
b d

An Introduction to
Formal Languages
and Automata

Third Edition

Peter Linz
University of California at Davis

filru;;;:
6l;l .rf;ti. etig* t' o dtry'l-,tlti,tFI,

hgfryfl6a

\ n qf I" ';;'ut:

A\ ,r ' f7 lA ,obi

IONES AND BARTLETT P,UBLISHERS
Stdlnry, Massnclrrsrtr

.BOSTON TORONT'O LONDON SINGAPORE

Workl Headquerters Jones and Bartlett Publishers Jones and BarJlett Publishers

Iones and Bartlett Puhlishers Canada International
Barb House, Barb Mews40 Tall Pine Drive

Sudbury, MA 01776
978-443-5000
info@jbpub.corn
www.jbpub.com

2406 Nikanna Road
Mississauga, ON L5C 2W6 London W6 7PA
CANADA UK

00-062546

Copyright O 2001 by Jones and Bartlett Publishers, Inc.

All rights reserved. No part of the material protected by this copyright notice may be reproduced or

utilized in any fonn, elcctronic or mechanical, including photocopying, recording, or any infotmation

storage or retrieval sy$tem, without written permission f'rom the copyright owner.

Library of Congress Cataloging-in-Puhtication Data G' A

Linz, Peter.
An introduction to formal languages and automata / Peter Linz'--3'd cd

p. cm.
Includes bi hl iographical ref'erences and index.
rsBN 0-7637-1422-4
l. Formal languages. 2. Machine theory. l. Title.

QA267.3 .Ls6 2000
5 | 1 .3--dc2l

Chief Executive Officer: Clayton Jones
Chief Operating Officer: Don W. Jones, Jr.
Executive Vicc President and Publisher: Tom Manning
V.P., Managing Editor: Judith H. Hauck
V.P.. Collese Editorial Director: Brian L. McKean

;..#F*F*.,.

V.P;, Dcsigir'and"Prodgction: \ Anne $pencer
V. P., S al cs anit*ffr arket+rg-i . Fau I Shefiardson
V. P., Man uf aeturingjand ilnhrr'trrry dpntrol : Therese Briiucr

Senior Agquisitions Editor; Michacl $tranz
f)evelopment and Product Managcr: f,lny Rose
Markcting Director: Jennifer .Iacobson
Produ ction Coordinati on I Tri{ litr m -Pt'oj ect M an agcment
Cover Design; Night & Day Design
Composition: Northeast Compositors
Printing and Binding: Courier Westford
Cover printing: John Pow Cotnpany, Inc.

Covel Imasc O Jim Wehtie

This book was typeset in Texturcs 2. I on a Macintosh G4. The fbnt families used were Computer

Modern, Optima, and F'utura. The first printing was printed on 50 lb. Decision 94 Opaque.

2 6 + , 3
. L 5 4
Loo I

Printed in the United States of Arnerica _. -'_

0 4 0 3 0 2 0 1 l o 9 8 7 6 5 4 3 2 1
I

I
,r./1,il.t!\lch-

L 4

his book is designed for an introductory course orr forrnir,l larrguages,
autornatir, txlmputability, and rclated matters. These topics form
a major part of whnt is known as tht: theory of cornputation. A
course on this strbitx:t rnatter is now stir,nda,rd in the comprrter sci-

ence curriculurn ancl is oftrlrr ta,ught fairly early irr the prograrn. Hence,
the Jrrospective audience for this book consists prirnrr,rily of sophomores and
juniors rnirjrlring in computer scicntxl or computer errgirrwring.

Prerequisites for the material in this book are a knowledge of sorne
higher-level prograrnrning la,nguage (cornmonly C, C++, or .Iava) and fa-
trrilinritv with ihe furrdarn<lnta,ls of data structures and algoriihms. A colrr$e
in discretc mathematics that irx:hrcles set theory, furrctions, relations, logic,
and elernerrts of mathematical reasorring is essential. Such a corlrse is part
of the standard introductory computer science curriculum.

The study of the theory of cornputa.tion has several purposc$, most im-
prortantly (1) to fa,miliarize studerrts with the fbundations and principles of
computer sciettce, (2) to teach tnaterial that is useful in subsequerrt colrrres!
rrnd (3) to strengtlrcrr utudents' ability tu t:ilrry out formal and rigorous
rrrirthematical argurnerrts. The presentatiorr I ha,ve chosen for this text fa-

III

lv F RHr-AciE

vors the first two purpose$r although I would rr.rgue that it a,lso serves the

thircl. To prt:sent ideas clenrly arrd 1,o give strrdcrrts insight into the material,

tlte text stresses intuitive rnotivation and ilhrstration of idcir.s through ex*

a,m1llcs. When there is ir choice, I prefcr arguments thtr,t a,re easily grer,sptxl

to thosr.'tlnt are concisr,l and elegant brrt rlifficult in concellt. I state clefini-

tiorrs ancl theorems llrecisely and givt: the tnotiva,tion ftlr proofs, brrt tlf'tt:rr

k:ave out the rorrtirre and tediorrs rlctails. I believe tlrrr.t this is desirnblc for

peclagogir:nl rcasdhs, Many proofs are unexc:itirrg applications of irrduction

or contra,clit:tiotr, with diff'ererrt:es that are sptx:ific to particuLrr llrobletns.
Presenting $rrdr arguments in full detail is not orrly ullllecessary, lrtrt inter-

feres with the flow of the storv. Therefore, quite a few of the proofs are

sketchy irrrcl someone wlxl irrsists on complerttlrress Inay consitlclr tltern lack-

ing in cletrr.il. I do not seq: this as a clrawback. Mathematica,l skills are uot

the byproduct of reading sorrreorle else's argutttents, but comc frorn think-

ing atrout the essenrxl of a problem, disrxlvtlrirrg idea-s srritatllc to make the

poirrt, thel carrying tltetn out in prtruistl detail. The kr,tter skill certainly

has to be lea,rnerd, arrd I lhink th.r,t the proof sketches irr this text providc

very appropriir,tc startiug points fbr such a practitx:.

StudentS irr courputer sclit1rrce sornetitnes vi(lw a course in the theory of

computation aa urlnecessarily abstract and of little practical con$(xpelrce.
'Ib convinr:c thetn otherwi$e, t)nc treecls to appeir.l tcl their specific irrterests

and strengths, suclt a,s tena,t:ity and inventivttntlss itt clealing with hard-to-

solver llroblettts. Beca,user of tltis, tny a,pprtlitt:h empha,sizes lea.rnirrg through

probletn solving.
By a problem-solvitrg approa,ch, I rrteatt that students learn the material

prirnarily througlt problem-type illustrative examplcs that show the moti-

vation bohirrd the concepts, a^s well as their conncction to the theorcrns attd

clefinitiotrs. At the sa,me tirne, the examples rrriry involve a nontrivial aspect,

for whir:h students must dist:ovc:r a solution. In such an approach, htlrnework

exrrrc:ises contribute to ir, rrrajor part of the leartting procefJs. The exercises

:rt the end of each sectiorr are designed to illutrftrate and ilhrstrate the ma-

tr:rial and call orr sttrdents' problem-solving ability a,t vtr,riotrs levels. Some

of the exerci$cs are fairly sirnple, pickirrg up where the discussiotr in the text

Ieaves ofl and asking students to carry ou for antlther step or two. Other

extrrcises are very difficult, challenging evtrrr the best ntinds. A good rnix

of such exercises t:ilrr be a very eff'ectivt: teaching tool. Ttr help instructors,

I have provitled separately an instructor's guide thrr.t outlines the sohrtitlrrs

of the exercise$ irrrd suggests their pcdagogical value. Students need not trrr

asked to solvc all problems bqt should be assigned those which support tlte

goals of the course and the viewpoint of the instnrt:tor. Computer sr:ience

currir:ulir tliffer from institrrtiorr to iilstitutiorr; while a few emphasize the

theoretir:nl side, others are alrnost entirely orientt:d toward practiclnl appli-

cation. I believe that this tt:xt can serve eitlNlr of these extremes, llrclvided
that the exercises a,re stllected carefully witli the students' btr,c:kground atld

intertlsts in mind. At ttle same time, the irrstructor needs to irrform tlle

PRnrecn

students aborrt the level of abstraction that is expected of tlxrm. This is
particularly tnre of the proof-orietrttxl exercises. When I say "llrove that"
or "show that," I hrr,ve in mind that the student should think about how a,
proof rnight be cclnstrur:ted ancl then produr:e a, clear argurnent. How fbr-
rrtal srrch a, proof should bc needs to be deterrnined by the instructor, ancl
stutltlnts should be given guitlrllines on this early irr the txlrrse.

