is a total function in I x I.

Try to usc the program constructed for Exercise 8 to evaluate 4 (5,5). Can
you explain what you observe?

For cach g below, compute py (g (x,¥)), and determine its domain.

(a) g(x,y) =wy

®) glzy)=2"+y-3 @

(c) g(xr,y) = integer part of (z — 1) /(y+ 1)
(d) g(w,y) = = mod(y + 1)

The definition of pred in Example 13.3, although intuitively clear, does not
strictly adhere to the definition of a primitive recursive function. Show how
the definition can be rewritten so that it has the correct form.

334

Chapter 13 OTHER MODELS OF COMPUTATION

Post Systems

A Post system looks very much like an unrestricted grammar, consisting
of an alphabet and some production rules by which successive strings can
be derived. But there are significant differences in the way in which the
productions are applied.

A Post system II is defined by
= (C,V,A,P),
where

C is a finite set of constants, consisting of two disjoint sets Ch,
called the nonterminal constants, and C, the set of terminal
constants,

V is a finite set of variables,
A is a finite set from C*, called the axioms,

P is a finite set of productions.

The productions in a Post system must satisfy certain restrictions. They
must be of the form

aVizg - Vot — iWiyz - Winlma, (13.1)

where z;, y; € C*, and V;, W; € V, subject to the requirement that any
variable can appear at most once on the left, so that

Vi # V; for i # j,

and that each variable on the right must appear on the left, that is

m

W; C O Vi,
1 =1

j=

Suppose we have a string of terminals of the form xjwyzows - - WpZpa1,
where the substrings z;, #,--- match the corresponding strings in (13.1)
and w; € C*, We can then make the identification un = Vi, we = Vo, ..,
and substitute these values for the W’s on the right of (13.1). Since every

13.2 PoOST SYSTEMS 335

W is some V; that occurs on the left, it is assigned a unique value, and we
get the new string y,w;y2w; -+ Ym+y1. We write this as

T1UNT2W2 " Tny1 = YLWY2W5 * Yt 1-

As for a grammar, we can now talk about the language derived by a
Post system.

Definition 13.4

The language generated by the Post system II = (C,V, A, P) is

L(H)z{wGC’;:woé-wforsomewgeA}.

Consider the Post system with

CT - {a,b},
Cn =10,
V= {‘/1}9
A={A},
and production
Vi — aVib.

This allows the derivation
A = ab = aabb.

In the first step, we apply (13.1) with the identification =y = A, Vi =),
Ty = A, y1 = a, Wy = V1, and y» = b. In the second step, we re-identify
V1 = ab, leaving everything else the same. If you continue with this, you
will quickly convince yourself that the language generated by this particular
Post system is {a"b" : n = 0}.

L

Rrs
R

Ry : .
136" Consider the Post system with

CT:{17+!=}9
C{N=m7
V={‘/i)‘/23‘/53}5

A={1+1=11},

336

Chapter 13 OTIER MODELS OF COMPUTATION

and productions
Vi+Va=V3 - V14V, =V31,
Vi+Vo=Vs =V 4+ 151 =W1
The system allows the derivation
1+41=11=114+1=111
= 11+ 11 = 1111.

Interpreting the strings of 1’s as unary representations of integers, the
derivation can be written as

141=2=24+1=3=24+2=4.

The language generated by this Post system is the set of all identities of
integer additions, such as 2 + 2 = 4, derived from the axiom 1+ 1 = 2.

Example 13.6 illustrates in a simple manner the original intent of Post
systems as a mechanism for rigorously proving mathematical statements
from a set of axioms. It also shows the inherent awkwardness of such a
completely rigorous approach and why it is rarely used. But Post systems,
even though they are cumbersome for proving complicated theorems, are
general models for computation, as the next theorem shows.

A language is recursively enumerable if and only if there exists some Post
system that generates it.

Proof: The arguments here are relatively simple and we sketch them briefly.
First, since a derivation by a Post system is completely mechanical, it can
be carried out on a Turing machine. Therefore, any language generated by
a Post system is recursively enumerable.

For the converse, remember that any recursively enumerable language
is generated by some unrestricted grammar G, having productions all of the
form

Tr—1,

with z, y € (V UT)". Given any unrestricted grammar G, we create a Post
system II = (Vi1,C, A, P), where Vi = {V1,V2},Cn = V,Cr =T, A =
{5}, and with productions

VizVa — ViyVa,

for every production £ — y of the grammar. It is then an easy matter to
show that a w can be generated by the Post system IT if and only if it is in
the language generated by G. =

13.3 REWRITING SYSTEMS 337

EXERCISES

1. For % = {a,b,c}, find a Post system that generates the following languages.
(a) L(a*b+ ab*c)
(b)) L= {ww} #
(c) L ={a™b"c"}

2. Find a Post system that generates

L= {wwR tw € {a, b}*} .

3. For & = {a}, what language does the Post system with axiom {a} and the
following production generate?

i—-wv: &

4. What language does the Post system in Exercise 3 generate if the axiom set
is {a,ab}?

5. Find a Post system for proving the identities of integer multiplication, starting
from the axiom 11 =1. #

6. Give the details of the proof of Theorem 13.6.
7. What language does the Post system with

V —=aVV

and axiom set {ab} generate?

8. A restricted Post system is onc on which every production z — y satisfies, in
addition to the usual requirements, the further restriction that the number of
variable occurrences on the right and left is the same, i.e., n = m in (13.1).
Show that for every language L generated by some Post system, there exists
a restricted Post system to generates L.

Rewriting Systems

The various grammars we have studied have a number of things in com-
mon with Post systems: They arc all based on some alphabet from which
one string can be obtained from another. Even a Turing machine can be
viewed this way, since its instantaneous description is a string that com-
pletely defines its configuration. The program is then just a set of rules for
producing one such string from a previous one. These observations can be
formalized in the concept of a rewriting system. Generally, a rewriting
system consists of an alphabet ¥ and a set of rules or productions by which

338

Example 13.7

Chapter 13 OTHER MODELS OF COMPUTATION

a string in % can produce another. What distinguishes one rewriting sys-
tem from another is the nature of ¥ and restrictions for the application of
the productions.

The idea is quite broad and allows any number of specific cases in ad-
dition to the oncs we have already encountered. Here we briefly introduce
some less well-known ones that are interesting and also provide general mod-
els for computation. For details, see Salomaa (1973) and Salomaa (1985).

Matrix Grammars

Matrix grammars differ from the grammars we have previously studied
(which are often called phrase-structure grammars) in how the produc-
tions can be applied. For matrix grammars, the set of productions consists
of subsets Py, P, ..., P,, each of which is an ordered sequence

Ty =7 Y1, T2 = Y2, .-

Whenever the first production of some set P; is applied, we must next apply
the second one to the string just created, then the third one, and so on. We
cannot apply the first production of P; unless all other productions in this
set can also be applied.

Consider the matrix grammar
P8 — 8.9,
Py : 8 — a8, 85 — bSac,
Py:8 — A8 — A
A derivation with this grammar is
8 = 519, = a8;b8z¢ = aaS1bbS2cc = aabbee.

Note that whenever the first rule of I% is used to create an a, the second one
also has to be used, producing a corresponding b and ¢. This makes it easy
to see that the set of terminal strings generated by this matrix grammar is

L={a"b"c":n > 0}.
_n

Matrix grammars contain phrase-structure grammars as a special case
in which each P; contains exactly one production. Also, since matrix gram-
mars represent algorithmic processes, they are governcd by Church’s thesis.
We conclude from this that matrix grammars and phrase-structure gram-
mars have the same power as models of computation. But, as Example 13.7
shows, sometimes the use of a matrix grammar gives a much simpler solution
than we can achieve with an unrestricted phrase-structure grammar.

13.3 REWRITING SYSTEMS 339

Markov Algorithms

A Markov algorithm is a rewriting system whose productions
T—=y

are considered ordered. In a derivation, the first applicable production must
be used. Furthermore, the leftmost occurrence of the substring z must be
replaced by y. Some of the productions may be singled out as terminal
productions; they will be shown as

T — Y.

A derivation starts with some string w € ¥ and continues until either a
terminal production is used or until there are no applicable productions.

For language acceptance, a set T C X of terminals is identified. Starting
with a terminal string, productions are applied until the empty string is
produced.

Definition 13.5

Let M be a Markov algorithm with alphabet ¥ and terminals 7. Then the
set £

L(M):{wET*:w:*:»A}

is the language accepted by M.

Consider the Markov algorithm with ¥ = T = {a, b} and productions

ab — A,
ba — A,

Every step in the derivation annihilates a substring ab or ba, so

L(M)={w e {a,b}" :n, (w) =np(w)}.

340

Chapter 13 OTHER MoDELS OF COMPUTATION

ax \\t“xgo\«mw\\\ o ‘W T
\\W it i \\ W \

Theorem 13.7.

Find a Markov algorithm for
L={a"b":n>0}.
An answer is

ab— S,
aSh — 8,
S =

If in this last example we take the first two productions and reverse the
left and right sides, we get a context-free grammar that generates the lan-
guage L. In a certain sense, Markov algorithms are simply phrase-structure
grammars working backward. This cannot be taken too literally, since it is
not clear what to do with the last production. But the observation does pro-
vide a starting point for a proof of the following theorem that characterizes
the power of Markov algorithms. -

A language is recursively enumerable if and only if there exists a Markov
algorithm for it.

Proof: See Salomaa (1985, p. 35). m
—_——

L-Systems

The origing of L-systems arc quite different from what we might expect.
Their developer, A. Lindenmayer, used them to model the growth pattern
of certain organisms. L-systems are essentially parallel rewriting systems.
By this we mean that in each step of a derivation, every symbol has to be
rewritten. For this to make sense, the productions of an L-system must be
of the form

a— u, (13.2)
where a € £ and u € ¥*. When a string is rewritten, one such production

must be applicd to every symbol of the string before the new string is
generated.

13.3 REWRITING SYSTEMS 341

R,

ey

R,
¥

xampl

0 Lets = {a} and
a— aa
define an L-system. Starting from the string a, we can make the derivation
a4 = at = aaad = aaeaaaad.
The set of strings so derived is clearly
L:{az”:nEO}.

Note again how such special rewriting systems are able to deal with problems
that are quite difficult for phrase structure grammars.
|

It is known that L-systems with productions of the form (13.2) are
not sufficiently general to provide for all algorithmic computations. An
extension of the idea provides the necessary generalization. In an extended
L-system, productions are of the form

(7, a,y) = u,

where a € ¥ and x,y,u € £*, with the interpretation that a can be replaced
by u only if it occurs as part of the string zay. It is known that such
extended L-systems are genecral models of computation. For details, see
Salomaa, (1985).

1. Find a matrix grammar for
L={ww:we€ {a,b}*}. &

2. What language is generated by the matrix grammar

P1 H S — Sl S'z,

Pz : 51 — ab5b, 52 — bSaa,

P 5 —*)\,Sz — A
3. Suppose that in Examplc 13.7 we change the last group of productions to

P3:8 —)\ 8 —8.

What language is generated by this matrix grammar?

4. Why does the Markov algorithm in Example 13.9 not accept abab?

342

Chapter 13 OTnER MODELS OF COMPUTATION

5. Find a Markov algorithm that derives the language L = {a"b"c¢" : n > 1}.

* 6. Find a Markov algorithm that accepts
L={a"t™a"":n>1,m>1}.
7. Find an L-system that generates L (aa™).
8. What is the set of strings generated by the L-system with productions

a — aq,

a — aaa,

when started with the string o? ®

An Introduction to
Computational
Complexity

n studying algorithms and computations, we have so far paid little
attertion to what actually can be expected when we apply these

ideas to real computers. We have been almost exclusively concerned

with questions of the existence or nonexistence of algorithms for
certain problems. This is an appropriate starting point for a theory but
clearly of limited practical significance. For actual computations, we need
not only to know that a problem can be solved in principle, but we also must
be able to construct algorithms that can be carried out with reasonable
efficiency. Problems that can be solved effectively are called tractable, a
descriptive term that will be given a more precise meaning in this chapter.
In the practical world of software dcvelopment, efficiency has many
facets. Sometimes, we are concerned with the efficient use of the computer’s
resources, such as processor time and memory space. At other times, we
may be more concerned with how quickly software can be created, how
effectively it can be maintained, or how reliable it is. At still other times,
we may emphasize the efficiency with which a user’s problems can be solved.
All this is much too complicated to be captured by any abstract theory. All
we can do is to focus on some of the more tangible issues and create the

343

344

Chapter 14 AN INTRODUCTION TO COMPUTATIONAL COMPLEXITY

appropriate abstract framework for these. Most of the results that have been
developed address the space and time efficiency of a computation, leading
to the important topic of complexity theory. In the study of complexity,
the primary concern is the efficiency of a computation as measured by its
time and space requirements. We refer to this as the time-complexity
and the space-complexity of algorithms.

Computational complexity theory is an extensive topic, most of which
is well outside the scope of this text. There are some results, however, that
are simply stated and easily appreciated, and that throw further light on
the nature of languages and computations. In this section, we give a brief
overview of some complexity results. For the most part, proofs are difficult
and we will dispense with them by reference to appropriate sources. Our
intent here is to present the flavor of the subject matter and show how it
relates to what we know about languages and automata. For this reason we
will allow ourselves a great deal of latitude, both in the selection of topics
and in the formality of the discussion.

We will limit our discussion here to issues of time-complexity. There
are similar results for space-complexity, but time-complexity is a little more
accessible.

Efficiency of Computation

Let us start with a concrete example. Given a list of one thousand integers,
we want to sort them in some way, say, in ascending order. Sorting is a
simple problem but also one that is very fundamental in computer science.
If we now ask the question “How long will it take to do this task?” we see
immediately that much more information is needed before we can answer
it. Clearly, the number of items in the list plays an important role in how
much time will be taken, but there are other factors. There is the question
of what computer we use and how we write the program. Also, there are a
number of sorting methods so that selection of the algorithm is important.
There are probably a few more things you can think of that need to be
looked at before you can even make a rough guess of the time requirements.
If we have any hope of producing some general picture of sorting, most of
these issues have to be ignored, and we must concentrate on those that are
most fundamental.

For our discussion of computational complexity, we will make the fol-
lowing simplifying assumptions.

1. The model for our study will be a Turing machine. The exact type of
Turing machine to be used will be discussed below.

2. The size of the problem will be denoted by n. For our sorting problem,
n is obviously the number of items in the list. Although the size of a

Example 14.1

14.1 ErrCIENCY OF COMPUTATION 345

problem is not always so easily characterized, we can generally relate it
in some way to a positive integer.

3. In analyzing an algorithm, we are less interested in its performance on
a specific case than in its general behavior. We are particularly con-
cerned with how the algorithm behaves when the problem size increases.
Because of this, the primary question is with how fast the resource re-
quirements grow as n becomes large.

Our immediate goal will then be to characterize the time requirement of a
problem as a function of its size, using a Turing machine as the computer
model.

First, we give some meaning to the concept of time for a Turing machine.
We think of a Turing machine as making one move per timc unit, so the
time taken by a computation is the number of moves made. As stated, we
want to study how the computational requirements grow with the size of
the problem. Normally, in the set of all problems of a given size, there is
some variation. Here we are interested only in the worst case that has the
highest resource requirements. By saying that a computation has a time-
complexity T (n), we mean that the computation for any problem of size n
can be completed in no more than T (n) moves on some Turing machine.

After settling on a specific type of Turing machine as a computational
model, we could analyze algorithms by writing explicit programs and count-
ing the number of steps involved in solving the problem. But, for a variety
of reasons, this is not overly useful. First, the number of operations per-
formed may vary with the small details of the program and so may depend
strongly on the programmer. Second, from a practical standpoint, we are
interested in how the algorithin performs in the real world, which may differ
considerably from how it does on a Turing machine. The best we can hope
for is that the Turing machine analysis is representative of the major as-
pects of the real-life performance, for example, the asymptotic growth rate
of the time complexity. Our first attempt at understanding the resource
requirements of an algorithim is therefore invariably an order-of-magnifude
analysis in which we use the O, ©, and € notation introduced in Chapter
1. In spite of the apparent informality of this approach, we often get very
useful information.

Given a set of n numbers x1, Ty, ..., £, and a key mimber z, determine if the

set contains z.

Unless the set is organized in some way, the simplest algorithm is just
a linear search in which we compare z successively against x;, Ty, ..., until
we either find a match or we get to the last element of the set. Since we
may find a match on the first comparison or on the last, we cannot predict
how much work is involved, but we know that, in the worst case, we have

346

Example 14,2

Chapter 14 AN INTRODUCTION TO COMPUTATIONAL COMPLEXITY

to make n comparisons. We can then say that the time-complexity of this
linear search is O (n), or even better, © (n). In making this analysis, we
made no specific assumptions about what machine this is run on or how the
algorithm is implemented. -

EXERCISES

1. Suppose you are given a set of n numbers ri,Z2,...,zn and are asked to
determine whether this set contains any duplicates.

(a) Suggest an algorithm and find an order-of-magnitude expression
for its time-complexity.

(b) Examine if the implementation of the algorithm on a Turing ma-
chine affects your conclusions.

2. Repeat Excrcise 2, this time determining if the set contains any triplicates.
Is the algorithm as efficient as possible?

3. Review how the choice of algorithm affects the efficiency of sorting,.

§ Turing Machines and Complexity

In Chapter 10 we argued that the various types of Turing machines were
equivalent in their power to solve problems. This allowed us to take what-
ever type was most convenient for an argument and even use programs in
higher-level computer languages to avoid some of the tedium involved in
using the standard Turing machine model. But when we make complexity
an issue, the equivalence between the various types of Turing machines no
longer holds.

In Example 9.4 we constructed a single-tape Turing machine for the lan-
guage

L={d"b":n>1}.

A look at that algorithm will show that for w = a"b™ it takes roughly
9n steps to match each a with the corresponding b. Therefore the whole
computation takes O (n?) time.

But, as we later indicated in Example 10.1, with a two-tape machine
we can use a different algorithm. We first copy all the a’s to the second

Figure 14.1

14.2 TURING MACHINES AND COMPLEXITY 347

ez | ||| [] Tge2 [of |- [o] [T]T]

(a) Initial tapes. (b) Tapes after copying of s,

tape, then match them against the b’s on the first. The situation before
and after the copying is shown in Figure 14.1. Both the copying and the
matching can be done in O (n) time and we see that a two-tape machine
has time-complexity O (n).

|

In Sections 5.2 and 6.3 we discussed the membership problem for context-
free languages. If we take the length of the input string w as the problem
size n, then the exhaustive scarch method has complexity O (n*), where M
depends on the grammar. The more efficient CYK algorithmn has complexity
O (n*). Both these algorithms are deterministic.

A nondeterministic algorithm for this problem proceeds by simply guess-
ing which sequence of productions is applied in the derivation of w. If we
work with a grammar that has no unit or A-productions, the length of the
derivation is essentially |w|, so we have an O (n) algorithm.

We now introduce the satisfiability problem, which plays an important
role in complexity theory.

A logic or boolean constant or variable is one that can take on exactly
two values, true or false, which we will denote by 1 and 0, respectively.
Boolean operators are then used to combine boolean constants and variables
into boolean expressions. The simplest boolean opcrators are or, denoted
by Vv and defined by

0V1=1vV0 =1Vl =1,
0v0 =0,

348

Chapter 14 AN INTRODUCTION 70 COMPUTATIONAL COMPLEXITY

and the and operation (A) defined by

OAD =0AL =170 =0,
1AL =1.

Also needed is negation, denoted by a bar, and defined by

<

=1,
=0.

=

We consider now boolean expressions in conjunction normal form. In
this form, we create expressions from variables 1, xs, ..., T, starting with

e =1t AT A Aty (14.1)

The terms t;,t;,...,t; arc created by or-ing together variables and their
negation, that is,

Li = 8V8m V...V, (14.2)

where each sy, Sy, ..., 8 stands for some variable or the negation of a vari-
able.

The satisfiability problem is then simply stated: given an expression e
in conjunctive normal form, is there an assignment of values to the variables
Z1,T2, ...,y that will make the value of e true. For a specific case, look at

er = (F1Va) Az Ves).

The assignment x; = 0,7 = 1,23 = 1 makes e; true so that this expression
is satisfiable. On the other hand,

is not satisfiable because every assignment for the variables z; and xo will
make e, false.

A deterministic algorithm for the satisfiability problem is easy to dis-
cover. We take all possible values for the variables z1, 24, ..., 2, and evaluate
the expression. Since there are 2™ such choices, this exhaustive approach
has exponential time complexity.

Again, the nondeterministic approach simplifies matters. If e is satisfi-
able, we guess the valuc of cach z; and then evaluate e. This is essentially an
O (n) algorithm. As in Example 14.3, we have a deterministic exhaustive
search algorithm whose complexity is exponential and a linear nondeter-
ministic one. However, unlike the previous example, we do not know of any
nonexponential deterministic algorithm, -

14.2 TuRrING MACHINES AND COMPLEXITY 349

These examples suggest that complexity questions are affected by the
type of Turing machine we use and that the issue of determinism versus
nondeterminism is a particularly crucial one. Example 14.1 suggests that
algorithms for a multitape machine may be reasonably close to what we
might use when we program in a computer language. For this reason, we
will use a multitape Turing machine as our model for studying complexity
issues.

EXERCISES

For the excrcises in this set, assume that the Turing machines involved are
all deterministic.

1. Find a linear-time algorithm for membership in {ww : w € {a,b}"} using a
two-tape Turing machine. What is the best you could expect on a one-tape
machine?

2. Show that any computation that can be performed on a single-tape, off-line
Turing machine in time O (T (n)) also can be performed on a standard Turing
machine in time O (T (n)).

3. Show that any computation that can be performed on a standard Turing
machine in time O (T (n))} also can be performed on a Turing machine with
one semi-infinite tape in time O (T (n)).

4. Show that any computation that can be performed on a two-lape machine
in time O (T (n)) can be performed on a standard Turing machine in time
0 (T* (n).

5. Rewrite the boolean expression

(ziAz2) Vs

in conjunctive normal form.

6. Dectermine whether or not the expression

(1 VE2Vas) A (2 Vaa VES)A(FLVE2 VEa)

is satisliable.

7. In Example 14.2 we claimed that the first algorithm had time complex-
ity O (n*) and the second O (n). Can we+be more precise and claitn that
T (n) = © (n?) for the first case, and T (n) = © (n) for the second? Iow this
strengthen the argument in Example 14.27

350

Chapter 14 AN INTRODUCTION TO COMPUTATIONAL COMPLEXITY

Language Families and Complexity Classes

In the Chomsky hicrarchy for language classification, we associate language
families with classes of automata, where each class of automata is defined by
the nature of its temporary storage. Another way of classifying languages is
to use a Turing machine of a particular type but consider time complexity
a distinguishing factor. To do so, we first define the time complexity of a
language.

We say that a Turing machine accepts a language L in time T (n) if every w
in L with |w| < n is accepted in O (T’ (n)) moves. If M is nondeterministic,
this implies that for every w € L, there is at least one sequence of moves of
length O (T (Jw])) that leads to acceptance.

Definition 14.2

A language L is said to be a member of the class DTIME (T (n)) if there
exists a deterministic multitape Turing machine that accepts L in time
T (n).

A language L is said to be a member of the class NTIME (T (n)) if
there exists a nondeterministic multitape Turing machine that accepts L in
time T (n).

Some relations between these complexity classes such as
DTIME (T (n)) C NTIME (T (n)),
and
Ty (n) = O (T2 (n))
implies
DTIME (Ty (n)) € DTIME (T3 (n)),

are obvious, but from here the situation gets obscure quickly. What we can
say is that as the order of T (n) increases, we take in progressively more
languagces.

14.3 LANGUAGE FAMILIES AND COMPLEXITY CLASSES 351

For every integer k > 1,
DTIME (n*) C DTIME (n**1).

Proof: This follows from a result in Hopcroft and Ullman (1979, p.
209). =

The conclusion we can draw from this is that there are some languages
that can be accepted in time n? for which there is no linear member-
ship algorithm, that there are languages in DTIME (n®) that are not in
DTIME (n2), and so on. This gives us an infinite number of nested com-
plexity classes. We get cven more if we allow exponential time complexity.
In fact, there is no limit to this; no matter how rapidly the complexity
function T'(n) grows, there is always something outside DTIME (T (n)).

There is no total Turing computable function f (n) such that every recursive
language is in DTIME (f (n)).

Proof: Consider the alphabet ¥ = {0,1}, with all strings in % arranged
in proper order wi,ws, Also, assume that we have a proper ordering for
the Turing machines in My, Mo,

Assume now that the function f(n) in the statement of the theorem
exists. We can then define the language

L = {w; : M; does not accept w; in f (Jw;|) steps}. (14.3)

We claim that L is recursive. To see this, consider any w € L and compute
first f(Jw|). By assuming that f is a total Turing computable function, this
is possible. We next find the position ¢ of w in the sequence w;,ws, This
is also possible because the sequence is in proper order. When we have i, we
find M, and let it operate on w for f (|w|) steps. This will tell us whether
or not w is in L, so is recursive.