Tltc content of the text, is allllropriate for a one-sernestcr txrurse. Most
of the nraterial can be covered, although some choice of errrpha.sis will have
to be rnirde. In my classes, I gencrirlly gloss over proofs, skilr4rv as they are
itr tlte tcxt. I usually give just enough coverage to make the rcsult plausible,
asking strrdents to read the rest orr their own. Overall, though, little can
be skippexl entirely witltout potential difficulties later on. A few uections,
which are rnrlrked with an asterisk, c:rr,n be omitted without loss to later
material. Most of tht: m:r,teria,l, however. is esscrrtial ancl must be covered.

The first edition of this book wrr,u published in 1990, thc: stxxrnd a,ppeared
in 1906. The need for yet another cdition is gratifying and irrtlic;ates that
tny a1l1lrorr,ch, via languages rathcr than computations, is still viable. The
charrgcs ftrr the second edition wercl t)volutionary rather than rcvolrrtionary
and addressed the inevitable itrirct:rrra,c:ies and obscurities of thtl Iirst edition.
It seertrs, however, that the second r:dition had reached a point of strrbility
that requires f'ew changes, so thc tlrlk of the third editiorr is idcntical to the
previous one. The major new featurtl of the third edition is the irrc:hrsion of
a set of solved exercises.

Initially, I felt that giving solutions to exercises was undesirable hecause
it lirrritcd the number of problerrts thir.t r:a,n be a,ssigned for hourework. How-
ever, over tlre years I have received so rrrany requests for assistance from
students evt:rywhere that I concluded that it is time to relent. In this edi-
tion I havc irrcluded solutions to a srnall rrumber of exercises. I have also
added solrro rrew exercises to keep frorn rtxhrcing the unsolved problems too
much. Irr strlec:ting exercises for solutiorr, I have favored those that have
signiflcant instructioner,l ver,lues. For this reasorr, I givc not onlv the answers,
brrt show the reasonirrg that is the ba,sis for the firml result. Merny exercises
have thtl ser,me theme; often I choose a rupresentative case to solve, hoping
that a studerrt who can follow the reasorrirrg will be able to transfer it to a
set of similar instances. I bclicrve that soluiions to a carcfirlly selected set
ttf exercises can help studerrts irrr:rea"re their problern-solvirrg skills and still
lcave instructors a good set of unuolved exercises. In the text, {lxercises for
whir:h rr, solution or a hint is g-ivcrr rr,rqr identified with {ffi.

Also in response to suggcstitlns, I have identified sonre of ther harder
exercist:s. This is not always easv, sirrt:e the exercises span a spectrrrm of
diffic;ulty and because a problen that seems easy to one student rnay givr:
considerable trouble to another. But thcre are some exercises that havcl
posed a challcnge fbr a majority of my studcnts. These are rnarked witlr
a single star (*). There are also a few exercisos that are different from
most in that they have rro r:lear-cut answer. They rnay crrll f'or upeculation,

vt PRnrncp

suggest additional reading, or require some computer programming. While

they,are not suitable for routine homework assignment, they can serve &s

entry points for furtlter study. Such exercises are marked with a double star
(* *) .

Over the last ten years I have received helpful suggestions from numer-

ous reviewers, instructors, and students. While there are too many individ-

uals to mention by name, I am grateful to all of them. Their feedback has

been in'aluable in my attempts to improve the text.

Peter Linz

Chapter 1 fntroduction to the Theory of Computation

1.1 Matlrenratical Prelirrrirrrlricu ar,nd Notation 3
Sets 3
Functions and Relations 5
Craphs and l}'ees 7
Proof Techniques I

1.2 Three Basic Concepts 15
Lirrrgrrir,ges 15
Grarnrnilrs 19
Automala 25

+1.3 Some Applications 29

Chapter 2 Finite Autornata 35

I)eterrrrinistit: Finite Accepters 36
I)ctc:rrnirristic Accepters and'IIrrnsitiorr Grir,phs
Languir,gcs and Dfa,s 38
R.t:gulil,r L:lngrrages 42

Nondeterrri inistit:Finite Accepters 47
Definilion of a Nonrleterministic Accepler 48
Whv Notxlctt:rrninism'1 52

2 , 1

2 . 2

v l l

36

vlll CoNrnNrs

2.3 Equivalence of Deterministic and Notrdeterministic Finite
Accepters 55

+2.4 Reduction of the Number of States in Finite Automata 62

Chapter 3 Regular Languages and Regular Grammars fl

3.1 Regular Expressions 7I

Forma,l Delinition of a Regular Expression 72

Languages Associated with Regular Expressions 73

3.2 Connection Between Regular Expressions and Regular
Languages 78

Regular Expressions Denote Regular Languages 78

Regula,r Expressions for Regular Languages 81

Regular Expressions for Describing Simple Patterns 85

3.3 Regular Gra.trrnars 89

Right- anrl Left-Linear Grammars 89

Right-Linear Grammars Generate Regular Languages 91

Right-Linear Grammars for Regular Languages 93

Equivalence Bctween Regular Languages and Regular
Gra,mma,rs 95

Chapter 4 Properties of Regular Languages 99

4.1 Closure Propertitrs of Regular Languages 100

Closure under Simple Set Operations 100

Closure under Otlter Operations 103

4.2 Elementary Qrrestions about Regular Languages 111

4.3 Identifving Nonregular Languages 114

llsirrg the Pigeonhole Principle 114

A Pumping Lemma 115

Chapter 5 Context-Free Languages L25

5.1 Corrtext-Free Grammars 126

Exarrrples of Context-Flee Languages 127

Leftntost and Rightmost Dt'rivations 129

Derivation Tl'ees 130

R.elation Between Sentential Fttrms and Derivation
'llees 13?

5.2 Parsing and Ambiguity 136

Parsing and Mcnbership 136

Anlbiguity in Grarnrnars and Latrguages 141

5.3 Context-Ftcc Gramrnars and Programmirtg
Ltr,rrgrrages 146

CoNrEr-rts ix

Chapter 6 Simplification of Context-Flee Grammars 149

6.1 Methods for Tfansforrrring Grammars 150
A Useful Substitution Rule 150
Removing Useless Productions 15?
Removing.\-Productions 156
Removing Unit-Productiorrs 158

6.2 Two Important Normal Forrns 165
Chomsky Normal Form 165
Greibach Normtr,l Form 168

+6.3 A Me:mbership Algorithm for Context--F]'ee Grarnrnrr,rs 1,72

Chapter 7 Pushdown Automata 175

7.7 Nondeterrnirfstic Pushdown Automata 176
Definition of a Pushdown Arrtomaton tTti
A Langrrage Accepted by a Pushdowrr Automaton I79

7.2 Pushdown Automata and Context-Free Larrguagcs 184
Pushdown Autorrrata fbr Context-Flee Languages 184
Corrtcxt-Floe Grammars for Pushdown Autorrrata 189

7.3 Derterrrinistic Pushdown Autornataand Deterrrfnistir: Context-
Fr{lc Lirnglrri;r,ges 195

*7.4 Gramma,rs fbr Deterministic Corrtext-F}ct: Langua,ges 200

Chapter 8 Properties of Context-Flee Languages 205

8.1 Two Pumping Lemmas 206
A Purnpirrg Lcrnrna fbr Context-Flee Languages 206
A Purnping Letrrnil firr Linear La,ngua,ges 210

8.2 Closure Propcrtien and Decision Algorithrns for Context-
Free Languages 213

Closure of Context-Free LangJuages ?13
Some Decidable Properties of Contcxt-Fre,'e

Languages 218

Chapter 9 Turing Machines 221

9.1 The Standard T\rring Machine 222
Definition of a Thring Machine 222
T\rring Machines as Language Accepters 229
Tlrring Ma,chines as Tlansducers 232

9.2 Combining Tlrring Machines for Cornplicated Tasks 238
9.3 T\rring's Thesis 244

(,'onrnrlrs

Chapter 10 Other Models of Turing Machines 249

10.1 Mirxlr Virriatiotrs on the T\rring Ma,t:hint: Therne 25t)

Eqrrivalcrrt:tl clf Classes of Autonrata, 250

Ttrrirrg Machines with a, Sta,y-Option 251

Thring Machines with Semi-Infinitc Tape 253

The Off-Line Tttrirrg Mat:hine 255

10.2 'I\rring Ma,chines with Morc Cotttplex Storage 258

Mullitape Ttrring Ma,chiners 258

Mttltidimensional T[rring Mtr.chirrt:s 261

10.3 Norrtletertninistic T\rring Ma,chines 263

10.4 A lJrriversal I\rring Machine 266

10.5 Liricar Bouttded Autotnata 270

Chapter Ll. A Hierarchy of Formal Languages and Autornata 278

11.1 Recursive and Reclrrsively Euurnerable Languages 276

Languages That Art: Not R,tx:ursively Enumera,ble 278

A Language That Is Not R,t:cursively Enumerable 279

A Language That Is Rer:rrrsivr:ly Erlrrrterable But Not
Recursive 28.l

11.2 Uurestricted Grarnmars 283

11,3 Context-Sensitivc (]rarnrna,rs arrd Lirnguages 289

Conterxt-Srlnsitivc Languages and Litrear Bounded
Aulomata 29t)