But we can now show that L is not in DT'IME (f (n}). Suppose it
were, Since L is recursive, there is some My, such that L = L (My). Is wy,
in L? If we claim that wy is in L, then M}, accepts wy in f (Jwg]) steps.
This is because L € DTIME (f (n)) and every w € L is accepted by M in
time f (Jw|). But this contradicts (14.3). Conversely, we get a contradiction
if we assume that wy ¢ L. The inability to resolve this issue is a typical
diagonalization result and leads us to conclude that the original assumption,
namely the existence of a computable f (n), must be false. =

Theorem 14.1 and 14.2 allow us to make various claims, for example,
that there is a language in DTTME (n*) that is not in DTIME (n®). Al-
though this may be of theoretical interest, it is not clear that such a result

352

Example 14.7

6

Chapter 14 AN INTRODUCTION TO COMPUTATIONAL COMPLEXITY

has any practical significance. At this point, we have no clue what the
characteristics of a language in DTIME (n*) might be. We can get a little
more insight into the matter if we relate the complexity classification to the
languages in the Chomsky hierarchy. We will look at some simple examples
that give some of the morc obvious results.

Every regular language can be recognized by a deterministic finite automa-
ton in time proportional to the length of the input. Therefore

LH,EG g DTIME (TL) .

But DTIME (n) includes much more than Lpre. We have already estab-
lished in Example 13.7 that the context-free langnage {ab™ : n > 0} can be
recognized in time O (n). The argument given there can be used for even
more complicated langnages. : »

The non-context-free language L = {ww : w € {a,b}"} is in NTTME (n).
This is straightforward, as we can recognize strings in this language by the
algorithm

1. Copy the input from the input file to tape 1. Nondeterministically guess
the middle of this string.

2. Copy the second part to tape 2.
3. Compare the symbols on tape 1 and tape 2 one by onc.

Clearly all of the steps can be done in O (Jw]) time, so L € NTIME (n).
Actually, we can show that L € DTIME (n) if we can devise an algo-
rithm for finding the middle of a string in O (n) time. This can be done:
we look at each symbol on tape 1, keeping a count on tape 2, but counting
only every second symbol. We leave the details as an exercise. -

It follows from Example 14.2 that
Lcr C DTIME (n?)
and

LCF (_: NTIME(TI)

14.4 THE CoMPLEXITY CLASSES P AND NP 353

Consider now the family of context-sensitive languages. Exhaustive search
parsing is possible here also since at every step only & limited number of
productions are applicable. Therefore, every string of length n can be parsed
in time n™, where M depends on the grammar. Note, however, that we
cannot claim from this that

Lgs € DTIME (n?)

because we cannot put an upper bound on M.

From these examples we note a trend: as T (n) increases, more and
more of the families Lrpe, Lor, Los are covered. But the connection
between the Chomsky hierarchy and the complexity classes is tenuous and
not very clear.

EXERCISES

Complete the argument in Example 14.5.

Show that L = {ww®w : w € {a,b}*} is in DTIME (n).
Show that L = {www : w € {a,b}"} is in DTIME (n).
Show that there are languages that are not in NTIME (27).

1.
2.
3.
4.

- The Complexity Classes P and NP

Since the attempt to produce meaningful hierarchies via time-complexities
with different growth rates appears to be unproductive, let us ignore some
factors that are less important, for example by removing some uninteresting
distinctions, such as that between DTIME (n*) and DTIME (n**1). We
can argue that the difference between, say, DTIME (n) and DTIMFE (nz)
is not fundamental, since some of it depends on the specific model of Turing
machine we have (e.g., how many tapes), and it is not a priori clear which
model is most appropriate for a real computer. This leads us to consider
the famous complexity class

P =) DTIME (n').

i>1

This class includes all languages that are accepted by some deterministic
Turing machine in polynomial time, without any regard to the degree of the
polynomial. As we have already seen, Lyge and Leog are in P.

354

Chapter 14 AN INTRODUCTION TO COMPUTATIONAL COMPLEXITY

Since the distinction between deterministic and nondeterministic com-
plexity classes appears to be fundamental, we also introduce

NP = | JNTIME (n') .
[

Obviously
P C NP,

but what is niot known is if this containment is proper. While it is generally
believed that there are some languages in NP that are not in P, no one has
yet found an example of this.

The interest in these complexity classes, particularly in the class P,
comes from an attempt to distinguish between realistic and unrealistic com-
putations. Certain computations, although theoretically possible, have such
high resource requirements that in practice they must be rejected as unreal-
istic on existing computers, as well as on supercomputers yet to be designed.
Such problems are sometimes called intractable to indicate that, while in
principle computable, there is no realistic hope of a practical algorithm,
To understand this better, computer scientists have attempted to put the
idea of intractability on a formal basis. One attempt to define the term
intractable is made in what is generally called the Cook-Karp thesis. In
the Cook-Karp thesis, a problem that is in P is called tractable, and onc
that is not is said to be intractable.

Is the Cook-Karp thesis a good way of separating problems we can
work with realistically from those we cannot? The answer is not clear-
cut. Obviously, any computation that is not in P has time complexity that
grows faster than any polynomial, and its requirements will increase very
quickly with the problem size. Even for a function like 201" this will be
excessive for large n, say n > 1000, and we might feel justified in call-
ing a problem with this complexity intractable. But what about problems
that are in DTTME (n'%?)? While the Cook-Karp thesis calls such a prob-
lem tractable, one surely cannot do much with it even for small n. The
justification for the Cook-Karp thesis scems to lie in the empirical observa-
tion that most practical problems in P are in DTIME (n), DTIME (n?),
or DTIME (n®), while those outside this class tend to have exponential
complexities, Among practical problems, a clear distinction exists between
problems in P and those not in P,

The study of the relation between the complexity classes P and NP
has generated particular interest among computer scientists. At the root of
this is the question whether or not

P =NP.

This is one of the fundamental unsolved problems in the theory of com-
putation. To explore it, computer scientists have introduced a variety of

14.4 THe COMPLEXITY CLASSES P AND NP 355

related concepts and questions. One of them is the idea of an NP-complete
problem. Loosely speaking, an NP-complete problem is one that is as hard
as any NP problem and in some sense is equivalent to all of them. What
this means has to be explained.

\\\\m RM\ i
) \\\ Wy A\\\Q
AR \\\w\ R

o)
\\ \\\\\\M
\AQ%“\@\\F\“* \\b\

W

A language L) is said to be polynomial-time reducible to some language
Ly if there exists a deterministic Turing machine by which any w; in the al-
phabet of L; can be transformed in polynomial time to a ws in the alphabet
of L, in such a way that wy € L, if and only if wy € Ls.

From this we see that if Ly is polynomial-time reducible to Lg, and if
L, € P, then L, € P. Similarly, if Ly € NP, then L; € NP.

%NW tion:14.4
iRenihon: i,

VRN

A language L is said to be NP-complcte if L € NP and if every L' € NP
is polynomial-time reducible to L.

It follows easily from these definitions that if some L; is NP-complete
and polynomial-time reducible to Ls, then Lo is also NP-complete. The im-
plication of this definition is that if we can find a deterministic polynomial-
time algorithm for any NP-complete language, then every language in NP
is also in P, that is

P =NP.

This puts NP-completeness in a central role for the study of this question.

T

a\\\M W\\ ww\\ The satisfiability problem can be viewed as a language problem. We encode
specific instances as a string that is accepted if and only if the expression is
satisfiable. This problem is NP-complete. The statement that the satisfia-
bility problem is NP-complete is known as Cook’s theorem, a discussion
of which can be found in Hoperoft and Ullman (1979).

n

In addition to the satisfiability problem, a large number of other NP-
complete problems have heen found. For all of them we can find exponential

356 Chapter 14 AN INTRODUCTION TO COMPUTATIONAL COMPLEXITY

algorithms, but for none of them has anyone discovered a polynomial-time
algorithm. These failures lead us to believe that probably

P # NP,

but until someone produces an actual language in NP that is not on P
or, alternatively, until someone proves that no such language exists, the
question remains open.

EXERCISES _

1. Prove the statement that if a language L1 is NP-complete and polynomial-
time reducible to L2, then Lga is also NP-complete.

** 2. Consult books on complexity theory, and compile a list of problems that are
NP-complete.

3. Is it possible that the question P = NP is undecidable?

Solutions and Hints
for Selected
Exercises

Chapter 1
Section 1.1

5. To prove that two sets are equal, we must show that an element is in
the first set if and only if it is in the second. Suppose z .€ 57 U 53,
Then x ¢ 51 U S2, which means that z cannot be in 5; or in Sz, that
is z € 81N S,. Conversely, if z € S, N S, then z is not in S; and « is
not in Sy, that is z € 5, U 55.

6. This can be proven by an induction on the number of sets. Let Z =
51US8;...U8,. Then S U8s...U8, U811 = ZUS8, 1. By the standard
DeMorgan’s law

VAN Sn+1 =ZN En-}-l-

With the inductive assumption, the relation is true for up to n sets,
that is,

Z=8Nn8n.N5,.

Therefore

ZUS8p1=81N80..N08, NSy,
completing the inductive step.

357

358

ANSWERS

8. Suppose 51 = S3. Then §1 NS, = 5, NS, = NS = @ and the entire
expression is the empty set. Suppose now that S; # 52 and that there
is an element = in Sy but not in Sy. Then = € 85 so that §; NSy # @.
The complete expression can then not be equal to the empty set.

12. If x is in S} and z is in S, then z is not in (53 U S2) — S2. Because of
this, a necessary and sufficient condition is that the two sets be disjoint.
15. (c) Since
n!
n non nn

nn—1 21

is the produect of factors less than or equal one. Therefore, n! = O (™).

27. An argument by contradiction works. Suppose that 2 — v/2 were ratio-

nal. Then
9-v3="_
m
gives
Y7y —
\/§ = T I
m

contradicting the fact that v/2 is not rational.

29. By induction. Suppose that every integer less than n can be written as
a product of primes. If n is a prime, there is nothing to prove, if not, it
can be written as the product

n="ninsz

where both factors are less than n. By the inductive assumption, they
both can be written as the product of primes, and so can n.

Section 1.2

2. Many string identities can be proven by induction. Suppose that (uv) R
vRuf for all uw € £* and all v of length n. Take now a string of length

n+ 1, say w = va. Then

R R

(uw)™ = (uva)

= a (uv)®, by the definition of the reverse

= av®u®, by the inductive assumption

= ’I,UR’U.R.

By induction then, the result holds for all strings.

SOLUTIONS AND HINTS FOR SELECTED EXERCISES 359

4. Since abaabaaabaa can be decomposed into strings ab, aa, baa, ab, aa,

10.

11.

13

.

13.

14

each of which is in L, the string is in L*. Similarly, bacaaabaa is in L*.
However, there is no possible decomposition for baaaaabaaaab, so this
string is not in L*.

(d) We first generate three a’s, then add an arbitrary number of a’s and
b’s anywhere.

S — AaAaAad
A — aAbA| X

The first production gencrates three a’s. The second can generate any

number of a’s and b’s in any position. This shows that the grammar
. * E)

can generate any string w € {a,b}" as long as n, (w) > 3.

S = aA = obS = abaA = ababsS
from which we see that
L(G) = {(ab)" :n >0}.

(a) Generate one b, then an equal number of ¢’s and b’s, finally as many
more b’s as needed.

S — AbA
A — aAblA
B — bB|A
(d) The answer is easicr to see if you notice that
Ly={a™™:m >0}.
This leads to the easy solution
S — aaaA

A — aAb|A

{b) The problem is simplified if you break it into two cases, |w|mod 3 =
1 and |w|mod 3 = 2. The first is covered by

51 — aaaSi|a,
the second by
S2 — aaaSs|aa.

The two can be combined into a single grammar by

5 — 51|52.

360 ANSWERS

16. (a) We can use the trick and results of Example 1.13. Let L; be the
language in Example 1.13 and modify that grammar so that the start
symbol is S;. Consider then a string w € L. If this string start with
an a, then it has the form w = aw;, where wy € L;. This situation can
be taken care of by § — a5;. If it starts with a b, it can be derived by
S — Sl 5.