Relation Betweeu Recursive and Ctlrrtt:xt-Setuitive
Languages 2gz

11.4 I'he Chomskv Hierarchv 29Ir

Chapter 12 Limits of Algorithrnic Cornputatiorr 299

12.1 Some Probletns That (ltr,rrnot Bc: Solved By l\rring
Machines 300

The T\ring Machine llalting Problem 301
H.etlucitrg One Undecidable Problem to Another 304

12.2 Uritlt:c:itlrrble I'robletns for Recursivelv llnrtmertr,ltlrr
Languages 308

12.3 Tlte I 'osL Correspondence Ptoblem Sl2
12.4 [Jndccidable Problems for Context-Free Lir.nguages 318

Cot-{reNrs xi

Chapter L3 Other Models of Computation 323
13.1 Recursive Functions 325

P-rimitive Recursive F\nctions 326
Ackermann'sF\rnction 330

13.2 Post Systern$ 334
13.3 R.ewriting Systems 337

Markov Algorithms 339
L-Systems 340

Chapter 14 An Introduction to Computational Complexity 343
14.1 Efficiency of Computation 344
14.2 Ttrring Machines and Complexity 346
14.3 Language Families and Complexity Classes 350
I4.4 The Complexity Classes P and NP 353

Answers to Selected Exercises 357

References 405

Index 4OT

INTRODUCTION TO
THE THEORY OF
COMPUTATION

otrprrterr science is ir, pra,ctical discipline. I'hose who work irr it of-
tcn hirve ir, mrlrked pref'erence fbr useful and tangible problerns ovt:r
theoreticrrl spt:c:ulirtion. Thiu is certa,inly true of computer science
studcrrts who rrru interested rna,inly in working on difficult applica-

tious from the real world. Tlteoretical qucstions arcr interesting to them only
if they help in finding good solutions. This attitude is appropriirte, sinr:e
without npplications there would be little interest in cornputers. But givcrr
ihis practical oritlrrtir.tiorr, onr: rnight well a,sk "why study theory?"

'Ihe first arrswer is that tlrrxrry provides concepts and principles that
help us understand tlrtl gerrcral rrirturt: of the discipline. The field of com-
puter science includes a wide rarrgr: of sper:irr,l topics, f'rom machine design
to progratntrtittg. Tlte use of cornputtlrs irr thel rea,l world involves a wealth
of specific detail that must lre lerirrrrcxl ftrr a uuccessfirl a,pplication. This
makes computer science a very diverse arxl lrroarl rlis<:ipline. But in spite
of this diversity, there are soure colrtlrlotr urrclcrlyirrg prirrt:ipltrs. Tcl strrdy
these basic principles, we construct abstract rnodels of corrrllrtcrs and com-
prrtation. These ruodels embody the important features tlnt are cornnron
to both harrlwarc and softwtr,re, rr,nd that a,re essential to many of the special
and complex corrstructs we crrcourrtrlr while wclrking with computers, Even

Chopter I IurnorrucjrloN To rHE Tsr:enY ol' Col,tputarlott

whertr such moclels a,re too simplc to be applicable immediately to real-world
situations, the insiglrts wt: gain frotn studying them provide the foundations
on which sptx:ific; rlevelopment is ba*sed. This tr.pproach is of course not

unique to rx.rrnlxrtcr science. The construc:titlrr clf rnodels is one of the es-
sentials of any sc:iurrtific disciplitte, and the usefiilness of a discipline is often
clependent on the exi$ttrrrt:c clf simple, yet powerfirl, thtxlric:s atrd laws,

A second, tr,rxl llcrhaps not so obvious answer, is that the ideas we will
discuss have srlmt: irnrnediate and itnporta,nt applit:atiorrs. The fields of
digital design, prograrntning laugua,ges, tr,nd rrirnpilt:rs are the most obvious
erxarnplcs, but there are rnanv othcrs. The cotrcepts we study hert: nrrr
like a thread through mrrr:h of txrrrrputer sciettce, from opera,ting systerrrs to
pa,ttern rtxxrgrritiorr.

The third irlrswer is oue of which we hclpc to txlrtvittce the reader. The

srrtricc:t rnatter is intellectually stimrrltr,tirrg atrd furr. It provides ma,ny crha,l-
lenging, prrzzle-like problems that can lead to ir()rrrc sleepless nights. This is
probkrrn-solvittg in its pure essence.

In this hook, we will look at models that represcrrt fcatures at the core
of all c:ornputers and their applica,tiorru. Trr rrrodel the hardware of a com-
prrtt:r, we introcluce the notion of iln automaton (plural, automata). An
automaton is a, construr:t thir,t possesses all Lhe indispensable f'eatrrrt:s tlf a
digital computer. It :r.rxxlpts irrput, produces output, may have somtl tcrn-
porary utorilgrl, and can make decisions in tra.nsformirrg the input into tlte
output. A formal language is arn ir.bstractiorr of the general characteristics
of prograrnming languages. A ftrrmal lirrrgrrage cotrsists of a set of symbols
irrrd some rules of forma,tion by whit:h thcse sytnbols can be cotnbined into
crrtities called sentences. A f'ormell lirnguage is the set of all strings per-

mitted by the rules of fi)rrnirtiorr. Although sorne of the formal langrrirgcs
we study here are simplt:r thirrr prograurmitrg langua,ges, they have rnarry of
the same esserrtial features. We cau learn a great deal ir.bout programming
lir.rrguirges from formal languages. Fina,lly, wtr will forrrralize the concept
of a rnechanical computation by givirrg a precise clefinition of the term al-
gorithrn and study tlrt: kittds of problems that are (and tr,re not) suitable
fbr solution try srrclt trtechatrical Ineans. In the cour$e of orrr stutly, we will
show the clo$er (xlrrrrc(:tiotr between these abstractions and irrvc:stigate the
conclusions we carr tlcrive from them.

In tlx,'first chapter, we look at these ba,sic idea,s in a vcry broad way to
set thtl stagc for later work. In Section 1.1, we revit:w thc rrrain ideas from
ma,tlrttrnatics that will be required. While intuition will frcquently be our
guide irr exploring idea,s, the conchrsionrr wu draw will be based on rigor-
ous arguments. This will involve sclmel rnilthernatical machinery, although
these requirementn alrel not t:xterrsive, Tlte reader will need a rea^sonably
good gra,sp of the terminology and of the elementary results of set thtxrry,
ftnetions, anrl rclatiorrs. T!'ees and graph structures will be rmul f'requently,
a,lthough little is needed beyond the definition of a, lir,beled, directed graph,
Perhaps the rnost stringent requirement is thu rrtrility to follow proofs aud

J

1.1 MarrrnlrATrcAl PRr:r, lnrwnRrES AND Norauou

atr utrderstarrding of what constitutes proper rnathcrnirtical reasoning. This
includes farniliarity with the hasic proof techniques of dcrluction, induc-
tion, ancl proof by c:clrrtrir.diction. We will assurne that thc rcirrlrlr ha,s this
necessary background. Sectiott 1.1 is induded to review some of the rrririrr
results that will be used arrrl to entahlish a notational colrurrorr grourrrl f'rrr
subsequent discussion.

In Section 1.2, we take afirst look at thc r:entral concepts of languages,
gralrllnar$, trrrd a,utomata, These cortcepts oc{:rrr irr rnarry specific fbrms
throughout the book. In Section 1,3, wc givc some simple a,pplica,tions of
tlrr:sc gerrera,l idea,s to illustrate that thesc c:tlnr:rrpts have widespread uses
itt cornputcr ur:ience. The discr.rssion in these two scc:tions will be intuitive
rather tltirrr rigororrs. Later, we will make all of this rmrr:h rnoro precise; but
for lhe ntotttettt, thtl goal is to get a, clear picture of tire corrcepts with which
we are derrling.

WffiWmHilW Mothemoticol Prel iminories ond Notot ion

Sets

A set is a collectiott rtf t:lclrno'rrts, without any structure olher tharr rnr:rn-
hership. To indicate that r is arr clcrnrrnt of the set 5, we write r € ,9.
The sta,tement that r is not in S is written r f 5. A set is specified by
cnr:losing some description of ils elernents in curly bracxrs; fbr exa,mple, the
set of irrtt:gers 0, 1, 2 is shown as

5 : { 0 , 1 , 2 } .

Ellipses are usetl wltcncvc:r tlNl rneir,ning is clear. Tltus, {a, b, ... ,z} slands for
all the lower-case letters of thc Engliuh a,lphabet, while {2,4,6, .,.} denotes
the set of all positive everr irrtcgrlrs. When the neecl arises, we use rrrore
explicit notation, in which we write

S = { i : i > 0 , z i s e v e n } (f , l)

frrr the ltr,st example. We read this as tt,9 is sc:t of irll ri, srx:h thrr,t rl is grea,ter
tltatr zero, a,nd rj is even," implying of course that z is irrr irrteger.