Section 1.3

1.

integer — sign magnitude
sign — +|—| A
magnitude — digit | digit magnitude
digit — 0]1]2|3]4|5|6|7]8|9

This can be considered an ideal version of C, as it puts no limit
on the length of an integer. Most real compilers, though, place a
limit on the number of digits.

7. The automaton has to remember the input for one time period so
that it can be reproduced for output later. Remembering can be
done by labeling the state with the appropriate information. The
label of the state is then produced as output later.

——H’{l bﬂl@

)

10. We remember input by labeling the states mnemonically. When a set
of three bits is done, we produce output and return to the beginning to
process the next three bits. The following solution is partial, but the
completion should be obvious.

SoLuTIONS AND HINTS FOR SELECTED EXERCISES 361

o >,
| Y
0 ; - 00
{)l,_'_f*‘. S T
.-/
[D
-) . -
of — T={o1)
1 i a
= l —
4T 7/41 B U.l'}“,_. A 10 |:'
- l A3 =
N I
0/6 ™ . / 11
NZ .

11. In this case, the transducer must remember the two preceding input
symbols and make transitions so that the needed information is kept

track of.
0/0
L
.lrl. Oﬂ
o\
i 11
. [0 I__ ‘;/O ___-ir.\]01&
. G > o1 L |
Ca S~ N
A 7o _ Jo/t X
o 00 {10}
2 AT Nt S |
N 1) + | 170
. or |/
G TN
P (11)«

362 ANSWERS

Chapter 2
Section 2.1

2. (c) Break it into three cases each with an accepting state: no a’s, one a,
two a’s, three a’s. A fourth a will then send the dfa into a non-accepting
trap state. A solution:

5. (a) The first six symbols are checked. If they are not correct, the string
is rejected. If the prefix is correct, we keep track of the last two symbols
read, putting the dfa in an accepting state if the suffix is bb.

SOLUTIONS AND HINTS FOR SELECTED EXERCISES 363

(d) For this we use nine state, with the first part of each label n, (w)mod 3,

the second part np (w) mod 3. The transitions and the final states are
then simple to figure out.

&
1 _
p i 5 A
= () = 01 — - 02 =
- &
a - & 7
Y ¥ Y ¥
- 5 . p
a 10 = 11 ——(12 a
a a s
B ¥ Y
N\ b ==
20 [I

. (a) Count consecutive zeros, to get the main part of the dfa.

O-0+-0-@

Then put in additional transitions to keep track of consecutive zeros
and to trap unacceptable strings.

0.1

364

ANSWERS

13.

21.

(d) Here we need to remember all combinations of three bits. This
requires 8 states plus some start-up. The solution is a little long but
not hard. A partial sketch of the solution is below.

The casiest way to solve this problem is to construct a dfa for L
{a™ : n = 4}, then complement the solution.

(a) By contradiction. Suppose G has no cycles in any path from the
initial statc to any final state. Then every walk has a finite number of
steps, and so every accepted string has to be of finite length. But this
implies that the language is finite.

(b) Also by contradiction. Assume that Gas has some cycle in a path
from the initial slate to some accepting statc. We can then use the cycle
to generate an arbitrarily long walk labeled with an accepted string. But
a finite language cannot contain arbitrarily long strings.

SOLUTIONS AND HINTS FOR SELECTED FXERCISES 365

24. There are many different solutions. Here is one of them.

b

Section 2.2

[4]

15.

17.

- 0*(q0,a) = {q0, 01,02}, 0% (q1. A) = {0, 2}

A four-state solution is trivial, but it takes a little experimenting to get
a three-state one. Herc is one answer:

No. The string abc has three diffcrent symbols and there is no way this
can be accepted with fewer than threc states,

This is the kind of problem in which you just have to try different ways.
Probably most of your tries will not work. Here is one that does.

Introduce a single starting state py. Then add a transition
8 (po; A) = Qq.

Next, remove starting state status from Qq. It is straightforward to see
that the new nfa is cquivalent to the original one.

366 ANSWERS

20. Introduce a non-accepting trap state and make all undefined transitions
to this new state. Solution:

Section 2.3

2. Just follow the procedure nfa_to_dfa. This gives the dfa

7. Introduce a new final state py and for every g € F' add the transitions
d(q,) = {ps}.

Then make p; the only final state. It is a simple matter then to ar-
gue that if 6* (go,w) € F originally, then 6* (g0, w) = {py} after the
modification, so both the original and the modifies nfa’s are equivalent.

Since this construction requires A-transitions, it cannot be made for
dfa’s. Generally, it is impossible to have only one final state in a dfa,
as can be seen by constructing dfa’s that accept {A,a}.

SOLUTIONS AND HINTS FOR SELECTED EXERCISES 367

8. Getting an answer requires some thought. One solution is

A

S,
Y J.L_E}'lt.‘v '\’l-m
|

accepts L, so the language is regular.

14. This is not easy to see. The trick is to use a dfa for I and modify it so
that it remembers if it has read an even or an odd number of symbols.
This can be done by doubling the number of states and adding O or E
to the labels. For example, if part of the dfa is

o

368 ANSWERS

its equivalent becomes

o /. g
L - fl = il

{90 (9.E 9r)

Now replace all transitions from an E state to an O state with A-

transitions.
[o0 (910 720 |
ok '.4 - b h S
a L
4 R
o B
= 9oFE \ TE

With a few examples you should be able to convince yourself that if the
original dfa accepts a;azasas, the new automaton will accept AagAay...,
and therefore even (L).

15. Suppose we have a dfa that accepts L. We then

(a) identify all states @ that can be reached from qg, reading any two-
symbol prefix v, that is

Q={q€Q:6"(q,v) =¢}.
(b) introduce a new initial state pp and add
8 (po, \) = Q.

It should not be hard to see that the new nfa accepts chop2 (L).

Although the construction is plausible, a complete answer requires a
proof of the last statement.

SOLUTIONS AND HINTS FOR SELECTED EXERCISES 369

Section 2.4

2.

10.

(¢)

a

~O D@ e—)

This is minimal for the following reason. gs ¢ F and qu € F, s0 ¢3 and
qq are distinguishable. Next, 6* (g2, a) ¢ F and 6* {(qq, a) € F, s0 g, and
qq are distinguishable. Similarly, §* (¢1,aa) ¢ F and §* (g3,aa) € F,
so g1 and g3 are distinguishable. Continuing this way, we see that all
states are distinguishable and therefore the dfs is minimal.

First, remove the inaccessible states g2 and gy. Then use the procedure
mark to find the indistinguishable pairs (¢o, ¢1) and (g3, ¢s). This then
gives the minimal dfa.

-0 — 0,1

By contradiction. Assume that M is not minimal. Then we can con-
struct a smaller dfa M that accepts L. In M complement the final state
set to give a dfa for L. But this dfa is smaller than M, contradicting
the assumption that M is minimal.

By contradiction. Assume that g, and g, are indistinguishable. Since g,
and g, are indistinguishable and indistinguishability is an equivalence
relation (Exercise 7), g, and q. must be indistingnishable.

Chapter 3
Section 3.1

2,

5.

Yes, because ((0+1) (0 + 1)*)* denotes any string of 0’s and 1’s. So
does (0 + 1)".

(a) Separate into cases m = 0,1,2,3. Generate 4 or more a’s, followed
by the requisite number of &’s. Solution: aaaaa* (A + b+ bb + bbb).

(¢) The complement of the language in 5(a) is harder to find. A string
is not in L if it is of the form ¢"b™, with either n < 4 or m > 3, but

370

ANSWERS

12,

14.

15.

16.

18.

21.

23.

this does not completely describe L. We must also take in the strings
in which a b is followed by an a. Seclution:

(A + a + aa + aaa) b* + a*bbbbb* + (a + b) " ba(a +b)".

Split into three cases: m=1,n>3,n>2, m=>2,andn=1,m 2= 3.
Each case has a straightforward solution.

Enumerate all cases with |v] = 2 to get

aa(a+b)" aa+ ab(a+b)" ab+ ba(a+b)" ba + bb(a+ b)" bb.

(¢) You just have to get in each symbol at least once. The term

(a+b+c)ala+btc)bla+bt+e) cla+bte)

will do this, but is not enough since the a will precede the b, etc. For
the complete solution you must generate all permutations of the three
symbols, giving six terms that can be added. The answer, although
quite long, is conceptually not hard.

(¢) Create two 0’s, interspersed with 1’s, then repeat. But don’t forget
the case when there are no ’s at all. Solution: (1*01*01*)" 4+ 1*.

(a) Create all strings of length three and repeat. A short solution is
((a+b+e)(a+b+e)(atb+e)

(¢) The statement
(7‘1 + 7‘2)* = (7‘1*7'2*)*

is true. By the given rules (r; + r2)” denotes the language (L (r1)U
L (r))", that is the set of all strings of arbitrary concatenations of ele-
ments of L (r1) and L (r3). But (r;*ry*)" denotes (L (r1))" (L (r2))")",
which is the same set.

The expression for an infinite language must involve at least one starred
subexpression, otherwise it can only denote finite strings. If there is one
starred subexpression that denotes a non-empty string, then this string
can be repeated as often as desired and therefore denote arbitrarily long
strings.

A closed contour will be gencrated by an expression r if and only if
ny (r) = n, (r) and ny (r) = ng (r).

SOLUTIONS AND HINTS FOR SELECTED EXERCISES 371

25. Notice several things. The bit string must be at least 6 bits long. If it
is longer than 6 bits, its value is at least 64, so anything will do. If it is
exactly 6 bits, then either the second bit from the left (16) or the third
bit from the left (8) must be 1. If you see this, then the solution

(1114+110+101) 0+ 1) (0+ 1) (0 + 1) +

1O+1)(0+1)(0+1)(1+0)(1+0)(1+0)(1+0)"
readily suggests itself.

Section 3.2

3. This can be solved from first principles, without going through the
regular expression_to.nfa construction. The latter will of course work,
but gives a more complicated answer. Solution;

a, b
b

4. (a) Start with

Then use the nfa_to_dfa algorithm in a routine manner,

372

ANSWERS

7.

10.

One case is

€
c
-'—'— %
2)
~— -
b

Since there is no path from g; to ¢;, the edges in the general case created
by such & path are omitted. The result, gotten by looking at all possible
paths, is

ce'h

e
ae'h

The other case can be analyzed in a similar manner.

. Removing the middle vertex gives

fa -1-."{; ab
bb + ab

The language accepted then is L (r) where r = a* (a + b) ab (bb + ab+
aa* (a+ b) ab)”.

(b) First, we have to modify the nfa so that it satisfies the conditions
imposed by the construction in Theorem 3.2, one of which is g ¢ F.
This is easily done.

17.

SOLUTIONS AND HINTS FOR SELECTED EXERCISES 373

Then remove state 3.

Next, remove state 4.

(ab) + (aa + bMba)* bb

~(0—()
The regular expression then is ~ = (ab + (aa + b) (ba)* bb*)".

(a) This is a hard problem until you see the trick. Start with a dfa
with states gg, ¢1, ..., and introduce a “parallel” automaton with states
T0,G1,---» Then arrange matters so that the spurious symbol nondeter-
ministically transfers from any state of the original automaton to the
corresponding state in the parallel part. For example, if part of the
original dfa looks like

It is not hard to make the argument that the original dfa accepts L if
and only if the constructed nfa accepts insert (L).

374

ANSWERS

Section 3.3

4.

10.

12,

Right linear grammar:

S — aaA

A — aA|B
B — bbbC
C — bClA

Left linear grammar:

S — Abbb
A -+ AbB
B — aaC
C — aC|\

We can show by induction that if w is a sentential form derived with
G, then w? can be derived in the same number of steps by G.

Because w is created with left linear derivations, it must have the
form w = Awi, with A € V and w, € T*. By the inductive assumption
w? = wfA can be derived via G. If we now apply A — Bu, then

w = Bows.

But G contains the rule A — v® B, so we can make the derivation

wf — wiv®B

= (Bvwy)"
completing the inductive step.

Split this into two cases: (i) n and m are both even and (ii) » and m
are both odd. The solution then falls out easily, with

S — aaS|A
A — bbA|A

taking care of case (i).

(a) First construct a dfa for L. This is straightforward and gives tran-
sitions such as

] (107() = q1i, (q()'/

d()—(12
d(q1,a) = 0,9 (q1,b)
()
5(b)

Et

5 (g2 a) = 43,8 (g2,
g3,a) = q2,0 ((1%,

SOLUTIONS AND HINTS FOR SkLECTED EXERCISES 375

with gg the initial and final state. Then the construction of Theorem
3.4 gives the answer

g0 — aq |bga| A
q1 — bgz|ago
g2 — ags|bgy
g3 — aqslbg

16. Obviously, 8; is regular as is S3. We can show that their union is also
regular by constructing the following dfa.

nfa for L(G))

nfa for 1(G,)

The condition that V3 and V5 should be disjoint is essential so that the
two nfa’s are distinct.