The usual set operations arc union (U), intersection (n), and differ-
ence (-), defined as

51 U52 : { z : r e S r o r r € ,92 } ,

5 1 1 5 2 : { z : r € S r a r r r l r E , 9 z } ,

5r - Sz : {z : z € Sr arxl r fr 52}.

Anothttr bir,sic opera,tion is complementation. The cotrplerntlnt tlf
a set ,9, denotecl by F, consists of a,ll elernenls not, in S. To rnakc this

4 Chopter I llqrnooucrroN To rrrn THnoRv cln Cor,tpu'rn'rtou

rnerarrirrgful, we need to know whir,t the universal set U of a'll possitrlt:

elements is. If U is specified, thcrr

F : { * : r r - (I , n # S } .

The sct witlt no elements, called the ernpty set or the null set is
denoted by #. Flom the definitiorr rtf a set, it is obvious that

S u s : S - f r : 5 ,
S n f r = 9 ,

f r =U,

5 : : 5 .

The following useful identities, known a.s the DeMorgants laws,

f f i : Sr l3z, (t 2)

F l nSz: ,5r U Sz, (1 .3)

are needed orr $eivc:ral occasions,
A set ,9r is said to be a subset of 5 if every element of 5r is also atr

element of S. Wc write this as

5 r c 5 '

If St C S, hut 5 rxrrrtilirrs ir.rr elernetrt not in 51 we say that Sr is a proper

subset of .9; wc write tltis as

$ r C S .

If 51 a,ncl 5'z have IIo coilllrron elemeut, that is, Sr n 5'2 = fl, tltett the sets
are said to ber disjoint.

A set is said to be linite if it contains a finite nlrmbcr of elemenls;
otherwise it is infinite, 'Ihe size of a finite sct is tht: rrurrtber of eletnents in
it; this is denoted bV l5l.

A given set norrnally has marry sutrsets. TIte set of all subsets of a, set
5 is callecl the powerset of S ir,nd is denoted by 2's. Observe that 2s is rr,
set of sets.

Exottplq l'.f I If $ is thc set {a,b,c}, then its powerset is

z s : { f r , { o } , t b } , { c } , { a , b } , { n , r : } , { b , c } , { o , b , " } } .

Here lSl : 3 and lZtl :8. This is arr instirrrce of a general result; if 5 is
finite. then

l rs l - , r l s l

I

\

1.1 MnrHntutnrtcAL PRt:t,ltvttw.q,n.IEs AND Norauolt

In rnany of our exa,mples, the elements of il stlt irre ordered sequences of
elements frorn otJrer sets. Srrr:h $ets arc said to be the Cartesian product

of other sets. For the Ca.rtcsiarr product of two sets, which itself is a set of
orclered nairs. we writer

S : S r x 5 2 : { (* , : , /) : r € S ' 1 , E e S z } .

2,3, 1 ' r , 6 | . T6c '

S r x 5 ' z : { (2 , 2) , (2 , 3) , (2 , 5) , (2 , 6) , (4 , 2) , (4 , 3) , (4 , 1 ' r) , (4 , 6) } .

Notc that tlte order in which the elements of a, llnir are written matters,
Thc pair (4,2) is in 51 x 5'2, but (2,4) is not.

The nolation is extendecl in a,n obvirlrs firshiorr to tlte Cartesian product
of rnr)rt) than two sets; generally

S r x 5 ' r x ' . ' x 5 r : { (r 1 , T 2 , . . . , n , ,) : r , ; € S r } .

Functions ond Relotions

A function is a rukt that assigns to elements of one set a, unirptl cletrtetrt of
another set. If / dcrxrtt's a futrcLion, then the flrst set is t:ir,lltxl the domain
of /, and the serxrnd sct is its range. We write

/ : , 51 - . $2

to itrdicate thal the doma,in of / is a strtrsc:t of ,51 atrd that the ra,nge of /
is a subset of 52. If tht: tlornirirr of / is all of 5r, we say thrlt / is a total
function on 5r; otherwist: ,f is said Lo be a partial function.

In ma,ny applir:rrtiorrs, the donaiu and rauge of the firrrt:tiotts involved
are in the set of positive integers. Furthermorel we il,rc often interested only
in the heha,virlr of tltese functions as their arguments btlclottte very large. Itr
such c:asers arr urrrlerstanding of the growth rtr,tes is oftetr sullicient and a
corrrrrrorr order of magnitude nota,tion carr be used, Let / (n,) and .q (n) be
functions whose doma,in is a, subst:t of the positive itrtegers. If thcre exists
a, positive constant c such that for all rz

f (n) t c s (n) ,

we sav that .f ha,s ordcr at most g, We write this ir,s

I

f (n) : o (s (n))

Chopter I IurR,onuc;'l'roN 'r'o 'r'Hu 'l'Hnony or,' ConrurArrorv

If

l / (")l l c ls (?z)l ,

then / has order at least g, I'rrr whit:h we tuJe

/ (") : o (g (")) ,

Finar,lly, if there exist constants c1 and c2 such tlnt

cr lg (?l) l < l / (") l ! cz le (r l) l ,

/ and g have the same ordcr of magnitude, expressed a,s

I (n) * o (g (")) '

In this order of magtritude trotittitlrr, wtr ignore multiplicative constants
and lower order tertns that becotne ncgligibkl as n increases.

Exomple I .3 Let

f (n) : 2nz + iJtt,,

I (r t) : " ' t ,

h,(n) :1orz2 + 1oo.

Thcn

/ (t) : o (s (r l)) .

s (n) : o (ft. (ru)) ,

/ (n) : o (h (r ,)) .

In order of rnagnitude notatiorr, tlrrl syrnllol : should not be interpreted
irs txlra,lity a,ncl order of magnitude expressiorrs r:annet be treated like ordi-
rrirry cxl)r{}ir$ions. Ma,nipulations such as

O (rz) + i) (n) = 20 (n)

a,re not sensible and catr lead to irtr:clrr(lct rxrnclusions. Still, if used properly,
the order of magnitude argurnents tlrrrr tlr: effective, a*s we will see in later
r:hirpturs on the a,nalysis of algorillurs.

I

Some functiorls can be rtlprt:srlrrttxl by a set of pairs

{ (" r , y r) , (r z , u z) , . , . } ,

wh{:rc il; is a,n element in the clornain of t}re furrc:tion, and gti is the corre-
sportdirrg vilhrel in its ra,nge. For such a set to delirrc a firnt:tion, ea,ch 11 can
occur at rno$t on(:e a,s the first element of a pair. If ttris is not satisfied, the

l.l M.q,uml,rATrcAL PnnLrNrrNanrES AND No'r,t'l'tor'r

set is called a relation. Relatious are Inore general thtlrr firrrt:tions: in a
function each element of the doma,in ha,s exir.ctly orrcl itssociated eletnent itt
the ra,nge; in a relir,tion tht:re miry trcl scvtlral such elernenls in the range.

Orre kirrd of relatiott is that of equivalence, a generalization of thc
concept of equality (identity), To indica,te that a, pair (r:,37) is arr crpivirlcrrce
relation, we write

:I: ='!J.

A relatiori rlcrrotexl lry : i. consiclered atr equivalence if it satisfies three
mlcs: the reflexivity rule

the syrnrnetry rule

and the transitivity nrlc

r: = r: for ir,ll z,

i f ' ' : r , l h a n o , : r 'l r r v u y - d t

I f f r : A ancl y : a, then n # E.

I

f xsnrslF f ;4
' ' Consider the rela,tion on thc sct of rrotrttegative iulegers defined hy

' l ' : l '

if and only if

rmocl 3 - 37mod3.

'Ihen 2 : 5, 12 = 0, and 0 = il6. Clearly this is atr equivalence relation, irs
it satisfies reflexivitv, syrntttetry, and l,ransitivity,

I

Grophs ond Trees
A graph is a construct consistirrg of two fitilte sets, the set V : {tt1,'tt2,...,'Dn}
of vertices and the set E: {e1,e2,...,err} of edges. Ea,ch edgtt is a pair

of vertices fiom V, frlr irrstance

e . i : \ U . i , L t k)

is an edge from ui to tr4. Wc srry that the edge e,; is a,n orrtgtlirrg edge for
?ri and an incoming edge forr.'r.. Such a construct is actually ir. directed
graph (digrrr.ph), sirrce we associate a direction (fiorn ui to u6) with each
edge. Graphs miry bc labeled, a label being a ntrme or other itrformation
a*ssor:iated with parts of the graph. Both vt'rtices atrd edges may be lahclctl.