Chapter 4
Section 4.1

2. (a) The construction is straightforward, but tedious. A dfa for
L{((a+b)a*) is given by

0(q,a) =q1, 0(g0,b)=q, d(q,a)=aq, &(q,b)=aq,
with ¢; a trap state and final state ¢;. A dfa for L (baa*) is given by

5(;007(1) :ptvé‘(po’b) =P1,5(P1,a) = P2,
5(p17b) :pt75(p2aa) :pg,é‘(pg,b) =Pt

with final state ps. From this we find

d ((qoapo) !a) = (‘hapt) :6 ((QU:pO) 7b) S (q19p1) y
8 ((q1,p1),0) = (¢11,p2)a5((<117p2),a) = (q1,p2),

etc. When we complete this construction, we see that the only final
state is (g1, p2) and that L ((a + b)a*) N L (baa*) = baa*.

376

ANSWERS

7.

12.

14.

16.

18.

26.

Notice that
nor (Ly,La) = L1 U La.

The result then follows from closure under intersection and complemen-
tation.

The answer is yes. It can be obtained by starting from the set identity
Lo, = ((Ll ULQ) HE) U (L] ﬂLg) .

The key observation is that since L; is finite, Ly N Ly is finite and
therefore regular for all L. The rest then follows easily from the known
closures under union and complemcutation.

By closure under reversal, L ig regular. The result then follows from
closure under concatenation.

Use Ly = ©*. Then, for any La, Ly U Ly = %*, which is regular. The
given statement would then imply that any Ly is regular.

We can use the following construction. Find all states P such that there
is a path from the initial vertex to some element of P, and from that
element to a final state. Then make every clement of P a final state.

Suppose G1 = (V1,T, 81, P) and Go = (Vo, T, S2, P2). Without loss of
generality, we can assume that Vi and V5 are disjoint. Combine the two
grammars and

(a) Make S the new start symbol and add productions S — S1|S.

(b) In Py, replace cvery production of the form A — z, with A € V3
and z € T*, by A — z8,.

(c) In Py, replace every production of the form A — z, with A € Vi,
and x € T*, by A — z.5,.

Section 4.2

1.

2.

12.

Since by Example 4.1 Ly — Ly is regular, there exists a membership
algorithm for it.

If Ly C Ly, then Ly U Ly = Lo. Since Ly U Ly is regular and we have an
algorithm for set equality, we also have an algorithm for set inclusion.

. From the dfa for L, construct the dfa for Lf, using the construction

suggested in Theorem 4.2. Then use the cquality algorithm in Theorem
4.7.

Here you need a little trick. If L contains no even length strings, then

LN L((aa+ ab+ba+bb)*) = @.

The left side is regular, so we can use Theorem 4.6.

SOLUTIONS AND HINTS FOR SELECTED EXERCISES 377

Section 4.3

2. For the dfa for L to process the middle string v requires a walk in

the transition graph of length |v|. If this is longer than the number
of states in the dfa, there must be a cycle labeled y in this walk. But
clearly this cycle can be repeated as often as desired without changing
the acceptability of a string.

(a) Given m, pick w = a™b™a?". The string y must then be a* and
the pumped strings will be

w; = (]lm-l-(z-nl)kbman‘

If we take ¢ > 2 then m + (¢ — 1} k > m, then w; is not in L.

(e) It does not seem easy to apply the pumping lemma directly, so we
proceed indirectly. Suppose that L were regular. Then by the closure
of regular languages under complementation, T, would also be regular.
But L = {w : n, (w) = np (w)} which, as is easily shown, is not regular.
By contradiction, L is not regular.

(a) Take p to be the smallest prime number greater or equal to mm and
choose w = ¢”. Now y is a string of a’s of length k, so that

w; = gPtii—Lk

If we take i — 1 = p, then p+4 (i - 1)k = p(k + 1) is composite and
Wy 18 0ot in the language.

. The proposition is false. As a countercxample, take Ly = {a"b™ :n < m
!

and Ly = {a"d™ : n > m}, both of which are non-regular. But LiULs =

L (a*b*), which is regular.

. (a) The language is regular. This is most easily seen by splitting the

11.

13.

problem into cases such as { =0,k = 0,n > 5, for which one can easily
construct regular expressions.

(b} This language is not regular. If we choose w = aaaaaab™a™, our
opponent has several choices. If y consists of only a’s, we use i = 0 to
violate the condition n > 5. If the opponent chooses y as consisting of
b’s, we can then violate the condition k < [.

L is regular. We see this from L = L; N L and the known closures for
regular languages.

(a) The language is regular, since any string that has two consecutive
symbols the same is in the language. A regular expression for L is
(a+0b)(a+b)" (aa+bb) (a+b) (a+b)".

378 ANSWERS

i

(b) The language is not regular. Take w = (ab)™ aa (ba)™. The adver-
sary now has several choices, such as y = (ab)k ory = (ab)k’ a. In the
first case

wo = (ab)™ " aa (ba)™ .

Since the only possible identification is ww! = blaab!, wy is not in L.
With the second choice, the length of wo is odd, so it cannot be in L
either.

15. Take L; = a*b*,i = 0,1, For each 4, L, is finite and therefore regular,
but the union of all the languages is the non-regular language L =
{a™b" i n = 0}.

17. No, it is not. As counterexample, take the languages

L = {wawl v =i} U {wf ol < i},i=0,1,2,.

We claim that the union of all the L; is the set {wwH}. To justify
this, take any string z = ww®, with |w| = n. If n > i, then z €
{viuvf : |v;| = i} and therefore in L. Ifn < 4, then 2 € {v0f : |v;| < i},
i={0,1,2,...} and so also in L;. Consequently, z is in the union of all
the L;.

Conversely, take any string z of length m that is in all of the L,. If
we take ¢ greater than m, z cannot be in {v woft) = L} because it
is not long enough. Tt must thercfore be in {vvf : Jv;| < i}, so that it
has the form ww?.

As the final step we must show that for each ¢, L; is regular. Thisg
follows from the fact that for cach ¢ there are only a finite number of
substrings v;.

Chapter 5
Section 5.1

4. Tt is quite obvious that any string generated by this grammar has the
same number of a’s as b's. To show that the prefix condition n, (v} >
ny, (v) holds, we carry out an induction on the length of the derivation.
Suppose that for every sentential form derived from & in » steps this
condition holds. To get a sentential form in n + 1 steps, we can apply
S — Xor S8 — SS. Since neither of these changes the number of a’s and
b’s or the location of those alrcady there, the prefix condition continues
to hold. Alternatively, we apply S — aSb. This adds an extra a and
an extra b, but since the added a is to the left of the added b, the prefix
condition will still be satisfied. Thus, if the prefix condition holds after
n steps, it will still hold after n+1 steps. Obviously, the prefix condition
holds after one step, so we have a basis and the induction succeeds.

7.

12.

15.

SOLUTIONS AND HINTS FOR SELECTED FXERCISES 379

(a) First, solve the case n = m + 3. Then add more #s. This can be
done by

S — aaaA
A — aAb|B
B — Bb|A

But this is incomplete since it creates at least three a’s. To take care
of the cagses n =0,1, 2, we add

S — Aad|acA

(d) This has an unexpectedly simple solution

S — aSbb|a.Sbbb| A.

These productions nondeterministically produce either bb or bbb for each
generated a.

. (a) For the first case n = m and k is arbitrary. This can be achieved by

81 = AC
A — aAb|X
C — Cc|A

In the second case, n is arbitrary and m < k. Here we use

Sy — BD
B — aBlA
D — bDc|E
E — Ee|\

Finally, we start productions with $§ — $7|55.

(e) Split the problem into two cases: n =k +m and m = k + n. The
first case is solved by

S — aSe|S1| A
Sl — aSlb]/\
(a) If S derives L, then S; — SS derives L2.

It is normally not possible to use a grammar for L directly to get a
grammar for L, so we need another, hopefully recursive description for

380 ANSWERS

19.

T. This is a little hard to see here. One obvious subset of L contains
the strings of odd length, but this is not all.

Suppose we have an even length string that is not of the form ww®.

Working from the center to the left and to the right simultaneously,
compare corresponding symbols. While some part around the center
can be of the form ww®, at some point we get an a on the left and a b
in the corresponding place on the right, or vice versa. The string must
therefore be of the form uaww®hv or ubww®av with |u| = |v]. Once
we see this, we can then construct grammars for these types of strings.
One solution is

S — ASA|B
A= alb

B — bCalaCh

C — aCa |bCh| A

The first two productions generate the u and v, the third the two dis-
agreeing symbols, and the last the innermost palindrome,

The only possible derivations start with

5 = aaB = aala = aabBba = aabAaba.

But this sentential form has the suffix aba so it cannot possibly lead to
the sentence aabbabba.

22. E — E + E|E.E| E* |(E)| \|@.

Section 5.2

2.

A solution is

S~ agA, A — aAB}b,B — b.

Note that the more obvious grammar

S5 — a5 B
Sl = aSlB|/\
B—b

is not an s-grammar.

6. There are two leftmost derivations for w = aab.

S = aaB = qab
S = AB = AaB = aaB = aab.

SOLUTIONS AND HINTS FOR SELECTED EXERCISES 381

9. From the dfa for a regular language we can get a regular grammar by
the method of Theorem 3.4. The grammar is an s-grammar except for
gy — A But this rule does not create any ambiguity. Since the dfa
never has a choice, there is never any choice in the production that can
be applied.

14. Ambiguity of the grammar is obvious from the derivations

S = aSb=ab
S = 55 = abs = ab.

An equivalent unambiguous grammar is

S — A|A

A — aAblab| AA.
It is not easy to see that this grammar is unambiguous. To make it
plausible, consider the two typical situations, w = aabb, which can only
be derived by starting with A — aAb, and w = abab, which can only
be derived starting with A — AA. More complicated strings are built
from these two situations, so they can be parsed only in one way.

20. Solution:

S — aAlaAA
A — bAb|bb.

Chapter 6
Section 6.1

3. Use the rule in Theorem 6.1 to substitute for B in the first grammar.
Then B becomes useless and the associated productions can be removed.
By Theorems 6.1 and 6.2 the two grammars are equivalent.

8. The only nullable variable is A, so removing A-productions gives

8 — aAla|aBB

;,: A — aaAlaa
13 B — bC|bbC
; J/ C — B.
é .,"‘} e C — B is the only unit-production and removing it results in
%,‘%‘ 1 io/ S — aAlalaBB
=3 rd A — aaAlaa
:) B — bC|bbC

C — bC|bbC.

382

ANSWERS

Finally, B and C are useless, so we get

S — adla

A — agA|aa.

The language generated by this grammar is L ((aa)” a).
14. An example is
S —aA
A— BB
B — aBb}:.

When we remove A-productions we get

S — adla
A — BB|B
B — aBb|ab.

16. This is obvious since the removal of useless productions never adds
anything to the grammar.

21. The grammar S — aA; A — a does not have any useless productions,
any unit productions, or any A-productions. But it is not minimal since
S — aa is an equivalent grammar.

Section 6.2
5. First we must eliminate A-productions. This gives
S — AB|B|aB
A — aab
B — bbAbb.

This has introduced a unit-production, which is not acceptable in the
construction of Theorem 6.6. Removal of this unit-production is easy.
S — AB |bbA| aB|bb
A — aab
B — bbA|bb.

We can now apply the construction and get

S — AB|ViVi 4| Vo B[V V4
A= VWiV
B — ViVAV Vs

SOLUTIONS AND HINTS FOR SELECTED EXERCISES 383

and
S — AB |V, AV, B|VyV,
A— ViV
B — VAV,
Ve = W,
Vi = VoW
Vo —a
V, — b

8. Consider the general form for a production in a linear grammar

12.

15.

A— Ct](lg...aanlbz...bn-L.

Introduce -a new variable V; with the productions

‘/1 - ag...aanlbg...bm

and

A— a1V1.

Comntinue this process, introducing V5 and

Vg — ag...aanlbz...bm

and so on, until no terminals remain on the left. Then use a similar
process to remove terminals on the right.

This normal form can be reached easily from CNF. Productions of the
form A — BC are permitted since a = A is possible. For A — a, create
new variables V1, V5 and productions A — aViVo, Vi — A, Vo — AL

Solutions: § — aVy |a8]aV,8, Vo — a, Vi, — b,

Only A — bABC is not in the required form, so we introduce A — bAV
and V — BC. The latter is not in correct form, but after substituting
for B, we have

5 —aSA

A— bAV

V-l

C — aBC.

Section 6.3

2. Since aab is a prefix of the string in Example 6.11, we can use the

V;; computed there. Since S € Vi3, the string aab is in the language
generated by the grammar and can therefore be parsed.

384 ANSWERS

For parsing, we determine the productions that were used in justi-
fying S € Via:
S € Vi3 because S — AB, with A € Vj; and B € Va3
A € Vy) because A — a
B € Va3 because B — AB, with A € V9, B € Va3
A € Vi because A — a
B € V33 because B — b.

This shows all the productions needed to justify membership; these can
then be used in the parsing

S = AB = aB = aAB = aaB = aab.

Chapter 7
Section 7.1

2. The key to the argument is the switch from ¢y to g1, which is done
nondeterministically and need not happen in the middle of the string.
However, if a switch is made at some other point or if the input is not of
the form ww!, an accepting configuration cannot be reached. Suppose
the content of the stack at the time of the switch is zy3s...252. To accept
a string we must get to the configuration (g, A, z). By examining the
transition function, we see that we can get to this configuration only if
at this point the unread part of the input is ximxs...x, that is, if the
original input is of the form ww® and the switch was made exactly in
the middle of the input string.

4. (a) The solution is obtained by letting each a put two markers on the
stack, while each b consumes one. Solution:
4 (qu, A, 2) = {(qr,2)}
0 (qu a, Z) — {(Ql! 11z)}

d(go,a,1) = {{q1,111)}
d (Q1a b, 1) = {(q13 A)}
8 (g1, A, 2) = {(gr,2)} -
(f) Here we use nondeterminism to-generate one, two, or three tokens
by
J ((IO’ a, z) 3 {(q17 12,’) ’ ((Ila 112) H (q17 1112”)}
and

5(Q0va’ Z) = {(qla 11) ’ (Q10, 111) ’ (lh, 1111)} .

11.

14.

16.

SOLUTIONS AND HINTS FOR SELECTED EXERCISES 385

The rest of the solution is then essentially the same as 4(a).

. This is a pda that makes no use of the stack, so that is, in effect, a

finite accepter. The state transitions can then be taken directly from
the pda, to give

d(q0,0) = qu
4 (g0, 0) = qo
d(qi,a) =q
(g1,b) = qo

Trace through the process, taking one path at a time. The transition
from go to ¢z can be made with a single ¢. The alternative path requires
one a, followed by one or more b's, terminated by an a. These are the
only choices. The pda therefore accepts the language

L ={a} UL (abb*a).
Here we are not allowed enough states to track the switch from a’s to

b’s and back. To overcome this, we put a symbol in the stack that
remembers where in the sequence we are. For example, a solution is

6 (q0,a,2) = {(q0, 1)},
6(q0,a,1) = {(go, 1)},
4 (g0,5,1) = {(q0,2)},
(g0, @, 2) = {(q0,2)},
4 (a0, A, 2) = {(g1,2)} .

We have only two states, the initial state go and the accepting state g;.
What would normally be tracked by different states is now tracked by
the symbol in the stack.

Here we use internal states to remember symbols to be put on the stack.
For example,

6 (gi, a,b) = {(g;,cde)}

is replaced by
d (Qia a, b) = {(qjcv de)_}
0 (qjm >\7 d) = {.(q‘jv Cd)} -

Since ¢ can have only a finite number of elements and each can only
add a finite amount of information to the stack, this construction can
be carried out for any pda.

386

ANSWERS

Section 7.2

3. You can follow the construction of Theorem 7.1 or you can notice that

11.

the language is {a™T2b2"T! :n > 0}. With the latter observation we
get a solution

6 (qo, a,2) = {{q1,2)}
6 (q1,a,2) = {(g2,2)}
6 (g2 a,2) = {(g2,112)}
d(g2,0,1) = {(g2, 111)}
6 (g2, b,1) ={(gs, 1)}
5 (g3,0,1) = {(g3, \)}
5(gs, A 2) = {(Qf,Z)}

where ¢p is the initial state and ¢y is the final state.

First convert the grammar into Gricbach normal form, giving § —
aSS88; 8§ — aB; B — b. Then follow the construction of Theorem 7.1.

6 (q0; M 2) = {{q1, 82)}
§(q1,a,8) = {(q,555),(q1, B)}
8 (q,b,B) = {(g1,)}

8 (g, x2) ={(gr,2)}.

From Theorem 7.2, given any npda, we can construct an equivalent
context-free grammar. From that grammar we can then construct an
equivalent three-state npda, using Theorem 7.1. Because of the transi-
tivity of equivalence, the original and the final npda’s are also equiva-
lent,.

We first obtain a grammar in Greibach normal form for L, for example
S — aSB|b, B — b. Next, we apply the construction in Theorem 7.1 to
get an npda with three states, go, ¢1,¢s. The state ¢; can be eliminated
if we use a special stack symbol z; to mark it. A complete solution is

4 ((1 ’z) - {
‘)((J(), S) {
3 {qn,b,8) ={
4 (qo, b, B) ={
4 (qo: A, 21) = {

/-\AASA
B 5
>
>
= 3
=
N gt

There must be at least one a to get started. After that, §{(qo,a, A) =
{(go, A)} simply reads a’s without changing the stack. Finally, when

SOLUTIONS AND HINTS FOR SELECTED EXERCISES 387

the first b is encountered, the pda goes into state ¢;, from which it can
only make a A-transition to the final state. Therefore, a string will be
accepted if and only if it consists of one or more a’s, followed by a single
b.

Section 7.3

4.

11.

15.

16.

At first glance, this may seem to be a nondeterministic language, since
the prefix a calls for two different types of suffixes. Nevertheless, the
language is deterministic, as we can construct a dpda. This dpda, goes
into a final state when the first input symbol is an a. If more sym-
bols follow, it goes out of this state and then accepts a™5”. Complete
solution:

4 (qu, a,2) = {(g3,12)}
6 (a3,a,1) = {(g1,11)}
d(q1,0,1) = {{g1,11)}
d(q1,6,1) = {(q1, M)}
8 (q1,,2) = {(qz,2)}

where F' = {g2, 43}

The solution is straightforward. Put a’s and &’s on the stack. The ¢
signals the switch from saving to matching, so everything can be done
deterministically.

There are two states, the initial, non-accepting state gy and the fi-
nal state g;. The pda will be in state ¢ unless a z is on top of the
stack. When this happens, the pda will switch states to gy. The rest
is essentially the samc as Example 7.3. Thus we have §(qq,a,2) =
{(g1,02)},6(q1,0,0) = {(¢,00)}, ete. with 6(g1,A 2) = {(q0,2)}.
When you write this all out, you will see that the pda is deterministic.

This is obvious since every regular language can be accepted by a dfa
and such a dfa is a dpda with an unused stack.

The basic idea here is to combine a dpda with a dfa along the lines of
the construction in Theorem 4.1, with the stack handled as it is for L.
It should not be too hard to see that the result is a dpda.

Section 7.4

2.

Consider the strings aabb and aabbbbaa. In the first case, the derivation
must start with S = aSB, while in the second § = 55 is the necessary
first step. But if we see only the first four symbols, we cannot decide
which case applies. The grammar is therefore not in LL (4). Since

388

ANSWERS

similar examples can be made for arbitrarily long strings, the grammar
is not L.L (k) for any k.

Look at the first three symbols. If they are aaa, aab, or aba, then the
string can only be in L (a*ba). If the first three symbols are abb, then
any parsable string must be in L (abbb*). For each case, we can find an
LL grammar and the two can be combined in an obvious fashion. A
solution is

S — 51|92
81 — aS1lba
Sy — abbB
B — bB|A

Looking at the first three symbols tells us if § = S; or § = Sy is
necessary. The grammar is therefore LL (3).

For a deterministic CFL there exists a dpda. When this dpda is con-
verted into a grammar, the grammar is unambiguous.

(a)

8§ — aSe|Si| A
81 — bS1¢A.

This is almost an s-grammar. As long as the currently scanned symbol
is @, we must apply § — a8k, if it is b, we must use § — 5y, if it is ¢,
wo can only use S — A. The grammar is LL (1).

Chapter 8

Section 8.1

3.

Take w = a™b™b"a™a™b™. The adversary now has several choices
that have to be considered. If, for example, v = a* and y = a!, with v
and y located in the prefix a™, then

wy = a]m——k:—l T A o b ,

which is not in L. There are a number of other possible choices, but in
all cases the string can be pumped out of the language.

. . . 2,,
(a) Use the pumping lemma. Given m, pick w = a™ b™. The only
choice of v and y that needs any serious examination is v = a* and

10.

12,

15.

20.

SOLUTIONS AND HINTS FOR SELECTED EXERCISES 389

y = b, with k and ! non-zero. Suppose that [= 1. Then choose i = 2,
so that ws has m® + k a’s and m + 1 b’s. But

(m+1)°=m?+2m+1
>m? + k.

Since wy is not in the language, the language cannot be context-free.
Similar arguments hold a fortiori for { > 1.

(f) Given m, choose w == a™b™1c¢™+2, which is easily pumped out of
the language.

. (b) The language is not context-free. Use the pumping lemma with

w =a"b™a™b™ and examine various choices of v and y.

Perhaps surprisingly, this language is context-free. Construct an npda
that counts to some value k (by putting k tokens on the stack) and
remembers the k-th symbol. It then examines the k-th symbol in wy. If
this does not match the remembered symbol, the string is accepted. If
w € L there must be some & for which this happens. The npda chooses
the k£ nondeterministically.

Use the pumping lemma for linear languages. With a given m, choose
w = a™b*™a™. Now v and y are entirely made of a’s, so w is easily
pumped out of the language.

The language is not linear. With the pumping lemma, use
w=(..(a)..) + (... (@) ...)

where (...(and)...) stand for m left or right parentheses, respectively.
If |u| = 1, we can easily pump so that for some prefix v, n (v) < ny (v)
which results in an improper expression. Similar arguments hold for
other decompositions.

Use w = a”, where p and ¢ are primes such that p > m and g > m. If
|vy| = k, then

[wit1] = pq + ik.

If we choose i = pq, then
4

— 1+&
Wil = a'pq()7

which is not in the language.

390

ANSWERS

Section 8.2

1.

13.

15.

21.

The complement is context-free. The complement involves two cases:
n, (w) # np (w) and n, (w) # ne (w). These in turn can be broken into
Na (W) > np (W), Ng (W) > ne (W), Ng (W) < np (w), and ng (W) < ne (W).
Each of these is context-free as can be shown by construction of a CFG.
The full language is then the union of these four cases and by closure
under union is context-free.

. Given a context-free grammar G, construct a context-free grammar G

by replacing every production A — z by A — xF. We can then show
by an induction on the number of steps in a derivation that if w is a
sentential form for G then w® is a sentential form for G.

. Given two linear grammars G, = (V1,T, 81, P1) and G2 = (V2, T, S2, P»)

-~

with V1NV, = @, form the combined grammar G = (Vi U Vo, T, 5, PLU P,
US — 81|82). Then @ is linear and L (6’) = L (G1) U L(Ga).
To show that linear languages are not closed under concatenation, take

the linear language L = {a"b™ : n > 1}. The language L? is not linear
as can be shown by an application of the pumping lemma.

Let G; = (Wi,T,51,) be a linear grammar for L; and let G2 =
(Va, T, Sa, P;) be a left-linear grammar for Ly. Construct a grammar
G, from G by replacing every production of the form V — z, 2z € T~
with V — 8,z. Combine grammars Gy and Gz, choosing S as a start
symbol. It is then easily shown that in this grammar

S = S1w = uw

if and only if u € Ly, and w € Ls.

The languages L1 = {a™b"c™} and Ly = {a"b™c™} are both unam-
biguous. But their intersection is not even context-free,

A € L(G) if and only if S is nullable.

Chapter 9

Section 9.1

2.

A three-state solution that scans the entire input is

5(Q0aa') = (QI,U«aR)
5(&]1,(1) = 5((1176) = (Q1,G,R)
J(qlam) = (q27D7R)

with F' = {¢a2}-

10.

12.

19.

SOLUTIONS AND HINTS FOR SELECTED EXERCISES 391

It is also possible to get a two-state solution by just examining the first
symbol and ignoring the rest of the input, for example,

4 (‘IOaa) = (q29a7 R) .

. (a)

with F = {g3}.