Figurc 1.1

Chopter I Itrrn,onuc'l'roN 'l'o tsr: Tttr:rtHv ou Cotr,tt,u'r'n'r'tow

f \
\ ' o t l

---t-------------

Graphs are conveniently visualized by diagrarns in which the vertirx:s
are represented as circles and the edges as lines with arrows corrrrt'cting tho
verti<x,'s. The graph with vertices {u1, u2, u3} and edges {(u1, u3) , (u3, u1) ,
(t r ,ur) , (u3,u3) | is depicted in F igure 1.1.

A sequence of edges (at , 'u i) , (u i ,u* ,) , . . . , (' , , , , , , r r " ,) is sa id to he t r , walk
fiom rri to urr. The length of a walk is the total nurrrber of rxlgcs travr:rscrl
,in going from the initial vertex to the final orre. A wrrlk in which no eclge
is repeated is said to be a pathl rr path is simple if no vertex is repeated.
A walk fron ui to itself with rro rcpcir,trxl txlges is ca,llerl a, cycle with base
u4. If no vertices other thatt tlte base are rrlllc:itttxl iri ir r:yr:le, then it is sa,id
!o be simple. In Figure 1.1, (z1,ur), (rr,u2) is a simple perth fiom ?rr to ??.
The sequence of edges (ut,rr), (rr,rr), (r*,rt) is ir cyc:le, l lrt rxit ir, sirnple
one. If the edges of a, graph are labeled, we can talk about the label of-a
walk. This label is thc scqucrrr:c of r:dgo ler,bels encorrntered when the path
is traversed. Fina,lly, a,n eclge from a vertex to itself is calk:d a loop. In
Figure 1.1 there is a loop on vertex u3.

On several occasiotts, we will refer to atr algoritlun for lindirrg all sirnpkr
paths between two given vertices (or all siurplc c:yrlcs bn^sed on rr, vertex).
If we do not concern ourselves with efficiency, we carr llsc tlrrl following
obvious method. Starting frotn tlte giverr vcrtcxr say ?ri, Iist all orrtgoing
txlgt:s (u;,116), (ui,ur) ,.... At this point, we have all paths of length orrt:
startittg at u4. For a,ll verrtices uk1,t)t,1 ... so rea,ched, we list all outgoing edges
a,s long as the.y do not lead to arry vcrtclx alrtlirdy rrsed in the pa,th we are
rxlnstnrcting. After we do this, we will have all sinrple paths of lerrgth two
origirrrrtirrg at a,. We r:ontinue this until all possibilities are accounted for.
Since there ate orrly ir finite number of vertices, we will eventually lisi all
sirnple paths beginning at rr,;. Flom these we select those ending at the
desired vertex.

Tlees are a particular type of graph. A tree is a directed graph that
has no cycles, and that htus t)ne rlistinct vertex, called the root, such that
there is exactly one path frorrr the root to every other vertex. This defini-
tion implies that the root ha^s rro irrcoming edges and that there &re some
vertices without outgoing edges. These are called the leaves of the tree. If
there is an edge from ua to ui, then ua is said to be the parent ()f rrj, il,nd
ui the child of u1. The level associated with each vertex is the nunber of
edges in the path from the root to the vertex. The height of the tree is the
Iargest level number of any vertex. These terms are illustrated in Figure 1.2.

RootFigure 1.2

1.1 MarHu,rATrcAL Pn,nulumnn,rEs AND Norauoru

Height = 3

I
I

- L"'"1 3- -t

At times, we want to a*ssocirr,te an ordering with the nodes at each level;
in srrch ciLe we talk aborrt ordered trees.

More details on graphs and trees can be found irr rnost books on discrcte
mathematics.

Proof Techniques
An important requirement for reading this text is the ability to follow proofs.
In mathema,tical arguments, we employ the accepted rules of deductive rea-
sorring, ilnd rnilny proofs artl simllly a .sequence of such steps. Two special
proofteclufques are used so frequently that it is approprintc to rcvielw them
briefly. These are proof by induction and proof by contradiction.

Induction is a technique by which the truth of a number of statements
can be inf'erred from the trr.rth of a few specific instances. Suppose we have a
sequence of statements Pr , Pz , . .. we want to prove to be true. Furthermore,
$rrppose also that the following holds:

1. For some fu) [, we know that Pt, Pz, ... , Pk are true.

2. The problern is such that for any z) A, t lrt: trutlm of P1,P2,...,P,,.
imply the truth of P,,-1,

We can then use induction to show that everv statement in this sequence is
tnre.

Irr a pro<lf by irrclucticln, we rrrguo as follows: Ftom Condition 1 we know
that the first k statements are true. Then Condition ? tells us that P611
alsrl rmrst btr tnre. Brrt now thir,t we know that the first h * 1 statements are
trlrc, we r:arr allply Contlitiorr 2 agairr to tlaim that P61z must be true, arrd
so on. \Me need not explicitly continue this argument because the patterrr is
clcrrr. Thc cltairr of rcit*sorrirrg t:itrr btl cxtended to any strrtcrnerrt. Therefclrc,
every statement is true.

tho",t;l

F IN ITE
AUTOMATA

ur introduction in the first cha,ptcr to the basic cotrcepts of comprrta-
tion, particularlv tIrc tlist:ussiotr of autornata' was hrief antl irrftlrrnirl.
At this point, we harvt,r orrly ir general understanditrg of whir.t irrl au-
tomaton is and how it c:itrr be represented by a gra,ph. Ttl llrogress,

we must be more prct:istt, provide formal defiuitions, ir,rrrl stirrt to clevelop
-- rigorous results. Wt: llcgitr with linite accepters, whit:h ir,r't: a sirnple' spe-

cia,l case of thc gcrreral scherne iutroduced in the ltrst drapter. I'his type
of autclmittotr is characterized hy having no tt:rnporary storage. Since a,n
input file cannot be rewritten, a firritc itutornittott is severely limitcd irr its
ca,pacity te "rcmcmbcr" things during the comprrtir,tirlrr. A linite atnoutrt of
inf'ormir,tiorr carr be relained in the control rrnit tly placittg Lhe uttit itrto a,
sptx:ifi<: state. But sitrce the number of srxrtr stir.tt:s is firriLe, a finite a'utoma-
t(lrr (:arr only deal with situations in which tlrt: infortnalion to tre stored at
arry tirrre is strictly bounded. The a.utornittorr irr -Exatnple 1 . 1ti is tt,n instarrt:t:
clf ir firrite acceuter.

35

Chopter 2 AUToMATA

f f i Deierministic Finite Accepters

The first type of automa,ton we study in detail are firrite accepters that are
deternfnistic in their opera,tion. We start with a precise frrrrnir"l definition
of deterministic accepters.

Deterministic Accepters ond Tronsilion Grophs

tiftffif [j! f,ffifrtll sniiit$lil]tnir

A deterministic finite

where

firtite st:t of internal states,
flnitc sct of symbols called the input
X - Q iu el tota,l function called the
is the initial state,
is a set of final states.

Q i s a
E i s a
d ; Q x
t J O € Q

T - C Q

accepter or dfa is defined by the quintulller

M : (Q , E , d , q s , . F) ,

alphabet,
transition function,

A deterministic finitt: ir.rx:epter operates in the following tttanrrt:r. At
thc initinl time, it is a,ssurnecl to be irr thc initial state q0, with its input
mechanisrrr ort the lefhmost symbol of the input strirrg. Drrring eelch move

of the automaton, tlrtl irrlxrt meclha,nhm advances one position ttt tlrc right,
so each rnove colrsurrrrlri one input symbol. When the etttl of tlxr string is

reached, the string is ircx:cllted if the automaton is in one of its Iirtr.l stir,tes.
Otherwise the string is rejer:tcxl. Tln input rnechauism can Inove otrly frorn
Icft to right and reads exactly ontl symbol on each step. 'I'he tratrsitiorrs
frorn one internal state to another are govcrned bv the transition futrctiorr
d. Ibr exirtrllle, if

rI (qo, a) : gr ,

then if tlrtl rlfa iu in sta,te 4u ancl the current, itrlrut syrnhol is a, the dfa will
go itrto stirtc' q1 .

In dist:ussirrg arrtomata, it is essential to havc a. clt:iu and intr"ritive
picture to work with. Trr visutr,lize and represetrt fittitr: irtrt{lrna,tir, we use
transition graphs, in whir:h the vertices represerrt stattls arrtl the edges
represent transitiorrs. Thc Inhels on tlre vertices are Lhe rrirlrr()s of tlx: sttr,tes,
while the labels orr the eclgcs art: the current values of the input sytnbol.
Rrr tlxtr,mple, if qp and qt are interlral strr.tes clf some clfa M, then the graph
associatcd with M will have one vertex lal-rclcd q0 irnd another labeled q1.