(b)
(5((]0,&) = 6(q0’b) = (ql7D’R)
9(g0,0) = (2,0, R)
5((]1,&) = 5((]1,1)) = (quDaR)
with F' = {gz}.

The solution is conceptually simple, but tedious to write out in detail.
The general scheme looks something like this:

(i) Place a marker symbol ¢ at each end of the string.

(ii) Replace the two-symbol combination ca on the left by ac and the
two-symbol combination ae on the right by ca. Repeat until the
two ¢’s meet in the middle of the string.

(iii) Remove one of the ¢’s and move the rest of the string to fill the
gap. '

Obviously this is a long job, but it is typical of the cumbersome ways
in which Turing machines often do simple things.

We cannot just search in one direction since we don’t know when to
stop. We must proceed in a back-and-forth fashion, placing markers
at the right and left boundaries of the searched region and moving the
markers outward.

If the final state set £ contains more than one element, introduce a new
final state gy and the transitions

4 (‘La) = (C.If!a9 R)

forallge Fand a T,

392

ANSWERS

Section 9.2

3. (a) We can think of the machine as constituted of two main parts, an
add-one machine that just adds one to the input, and a multiplier that
multiplies two numbers. Schematically they are combined in a simple
fashion.

—\-| add-one _l_, —_—

|
‘_.‘.._| | multiplies ——= n{n+ 1)
‘ Cag I

5. (c) First, split the input into two equal parts. This can be done as
suggested in Exercise 10, Section 9.1. Then compare the two parts,
symbol by corresponding symbol until a mismatch is found.

8. A solution:
4 (qo,a) = (q'iva'vR) »
8 (g0,¢) = (qo, ¢, R) for all c€ ¥ — {a},
6 (g0,0) = (g;,5, R) .
The state go is any state in which the searchright instruction may be
applied.
Section 9.3

2. We have ignored the fact that a Turing machine, as defined so far, is
deterministic, while a pda can be non-deterministic. Therefore, we can-
not yet claim that Turing machines are more powerful than a pushdown
automata.

Chapter 10
Section 10.1

4. (a) The machine has a transition function

§:QxI'-QxIx{L,R,S}

with the restriction that for all transitions 6 (¢;,a) = (g;,b, L or R), the
condition a = b must hold.

(b) To simulate 6 (g;,a) = (g;,b, L) with a # b of the standard ma-
chine, we introduce new transitions & (g;,a) = (g;r,b, S) and d (g;1,b) =
(gj,b,L) for all c€ T, and so on.

SOLUTIONS AND HINTS FOR SELECTED EXERCISES 393

6. We introduce a pseudo-blank B. Whenever the original machine wants

11.

to write [J, the new machine writes B. Then, for each ¢ (g;,(J) =
(g;,b, L) we add 6 (¢;, B) = (g;,b, L), aud so on. Of course, the original
transition 6 (¢;,03) = (g;, b, L) must be retained to handle blanks that
are originally on the tape.

. This does not limit the power of the machine. For each symbol a € T,

we introduce a pseudo-symbol, say A. Whenever we need to preserve
this a, we first write A, then return to the cell in question to replace A
by a.

We replace
6 (gi; {a,b}) = (g5, ¢, R)
by
0(¢:, d) = (g5, ¢, R)

forall d € T' — {a, b}.

Section 10.2

1.

For the formal definition use I'r = I'x I'x ... xTand § : Q@ xT'r —
Q x ' x {L,R}™, where m is the number of read-write heads. One
issue to consider is what happens when two read-write heads are on
the same cell. The formal definition must provide for the resolution of
possible conflicts.

To simulate the original machine (OM) by a standard Turing ma-
chine (SM), we let SM have m + 1 tracks. On one track we will keep
the tape contents of the QM , while the other m tracks are used to show
the position of OM’s tape heads.

] i | ® c d [] tape content of OM

L] X [[] position of tape head # 1

] X [position of tape head # 2
|

SM will simulate each move of OM by scanning and updating its active
area.

. This exercise shows that a queue machine is equivalent to a standard

Turing machine and that therefore a queue is a more powerful storage

394 ANSWERS

device than a stack. To simulate a standard TM by a queue machine,
we can, for example, keep the right side of the OM in the front of the
queue, the left side in the back.

(read-write head

a b ‘ c | d | ¢ | f g | tape of OM
c d ¢ £ x i a , | Simulation
' & . | by queue

A right move is easy as we just remove the front symbol in the queue
and place something in the back. A left move, however, goes against
the grain, so the queue contents have to be circulated several times to
get everything in the right place. It helps to use additional markers Y
and Z to denote boundaries. For example, to simulate

§ (qiv C) = (qjv Z, L)
we carry out the following steps.

(i) Remove c from the front and add zY to the back.
(ii) Circulate contents to get bzY defgXa.

(iii) Add Z to the back, then circulate, discarding Y and Z as they
come to the front.

8. We need just two tapes, one that mirrors the tape of the OM, the
second that stores the state of the OM.

a b c ‘ d ‘ ¢ configuration of OM

configuration of SM

SM needs only two states: an accepting and a non-accepting state.

SOLUTIONS AND HINTS FOR SELECTED EXERCISES 395

Section 10.3
3. (i) Start at the left of the input. Remember the symbol by putting
the machine in the appropriate state. Then replace it with X.

(ii) Move the read-write head to the right, stopping (nondeterministi-
cally) at the center of the input.

(iii) Compare the symbol there with the remembered one. If they
- match, write ¥ in the cell. If they don’t match, reject input.

(iv) With the center of the input marked with Y, we can now proceed
deterministically, alternatively moving left and right, comparing
symbols.

For a completely deterministic solution, we first find the center of the
input (e.g. by putting markers at cach end, and moving them inwards
until they meet).

6. Nondeterministically choose a value for n. Determine if the length of
the input is a multiple of n. If it is, accept. If ™ € I, then there is
some n for which this works.

Section 10.4

3. An algorithm, in outline, is as follows.

(i) Start with a copy of the preceding string.

(ii) Find the rightmost 0. Change it to a 1. Then change all the 1’s
to the right of this to 0’s.

(iii) If there are no 0’s, change all 1’s to 0’s and add a 1 on the left.
(iv) Repeat from step (i).

8. Let S1 = {s1,$2,...} and Sy = {t1,¢s,...} Then their union can be
enumerated by

Sl U SQ = {.5'1,7'31,52,'[52, } .

If some s; = t;j, we list it only once. The union of the two sets is
therefore countable. For Sy x Sz, use the ordering in Figure 10.17.

Section 10.5

2. First, divide the input by two and move result to one part of tape. This
frec space initially occupied by the input. This space can then be used
to store successive divisors,

396 ANSWERS

4. (e) Use a three-track machine as shown below. On the third track,
we keep the current trial value for |w|. On the second track, we place
dividers every |w| cells. We then compare the cell contents between the

markers.
i a b c d b ¢ d input
x X dividers
) 1 | ‘ 1 ‘ [‘ trial value of lwl

6. Use Exercise 16, Section 6.2 to find a grammar in two-standard form.,
Then use the construction in Theorem 7.1. The pda we get from this
consumes one input symbol on every move and never increases the stack
contents by more than one symbol each time.

7. Example:
~Y;
T T * T —
e f g a | e d | Configuration of OM
— a —l
g d
Stack Configurations
f
e
Stackl Stack2

Stackl contains the symbol under the read-write head of the OM and
everything on the left. Stack2 contains all the information to the right
of the read-write head. Left and right moves of the OM are easily sim-
ulated. For example, 6 (g;,a) = (g;, b, L) can be simulated by popping
the a off Stackl and putting a b on StackZ.

Chapter 11
Section 11.1

2. We know that the union of two countable sets is countable and that the
set of all recursively enumerable languages is countable. If the set of

11.

14.

18.

SoLUTIONS AND HINTS FOR SELECTED EXERCISES 397

all languages that are not recursively enumerable were also countable,
then the set of all languages would be countable. But this is not the
case, as we know.

. Let L; and Lo be two recursively enumerable languages and M; and

My be the respective Turing machines that accept these two languages.
When represented with an input w, we nondeterministically choose M,
or M to process w. The result is a Turing machine that accepts Ly ULs.

A context-free language is recursive, so by Theorem 11.4 its complement
is also recursive. Note, however, that the complement is not necessarily
context-free.

For any given w € L¥, consider all splits w = wiwsy...wy,. For each
split, determine whether or not w; € L. Since for each w there are only
a finite number of splits, we can decide whether or not w ¢ LT,

The argument attempting to show by diagonalization that 2% is not
countable for finite S fails because the table in Figure 11.2 is not square,
having |2%| rows and |S| columns.

IS1 columns

28l rows

X X X X X|

When we diagonalize, the result on the diagonal could be in one of the
rows below.

Section 11.2

1.

Look at a typical derivation:

S = a5,bB = aaSbbB = a"S1b"B = o™t IR = "B =

From this it is not hard to conjecture that the grammar derives

L={a""""t* n>1k=-1,13,..}.

398 ANSWERS

3. Formally, the grammar can be described by G = (V, 5, T, P), with S ¢
(VuT)" and

L{(GY={zxeT":s=quforany s € §}.
The unrestricted grammars in Definition 11.3 arc cquivalent to this

extension because to any given unrestricted grammar we can always
add starting rules Sy — s; for all 5; € §.

7. To get this form for unrestricted grammars, insert dummy variables on
the right whenever |u| > |v|. For example,

AB—C

can be replaced by

ADB — CD
D—

The equivalence argument is straightforward.

Section 11.3
1. (¢) Working with context-sensitive grammars is not always easy. The
idea of a messenger, introduced in Example 11.2, is often useful.

In this problem, the first step is to create the sentential form a™Be™ D.
The variables B and D will act as markers and messengers to assure
that the correct number of &’s and d’s are created in the right places.
The first part is achieved easily with the productions

S — aAcDjaBcD
A — aAc|aBe.

In the next step, the B travels to the right to meet the D, by

Be — cB
Bb — bB.

When that happens, we can create one d and a return messenger that
will put the b in the right place and stop.

BD — Ed
cE — Ee
bE — Eb
oFE — ab.

SOLUTIONS AND HINTS FOR SELECTED EXERCISES 399

Alternatively, we create a d plus a marker D, with a different messenger
that creates a b, but keeps the process going:
" BD— FDd
¢F — Fe¢
bf' — Fb
aF — abB.

The easiest argument is from an lba. Suppose that a language is
context-sensitive. Then there exists an lba M that accepts it. Given
w, we first rewrite it as w’®, then apply M to it. Because L* =
{w:w® e L}, M accepts w™ if and only if w € L®. The machine

" that reverses a string and applies M is an lba. Therefore L¥ is context-

sensitive.

We can argue from an lba. Clearly, there is an lba that can recognize
any string of the form wuw. Just start at opposite ends and compare
gymbols until you get a match. Since there is an lba, the language is
context-sensitive and a context-sensitive grammar must exist.

Chapter 12
Section 12.1

3.

10.

Given M and w, modify M to get M , Which halts if and only if a
special symbol, say an introduced symbol #, is written. We can do this
by changing the halting configurations of M so that every one writes
#, then stops. Thus, M halts implies the M writes #, and M writes
implies that M halts. Thus, if we have an algorithm that tells us
whether or not a specified symbol a is ever written, we apply it to M
with a = #. This would solve the halting problem.

Given (M, w) modify M to M so that (M,w) halts if and only if M
accepts some simple language, say {a}. This can be done by M first
checking the input and remembering whether the input was a. Then
M carries out its normal computations. When it halts, check if the
input was a. Accept if so, reject otherwise. Therefore M accepts {a} if
and only if M halts. Now construct a simple Turing machine, say M,
that accepts a. If we had an algorithm that checks for the equality of

two languages, we could use it to see if L (JTI) =L(M). If L (ﬁ) =
L (M) then (M,w) halts. If L (M) # L (M) then (M, w) does not
halt and we have a solution to the halting problem.

Given (M, w) we modify M so that it always halts in the configuration
grw. If the given problem was decidable, we could apply the supposed

algorithm to the modified machine, with configurations gow and gqyw.
This would give us a solution of the halting problem.

400

ANSWERS

13.

16.

Take a universal Turing machine and let it simulate computations on
an empty tape. Whenever the simulated computations halt, accept
the Turing machine being simulated. The universal Turing machine is
therefore an accepter for all Turing machines that halt when applied to
a blank tape. The set is therefore recursively enumerable.

Suppose now the set were recursive. There would then exist an algo-
rithm A that lists all Turing machines that halt on a blank tape input
in some order of increasing lengths of the program. See if the original
Turing machine is amongst the Turing machines generated by A. Since
the length of the original program is fixed, the comparison will stop
when this length is exceeded. Thus, we have-a solution to the blank
tape halting problem.

If the specific instances of the problem are p;, ps, ..., pp, We construct a
Turing machine that behaves as follows:

if problem = p; then return false

if problem = p; then return true

if problem = p,, then return true

Whatever the truth values of the various instances are, there is always
some Turing machine that gives the right answer. Remember that it
is not necessary to know what the Turing machine actually is, only to
guarantee that it exists.

Section 12.2

3.

Suppose we had an algorithm to decide whether or not L (M;) C
L (Ms). We could then construct a machine Ms such that L (Mp) = &
and apply the algorithm, Then L (M) € L (M3) ifand only if L (M) =
@. But this contradicts Theorem 12.3, since we can construct M; from
any given grammar G.

. If we take L (Gg) = £*, the problem becomes the question of Theorem

12.3 and is therefore undecidable.

. Since there are some grammars for which L (G) = L (G)* and some for

which this is not so, the undecidability follows from Rice’s theorem.
To do this from first principles is a little harder. Take the halting
problem (M,w) and modify it (along the lines of Theorem 12.4), so
that if (M, w) halts, M will accept {a}" and if (M, w) does not halt, M
accepts @. From M get the grammar G by the construcEion leading to
Theorem 11.7. If L (7\/.7) = {a}*, then L (@) =L (ﬁ) = {a}*. But

SOLUTIONS AND HINTS FOR SELECTED EXERCISES 401

if L (JTZ) — o, then L (é) ~ @and L (é) = {A}. Therefore, if this
problem were decidable, we could get a solution of the halting problem.

Section 12.3

1. A PC-solution is wawaw, = vsvgvr. There is no MPC-solution because
one string would have a prefix 001, the other 01.

3. For a one-letter alphabet, there is a PC-solution if and only if there is
some subset J of {1,2,...,n} such that

> lwsl =l

Jied JjeT
Since there are only a finite number of subsets, they can all be checked

and therefore the problem is decidable.

5. (a) The problem is undecidable. If it were decidable, we would have
an algorithm for deciding the original MPC-problem. Given wy, ws...,
Wy, we form wf,wf...,wl and use the assumed algorithm. Since

W Wy WE = (wf...wiﬂwlR)R, the original MPC-problem has a solution

if and only if the new MPC-problem has a solution.

Chapter 13
Section 13.1

2. Using the function subtr in Example 13.3, we get the solution

greater (z,y) = subtr (1, subtr (1, subtr (z,y))) .

g(z,y) = mult (z,9(z,y — 1)),
g(z,0) =1

A(lay) :A(OaA(]-’y_ 1))

=A(lL,y—1)+1
=A(1,0)+y

=y+2

402

ANSWERS

(b) With the results of part (a) we can use induction to prove the next
identity. Assume that for y = 1,2,...,n — 1, we have A (2,y) = 2y + 3.
Then

A(2,n)=A1,A(2,n—-1))
=A(1,2n+1)
= 2n + 3, from part (a).

Since

we have a basis and the equation is true for all y.

15. If 2 + y — 3 = 0, then y = 3 — 2%, The only values of x that give a
positive y are 0 and 1, so the domain of p is {0, 1}, giving a minimum
value of y = 1. Therefore

py (2°+y-3) =1

Section 13.2

1. (b) Use Cr = {a,b,¢}, Cx = {2} and A = {z}. The non-terminal z is
used as a boundary between the left and right side of the target string
and the two w'’s are built simultaneously by

VizVy — ViazVaa |VibzVab| VicxVac.
At the end, the z is removed by
VizVe = 1 V5.

3. At every step, the only possible identification of V; is with the entire
derived string. This results in a doubling of the string and

LZ{CLQTL:TLZI}.

5. A solution is

Vi*Vo=Vs = Vi1 Vo = V3V
Vi*Vo=V3 — Vi*Wl=VV.

*For example

lel=1=11%1=11=11%11=1111,

and so on.

SOLUTIONS AND HINTS FOR SELECTED EXERCISES 403

Section 13.3

1.

5.

P :85— 55

P : 5 — ab;,5 — aS;
P;: 5 —b5,5 — bSy
Py:85 —)\ S — A

The solution here is reminiscent of the use of messengers with context-
sensitive grammars.

ab— z
b — bx
re — A

Although this is not so easy to see, this is one way to solve Exercise 7.
Take any string, say a?°%. This can be derived from a'?? by applying
a — aaa once and & — aa 126 times. Then a'?? can be derived from
a%® in a similar way, and so on. Thus every string in L (aa*) can be
derived.

for Further Reading

A. V. Aho and J. D. Ullman. 1972. The Theory of Parsing, Translation,
and Compiling. Vol. 1, Englewood Cliffs, N.J.: Prentice Hall.

P. J. Denning, J. B. Dennis, and J. E. Qualitz. 1978. Machines, Languages,
and Computation. Englewood Cliffs, N.J.: Prentice Hall,

M. A. Harrison. 1978. Introduction to Formal Language Theory. Reading,
Mass.: Addison-Wesley.

J. E. Hopcroft and J. D. Ullman. 1979. Introduction to Automata Theory,
Languages and Computation. Reading, Mass.: Addison-Wesley.

R. Hunter. 1981. The Design and Construction of Compilers. Chichester,
New York: John Wiley.

R. Johnsonbaugh. 1996. Discrete Mathematics. Fourth Ed. New York:
Macmillan.

7. Kovahi. 1978. Switching and Finite Automata Theory. Second Edition.
New York: McGraw-Hill.

A. Salomaa. 1973. Formal Languages. New York: Academic Press.

A. Salomaa. 1985. “Computations and Automata,” in Encyclopedia of
Mathematics and Its Applications. Cambridge: Cambridge University Press.

405

[

A
accepter, 26
Ackerman’s function, 330
algorithm, 2, 246
alphabet, 15
ambiguity, 136
of a grammar, 141
inherent, 144
automaton, 2, 25
deterministic, 26
nondeterministic, 26
axioms, 324, 334

B

Backus-Naur form, 146

base of a cycle, 8

blank, 223

blank-tape halting problem, 305

C
Cartesian product of sets, 5
child-parent relation in a tree, 8
Chomsky hierarchy, 295
Chomsky normal form, 149, 165
Church’s thesis, 325
Church-Turing thesis, 325
closure, 99

positive, 18

star, 18
closure properties

of context-free languages, 213

of regular languages, 100
complement

of a set, 3

of a language, 18
complete systems, 324
complexity, 343

of a grammar, 163

space, 344

time, 344
complexity class P, 353
complexity class NP, 354
composition, 326
computability, 299
computable funetion, 233
computation, 228

models, 323

valid, 321
concatenation

of languages, 18

of strings, 15
configuration of an automaton, 25
conjunctive normal form, 348
consistent systems, 324
context-free grammars, 126
context-free languages, 125

deterministic, 195
context-sensitive grammars, 289
context-sensitive languages, 290
control unit of an automaton, 25
Cook-Karp thesis, 354
Cook’s theorem, 355
cycle in a graph, 8

simple, 8
CYK algorithm, 172

D

dead configuration, 52
decidability, 299
DeMorgan’s laws, 4

407

408

INDEX

dependency graph, 154
derivation, 21
leftmost, 129
rightmost, 129
derivation tree, 130
partial, 131
yield, 131

deterministic finite accepter, 36

dfa, 36
diagonalization, 279
disjoint sets, 4

distinguishable sets in a dfa, 63

dpda, 195

E
empty set, 4
end markers for an lba, 271
enumeration procedure, 268
equivalence, 7
of automata classes, 250
of dfa’s and nfa’s, 55
of grammars, 24

F
family of languages, 42
final state, 36
finite automata, 35
formal languages, 2
functions, 5
computable, 233
domain, 5
partial, b
range, b
total, 5

G

grammar, 19
context-free, 126
context-sensitive, 289
left-linear, 89
linear, 91
regular, 89
right-linear, 89
simple, 140
unrestricted, 283

graph, 7

labeled, 7
Greibach normal form, 149, 168

H
halting problems for Turing
machines, 301
halt state of a Turing machine, 224
hierarchy of language families, 275
homomorphic image of a
language, 103
homomorphism, 103

I
incompleteness theorem, 324
indistinguishable states in a dfa, 66
inherent ambiguity, 144
initial state, 36
input file, 25
instantaneous description
of a pushddwn automaton, 179
of a Turing machine, 226
internal states of an automaton,
25, 36
intractable problems, 354

L
lambda-productions, 156
language, 15, 17
accepted by a dfa, 38
accepted by a dpda, 196
accepted by an lba, 271
accepted by an nfa, 51
accepted by a Turing machine,
229
associated with regular
expressions, 73
generated by a grammar, 21
generated by a Post system, 335
language families, 42
Iba, 270
left-linear grammar, 89
leftmost derivation, 129
linear bounded automata, 270
linear grammar, 91
LL-grammars, 201
L-systems, 340

M
Markov algorithm, 339
matrix grammar, 338
membership algorithm, 111
for context-free languages, 172
for context-sensitive languages,
293
minimal dfa, 67
minimalization operator, 331
monus, 327
move of an automaton, 25
MPC-solution, 313
mu-recursive functions, 331

N

nfa,48

non-contracting grammars, 290

nondeterministic finite accepter, 47

nondeterminism, 52

nonterminal constant, 334

normal form of a grammar, 149,
165

NP-complete problems, 355

npda, 177

null set, 4

0

order
proper, 269
relation in a free, 8

P
parsing, 136
exhaustive search, 136
top-down, 136
path
in a graph, 8
labeled, 8
gimple, 8
pattern matching, 85
PC-solution, 313
pda, 175
phrage-structure grammar, 338
pigeonhole principle, 114
polynomial-time reduction, 355
Post correspondence problem, 312
modified, 313

INDEX 409

Post system, 334
powerset, 4
primitive recursion, 326
primitive recursive functions, 328
primitive regular expressions,72
productions of a grammar, 19
program of a Turing machine, 224
projector function, 326
proof techniques, 9
contradiction, 11
induction, 9
proper order, 269
proper subset, 4
pumping lemma,
for context-free languages, 206
for linear languages, 210
for regular languages, 115
pushdown automata, 175
deterministic, 195
nondeterministic, 176 IR

R
read-write head of a Turing
machine, 222
recursive function, 325
recursive language, 277
recursively enumerable languages,
276
reduction of states in a dfa, 62
reduction
of undecidable problems, 304
polynomial-time, 355
regular expressions, 71
regular grammar, 89
regular language, 43
relation, 5
reverse
of a language, 18
of a string, 15
rewriting systems, 337
Rice’s theorem, 311
right-linear grammars, 89
rightmost derivation, 129
right quotient of languages, 104
root of a tree, 8

InnDEx

]
satisfiability problem, 347
semantics of programming
languages, 148

sentence, 17
sentential form, 21
set, 3

countable, 267

uncountable, 267
set operations, 3
g-grammar, 140
simulation, 251
space-complexity, 344
stack, 175

alphabet, 177

start symbol, 177
standard representation for

regular languages, 112

state-entry problem, 304
storage of an automaton, 25
string, 15

empty, 15

length, 15

operations, 15

prefix, 16

suffix, 16
subset, 4

proper, 4
substring, 16
successor function, 326
symmetric difference of two sets,

extended, 37

transition graph, 36

generalized, 81

trap state, 39

trees, 8

Turing-computable function, 233

Turing machine, 221
multidimensional, 261
with multiple tracks, 253
multitape, 2568
nondeterministic, 263
off-line, 255
with semi-infinite tape, 253
standard, 226
with stay-option, 251
universal, 266

Turing’s thesis, 244

8]
undecidable problem, 300
for context-free languages, 318
for recursively enumerable
languages, 308
unit productions, 158
universal set, 4
universal Turing machine, 266
unrestricted grammar, 283
useless productions, 153

v

variable

109 of a grammar, 19
\:: _\-‘3} O syntax of a programming language, nullable, 156
y B @ 147 start, 19
ﬂ' 7.‘5 = useless, 153
3 i T
9 tape alphabet, 223 W

33

tape of a Turing machine, 222 walk in a graph, 8

terminal constant, 334

terminal symbol, 19 Y

time-complexity, 344 vield of a derivation tree, 131
tracks on a tape, 253

tractable problems, 343, 354 Z

transducer, 26 zero function, 326

transition function, 25, 36

ol ! Ol yla
LU

21