An edge (qn, qt) la,bclcd a represetrts the [ratuitiorr d (gs, n,) = q't. The initial

Figure 2.1

2.1 DnrnnluNrsrrc Frurrn Accl;plr:RS 87

sta,tc will be identilied by a,tr incoming rrnlir,bt:lt:r1 arrow ttot origiuating a,t
arry vertex, Final sta,tes a,re drilwn with ir, double circle.

More forma,lly, if M : (Q, X, d-,,lo,.f,') is a cletertnitristic: finitt: ttt:t:cpter,
then its associated trtr,nsitiorr graph Gna has exactly lQl vcrtitr:s, t:itch otte
Iabeled with a diff 'erent q,i €Q.-For every transitiott rrt le d(rJ,,a): qi, the
graph has a,n edge (qr, qi) Iabeled a. 'Ihe vertex assocria,tecl with q6 is called
the initial vertex, while tltose labelecl with qy € F arc tht: final vertices.
It is a trivia,l ma,ttcr to converl from the (8, X, d, q0, 1I) tlc:firrition of a dfa
to its tra,nsitiorr graplt represeutatiou and vice veruir..

I

IUI =

whcrc d is given by

represents tlrc dfh

({gu , q t , r 1z } , { 0 , 1 } , d ,40 , {q r }) ,

:i;li:i :;i :i;; ii =r,
This dfa accepts the strirtg [Jl. Stnrting irr state gs, the syrnbol 0 is rcird
fi.rst. Looking at the edges of thrl graph, we see that the arrtrlmatott remains
in state qs. Next, the l is relirrl irntl the autotnaton goerJ intcl state 4r' We
are now at the end of thrl strirtg and, at the same time, irr a fltral state q1.

Therefore, the string 01 is a,crt:cpted. The dfa does not a,cccpt the string 00'
since after reading two c:orrsecutive 0's, it will be in uttr.tc tlo. By similar
reasoning, we $ee that the autouraton will accept thtr strirrgs 101, 0111' and
11001, hrrt not 100 or 1100,

It is convenient to irrtrorlut:e the extendecl tra,nsition firrx:tiotr d* : Q x

X* - Q. The ser:orrd argutrtettL of d* is a string, rathrlr tltatr a single
symbol, and its va,lue givtls tlre stale the autotna,ton will llc irr after reading
that string. For exermplc, if

T
t l fb . 6

- #
r"L-+Q

d (qo. n) : q '

38 Chopler 2 FIt'rIrp AuToMATA

and

then

6 (q t , b) : qz ,

d* (qn, ab): qr.

Formally, we can define d* recrrrsively by

d. (9, A) : q, (2 l)
1 ' r) \

&t-+!-q-F Ir u € Ej, s -E A To see why this is appropriate, let us apply
these definitions to the simple case above. First, we use (2.2) to get

U-_!no' ab] :_d (d* (qs, a), b)

But

d" (q0,0) : d (d- (qo, l) , q)

d (go' a)

: !'!''
Substituting this into (2.3), we get

(2 .3)

d* (qo, ab) : d (o:,!: oz
as expected.

longuoges ond Dfq's
Having made a precise definition of an accepter, we a,re now ready to define
formally what we mean by an associated language. The associatiorr is ob.
vious: the language is the set of aJl the strings accepted by the automaton.

lsfi.ffl$ifii , r
The language accepted hy a dfa M : (8,E, d, go, F) is the set of all strings
on X accepted by M. In formal notation,

L (M): {ru e E* : d* (q6, ur) e F} .

2.1 Dnrurl , l lNIS't ICi FtNtre Accr:p' tuns 39

Note that we rt:cpire that 15, and trlrrstltluenlly d*, bc trltal functions.

At ea,ch step, a urrique tnove is dtlfirrcd, so t'hat we irr'(l justifiecl in ca,lling

such a,n arrtornatott deterministit:. A dfa will pror:tlss tlver.y stritrg in X* ir.rrd

either ir.cc:cpt it or not a,ccollt it. Nonaccepta,nt:tt rnealls that thtr tlfa stops

in a nrlrtlirral state. so ther,t

L (M) : { r u e X * : t 5 * (q o , w) f F I .

Consider the dfir, irr Figure 2.2
In drawirtg F-igure 2.2 wt: allowecl the use of two labels on a sitrgle

edge. Sut:h rnultiply labelerd cdges are shorthand for two or mor(r distittct

trirrrsitiols: the trelnsition is taken whenr:vcr the input syrrrbol nratches any

of the edge labels.
The automaton irr Figure 2.2 reurtrins in its initia'l strr.te q11 until the

first b is etrcountered. If this is also the la"rt syrnbol of the input, then the

string is accepted. Tf nqt, the clfa goes into trtir,te q2, frotn which it can never

e$(rirpe.
'I'ire sla,te q2 is ir trap state. Wtr see clea,rly fiorn tlte graph tha,t

thg autorlatotr a,cr:ttltts all slrings clclnsistirrg of au arbitrtr.ry number of c,'tt,

followed by a single b. All other irrput strings are rejtN:tt:d. In set nota,tiorr,

ttre langua,ge a,cr:cpted by the a'rrttlrlatotr is

f, * lu,' 'b: rt, > 0l .

These exarnples sltow htlw t:ottvenient transitiott graphs artl for workiug

with finite irutotnata. Whilc it is possible to hase all arguments strictly on

thc properties ofthc transition functiorr attcl its extensiorr tlrrough (2.1) arrcl

(2.2), the results are hard to fbllow. In our discrrssiorr, rMe use gra,phs, which

are more intrritive, as far i.r.r ptlssible. To do so, wc tttust of cotrrse irave sonre

assllrirnce that we a,re nttt rtfsled bV the rtlpresentation antl thal arguments

ba,sed on graphs are em valid as those that use the fbrrrtrl properties 6f d'

Thel following preliminary result gives us this assura,nt:tl.

I

Figtrre 2.2

40 Chopter 2 Frr,rr.ru: Aurovarn

I,et M: (Q,X,.l,qo,F) be a deterrninistic f inite accepter, irrrt l k:t Gna be
its a,ssociated trarrsition graph. 'l'herr frrr every q?., ei € Q, arrtl .ri., € X*,
6* (rqi,w) : qi if antl only if there is in G,1a ir walk with label zu frorn q,
to q i .

Proof: This clairn is fa,irly obvious frorrr irn exa,mination of srrr:h simple
carrcs ir$ Ilxample 2.1. It r:a,n be proved rigorously using an induction on the
Icrrgth of ur. Assurne thnt the claim is truc frrr a,ll strings u with lrl < n,.
Corrsirlr:r then any ,ur of lr:rrgth n * 1 and write it ns

, u : ,DQ.

Suppose now that 6* (qi,u): q6. Since lul: n,, there rnust be a walk in
Gy labeled u from qi t,() qk. But if d* (r71,ur) : qi, then M rmrst have a
tranuition d(qr,a) : {i, so that by construction Gy has arr cdge (Sn,qi)
with label a. Thus there is a walk in Gnr labeled ua: u between {a and
qi. Since the result is ohviously true for n: l, we can clainr by induction
that, f'or every 'ur € I+,

6- (q i ,w) : q t

implies that there is a walk in Gy from qi to qj laheled u.

(, t \

The argurnerrt r:irn be turned around in a, straiglrtforward way to show
that the existence of such a path irrrplit:s (2.4), thus completing the
1rr{lof. I

lJt-_lr.

Agir,in, the result of tlx: theorem is so itfrtititfr' obvious thrrt a formal
proof seems unrlecessary. We went through the details for two rt:a^sons. The
first is that it is a simple, yet typiur,l example of an inductive proof in con-
nection with automata. ilire secorrd is that the result will be rrsed over and
over, $o sta,ting and proving it as a theorerrr lets us argue quitc confidently
usittg graphs. This rnakes orrr exa,mples and proofs more transpa"rent than
they worrld be if we used thc properties of d'*.

Whilt: graphs are convcrrir;nt fbr visualizirrg irutomata, other represen-
tations art) also useful. Fbr exa.mple, we can represent the functiorr d as a
table. The table in Figure 2.3 is equivalent to Figure 2.2. Here the row Ia-
bel is thc r:urrent state, whilcl the column label represents the currerrt input
symbol. The errrtrv in the table tlcfines the next state.

It is apparent f'rom this exarnplc that a dfa can easily be implemented a^s
ir {xrmputer prograrn; fclr example, as a simple table-lookup or a,s a sequence
of "if" statements. The best implernentation or representation depends
on tlte specific applicatiorr. Tra,nsition graphs are very corrvcrrient for the
kinds of argurnents we warrt to make here, so wr) rr$e them in rnost of our
discussions.

In construc:ting automata ftrr la,nguages definerrl informally, we errrllloy
reasoning sirnilirr to that for prograrnming in higher-level languages. But the

b' tl b

!o ?o ?t

q , Iz {t

9z !t ?z

2.I DETERMINISTIC FINTTU ACCEPTERS 4l

Figure 2.$

;",J
programming of a dfa is tediou$ and sometimes conceptually complicated

bv the fact that such an automaton has few powerful fbatures.

Figure 2.4

Find a deterministic finite accepter that recognizes the set of all strings on

X : {a, b} starting with the prefix ab.
The only issue here is the first two symbols in the stringl after they

have beerr read, no further decisions need to be made. We can therefore

solve the problem with an automaton that has four states; an initial"state,
Itwo statesrfor recognizing ab ending in a final trap state, and one nonfinal
trap state. If the first symbol is an a, and the second is a b, the automaton
goes to the final trap state, where it will stay since the rest of the input

does not matter. On the other hand, if the first symbol i$ not an a or the

$econd one is not f, b, the automaton enters the nonfirlal trap state' The

simple solution is shown in Figure 2.4.
I

Chopier 2 }'rllrn Aurolr.tra

Figure 2.5

l i o l * r #
riilIr-,rrr I

fixotrtpl* [.4 Find a dfa thtit tr.ccepts all the strings on {0, 1}, except those corrtaining the
substring 001.

In decidirrg whether the substritrg 001 ha,s occurred, we need to krrow
not only the currcnt input symbol, but wt: also need to remember whethrlr
or not it has been preceded by one or two 0s. We can keep track of this hy
pr.rtting the autornaton into specific slates arrrl la,heling them accordilgly.
Like variable narrr()s in ir prograrnming languager, state names are arbitrary
arrtl r:an be chosen for ttttternorrit: rea^rons. For example, tlx: sta,te in which
two 0s were the immediately prrrcding symbols can be labcled simplv 00.

If tht: string starts with 001, tht:n it must be rejected. This implies
that therc must be a path labeled 001 lrom the initial state to a rronfina,l
state. Fcrr cxrnvenience, this nonfi.rral sttr,te is labeled 001. This state mtrst
be a trap stelte, hecause Iater synrbclls do not matter. All other stateri are
acceptirrg state$.

This gives us the ha"sic structure of thc solrrtion, but we still rnust add
provisions for the srrbstring 001 occurring in the middle of the input. We
must define Q and d so thnt whatever we need to rnirkn the correct decision
is rernerrbered by the autornaton. In this ca-se, whett a synrLrol is read, we
need to know sclrnel part of string to the left, for example, whether or not
the two previous syrnbols were 00. If we labcl the states with the relevarrt
symbols, it is vr:ry ea,sy to see what the trrrnsitions must be. For exantple,

d (00 ,0) - 00 ,

becausc this situation arises only if there are three consecutive 0s. We are
only interestcd in the la,st two, a fact we remember by keeping the dfa in
the state 00. A complete solution is shown in Figure 2.5. We see frorrr this
exarnplc how useful mnemorricr labels on the states are for kceping track of
things. Tbar:e a fbw strings, such as 100100 and 1010100, to see that the
solution is irrdt+ed correct.

I

Regulor [onguoges
Every finite arrtomaton accepts sorne larrguage. If we consider all possihle

finite autornatal, we get a set of larrguagcs ir.ssocia,ted with thertr. We will call
such a set of Ianguages a family. The family of languages that is accepted lty
detcrministic finite accepters is quite limited. Thc strrrcture and properties

q

. , f i (

1 ' (o t l c) o

of the la,ngua,ges in this family
filr ttxl trorn(lrrt wtl will sirnply

2.1 Dulnnl,trNrsTrc F'tt'tt'l'Fl AccpprpR,s 43

will bet:ome clearer irs our study proceeds;
attach a rrarrre to this farnilv.

f,* 1", " L.o,,

tffi R,fi uil,!.�r.qftfr ffi $$lliRtl$ri
F

A language .L is called regular if and only if there exists sorne detertnitristic
flnite accepter M such that

L : L (M) .

Exolmple f .5 Show that the lirngrrtr.gt:

1, : {utL,tt:
'u e {o, b}* }

is regular. To show that this or any other la,ngualgc is rcgular, all we have
to clo is find a, dfa fbr it. Thc txrrrstructiorr of a dfa for this language is
similn,r to Exrrrnpkr 2.3, but a little more complicated. What this dfn, must
do is check whethcr a striug begins and ends with au a; wltat is between is
immateritr,l. Tlrl sohrtiorr is cotnplicated by the fact that there is no explir:it
way of tr:stirrg tlrtl errd of the string, This clifficulty is ever(xrrnc try sirrtply
prrtting thrl rlfir irrto a final state whenever the second a is enrxlrrrtcrtxl. lf
this is rxrt tirc end of the string, and another b is ftlrrrd, it will take the
dfa out of the final state, Sca,nning continrres in this wiry, caclt a taking the
autorna,ton ba,ck to its finir.l stiltc. Thc: cornplete solution is shown in Figure
2.6. Aga,in, trace a few exa,tnples to see why this works. Aftcr orre or two
tests, it will be obvious tha,t the dfh, a,ccepts rr, strirrg if atttl otrly if it begins
and ends with an a. Since we have txlrrstnrc:tc:d rr dfa for the lauguage, we
can claim that, by definition, tlrc lir,rrgrrirgc is regular.

I

Let tr be the language in flxa,mple 2.5. Slxrw that -1,2 is regular. Aga'in we
show tha,t the langrra,gc is rr:gular by corrstructing a, dfa for it. We carr writc
a,n explicit exprussirln f<tr L?, nanely,

7,2 : {rz.nytil,Lr.tza i ,LL)1,,11t2 e {a, b}. } .

Therrcftlrc, wcl rrt:cxl rr dfa that recognizes two conseclttivc strings of essen-
tially tlrc sartre forttt (but noi necessa,rily identica.l irr value). 'Ihe diagra,m

44 Chopter 2 FtuIrn Aurolvlare

Figure 2.6
\------=-.-

tl--/

in Figure 2.6 can be used as a starting point, but the vertex gs has to be
modified. This state cafl no longer be final since, at this point, we must
start to look for a second substring of the form awa. To recognize the sec-
ond substring, we replicate the states of the first part (with new names),
with q3 as the beginning of the second part. Since the complete string can
be broken into its constituent parts wherever aa occurs, we let the first oc-
currence of two consecutive a's be the trigger that gets the automaton into
its second part. We can do this by making d(gs,a) : qa. The complete
solution is in Figure 2.7. This dfa accepts ,L2, which is therefore regular.aI

t J t t
b J L

r i f+_!4 "
A ' * t * ' ' r A
(fitl,r aa YJ aa 9F{ r?,F j l*

|
-_.-v

v , , ^
tnlr

w q

,-T.u.rp"o u r t f t - i l ={ tu f)J^ ri,,-

41 -11 61au jL f t

Figure 2.7

t?rfl'b,'

t L,ilat"
r , , 1 , 8 6

t 4 . "
t r \ t

?.1 DETERMTNTSTTC Frr-rrrn Accnprnns 46

The last example suggests the conjecture that if a language "L is regular,
so are .L2.,L3. We will see later that this is indeed correct,

1. Which of the strings 0001,01001,0000110 are accepted by the dfa in Figure
2.r?

f)t*
E = {a,b}, construct dfa's that accept the sets consisting of

(a) all strings with exactly one a,

(b) all strings with at least one a,

(c) all strings with no more than three a's, ffi

(d) all strings with at least one a and exactly two b's.

(e) all the strings with exactly two a's and more than two b's.

Show that if we change Figure 2.6, making qs a nonfinal state and making
qo1 qt1 qz final states, the resulting dfa accepts Z.

Generalize the observation in the previous exercise, Specifically show that if
M : (Q,8, d, go, F) and

-nI
= (Q,8, d, qo, Q - F) are two dfa's then T(6 :

3 .

4 .

b g
I

(z) fi"a dfa's for the following languages 61 5 = {a, b}.

(a) I= { t a : l t a lmodS=0} f f i

(b) Z, = {tr : l tr l rnodS I 0}

(c) I = {w : no(t r r)mod3 > 1}

(d) {w : n* (tu) moct 3 > n6 (w)mod 3} W

"(fr)
A* G"ive dfa's for the languages

(a) I = { a b s w b a : t u e { a , b } - } f f i

(b) f I : {wpbwz: tor € {a, bI* ,wz € {a,b}-}

Give a set notation description of the language accepted by the automaton
depicted in the following diagram, Can you think of a simple verbal charac-
terization 6f the language?

(T

46 Chopter 2 FtmIrn Aurouare

(e) r, : {ur I (n*(ur) -nu(tu))mod:} >0} Nole t l^t * 7 rna:/ : t" - !-

(f) , : {u : ln* (w) - nr, ('u) l rnotl : l < 2}

q$ e run in a string is a silbstrirrg of length at least two, as long as possible

anrJ conrristing entirely of the satre symbol, For instance, the string a,bbhaa,lt

contains a rul of b's of length three and a nrn of n's of lertgth two. Find dla's

for the following languages on {4, h}.

(u) t : {tr : ru cxrntairlrr IIo rtllls of length less than four}

(b) .L : {'ur : every rtrrr rtf a's }ras lengt,ir either two or three}

(c) I : {'ur : t}rere are at tnost two runs of a's of length three}

(.1) f : {tl : there are exactlv two ruus of a's of length 3}

t.}tg Consider the set of striflgs on {0, 1} delined hy thc rcquircments below. For

each construct an acccptirrg dfa.

(a) Every 00 is fbllowed irnrnediatel.y by a 1, For cxample, the strings

101, 0010, 0010011001 are in thc languagc, but 0001 and 0010t)

are rrot. ffi

(l-r) all strirrgs containitrg 00 but not 000,

(c) The lef'tmost' symbol diffcrs frorn thc rightrnost one.

(d) Every substring of four symbols has at most two 0's. Ftrr exarnple,

001110 arrd 011001 are in the latrg;uage, but 10010 is not since one

of its substrings, 0010, contains three zeros. {il

(e) AII strings of length five or rnore in which the fourth syrrrbol lrom

the right erxl is tliffererrt frorrr the leftrnost sytrbol'

(f) All strings in which the leftrnost two syrnbols a,rrd the righttnost

two syrnbols are iderrtit:al.

*10. Corrstruct a clla that accepts strings on {0, 1} if and only if thc value of the

string, intcrprctcd as a binary representation ofan integer, is zero morlulo five'

lbr example,0101 and 1L11, representing the integers 5 and 15, respectivel.y,

are to be acceptcd'

11. Show that the language 7 : {uwu : 'u,w E {o, b}* , l r l : 2} is rcgular.

L2. Show that tr : {.a," : ",> 4} is regular.

13. Show that the language L: I t^: r t .) 0'n I) is rcgular. f f i

[iQ Sf]o* that the langua,ge L : {a|" : n,: i, I ih,i,,k fixerl, j : (1, 1,2, "'} is reg-
."

ula,r.

15. Show that the set of all rcal numbcrs in C is a regular lauguage.

L6. Show that if -L is regular, so is Z - {I}.

Qf Use (2.1) and (2,2) to show that

frrr all tr,u € E'

d" (s , tuu) : d" (d" (q,w) ,u)

1 8 .

19 ,

20.

2L.

?.2 NorurErEFMrNlsTrc Flrulrl Accnpr'trrs 47

Let -L be thc language ar:cepted lry thc autorrraton in Figure ?.2. Find a dfa
that at:cepts L2.

I,et .L be the langrrage acceptcd by t,he automaton in "F-igure 2.2. Firxl a dfa
for tlre larrguage Lz - L,

Let I, be the language in Example 2,5, Show that .L* is regular,

Let G,r.r he the transition graph for some dfa M, Prove the following,

(a) If f (M) is infirrite, then G,y must have at least one cycle lbr
which there is a path fronl thc initial vertex to some vertcx in
the cyclc and a path frorn some vertex in the cyr:le to some final
vertex.

(b) If , (M) is finite, then no such cycle exists. ffi

Let rrs define an opcration trun,t:a,te, which removes the rightmost symbol
lrorrr arry utring. l,br example, trurtt:a,te(aaliba) is aaab. The operation can
be extenderl to languages bv

:ate(L): { truncate (tu) : trr € I}.

Show how, given a dfa for any regular langrrage 1,, onc can construct a dfa for
truntate (tr). Flonr this, prove that if -L is a regular language not containing
,\, then truncaLe (.L) is also regular.

L e t r : a o e , r , , ' a m t a : b o b r . . . b n r z : c o c l ' , , c " , b c b i n a r y n u r r l b e r s a s
defined in Exarnple 1.17. Show that the set of strings of triplets

where the di, lt.i, c; are such that ;r * U : z is a regular languagc,

24. Wltile the language accepted by a given dfa is unique, there are normally
man.y clfa's tirat accept a language. Find a dfa with exactly six states that
accepts the sarne larigrrage as the dfa in Figure 2.4. m

Nondetermin is t i c F in i te Accepters

Finite act:rlpters a,re rnore complicated if we allow them to act rrondetermin-
istically. Nondeterrninisnr is a powerful, but at firs{Er.Sh unusual idea..$,3
gormally thirrk of computers as contplettily deterministic, and the elernt:rrt of
chijiEe deeihs out of piritie. Nevertheless, rioridctermintsm is a useful notion,
as we shall see as wc prot:eed.

2 '

(il)(li) (r)

48 Chopter 2 .l'l.rrtr: Aurounre

Definition of o Nondeterministic Accepter

Norrdeterminism mea,ns a choice of moves for atr automaton. Ratlter than
prescribing a, uniqrrt: rnttve itt each situtr.titlrr, we allow a set of possible tnoves.

Formally, we a,chievc this by delining the trarrsition function so thirt its ratrge

is a set of possible states.

onfilWin

A nondeterministic finite accepter or nfa is defined bv thc quitrtuple

M : (e,X, r l , r /0, F) ,

where Q, E, {0, F are deiinecl as for deterministic fitrite accepters, but

d : Q x (E u { A }) - - 2 Q .

Note that there are three major difli:rerrces between this definitiott ancl

the definitiorr of a dfa. In a, nondctcrrninistic accepter, the rarrge of d is in

the powerset 2Q, so that its vtr,hre is ttot a single element of Q, but a subset

of it. This subset defines the set of all possible states that can be reached
try the transition. If, firr irrstance, the current stattr is q1, the symbol a is

read, atrd

,5 (qr, *) : {qo, qz} ,

therr either 8o or 8z could be the uext state of thtl rrfa' AIso, we allow .\

as the second irrgutnetrt of d. This mcirns that the nfa can mtr.kt: a tran-

sition without corrsutning au input symbol. Although we still assurne that

the input rrrechanism can only travel to the right, it is possible that it is

statiorrary on some Inove$. Finrr,lly, in an nfa, the set ,) (ql, *) ttray be empty,
mearrirrg that there is no trarrsition defined for this specific situation'

Like dfa's, nondeterrnirristic accepters can btl represented by transititlrr
graphs. Ihe vertices are rlt:tertnined by Q, while arr edge (q1,qr) with labcl

a is in the graph if arrd otily if d(qi,a) contairrs {i. Note that sintxr n rllay

be the empty string, there can be some edges labeled .\'
A string is accepted lry au ltfa if thcrc is sone sequence of possitrle rrroves

that will put tlte machiue in a, firral state at the end of thc string. A string
is rejcctecl (that is, not accepted) only if there is no possible sequence of
moves by which a firral state c:arr be reached. Nondetcrrnitrism can therefortl
be viewed as involving "irrtuitive" insight by which the best move ctrn be

chosetr at every sta,te (assurning that the nfa warrts to accept everv strirrg)'

2.2 NoNnnTERMINIS'r ' tc -t ' rrurlr : AccnrrnRs 49

Figure 2.E

i.WWMorrsidertItetrarrsititl 'g-pr'inFigure2.8.Itdescribesarrtrrrrltttttrministic
accepter sirrcc tlx)rc irre two transitions labeled a out of gg.

I

WtrorrcIeterrrrirristit:a,rrtorn-atonisshowninFigure2'9.It isrrorrd(lterministic
not otily bcc:au$c several edges with the same label origirratr: from one vertex,
but also bct:iurser it has a A-transition. Some trarrsitiorr, suc:h as,i(q2,0) are
unspecified irr tIrc graph. This is to be interpreted as a transition to the
empty set, that is, d- (g2,0) : g. The automaton accepts stritrgs .\, 1010, and
101010, but not 110 and 10100. Notc tha,t for 1.0 there are two alternative
walks, one leading to qe, tlte other to q2. Even though q2 is not a final sta,te,
the string is acccpted hs:ause one walk leads to a final stattl.

Again, the trarsiticlrr firrrr:tion can he extended so its second argurnrlnt
is a string. We require of tlrt: t:xtended transition function d* that if

d. (q1, tu) : Qr,

then Qi is the set of rrll possible sta,tes the automaton may be in, having
uttr.rted in state {1 and }ravittg rearl rir. A recursive definition of d*, analogous
to (2.1) a,nd (2.2), is possible, but rrot particularly enlightening. A rnore
easily appreciated defirrition t:an be made through transition graphs.

I

0'r^Y- -Y,_ \ 0,r
Iz

1'-=l*--^-7
l.

Figure 2.9

50 Chopter 2 FINITE Aurolvrrrrn

Def in i l ion ?.5

Fbr an nfa, tlre extendctl tratrsitiou function is dt:firred so that d. (qr,r)

contains 4i if rr,nrl orrly if there is a walk in thc: transition graph fiom q, to

qy lir,bclt:d 'u. This irolcls for all r7n,t1, e Q and ru e E*.

Figure 2. l0 reprtlserrts att nfa. It has severtr,l A-trarrsitiotrs aud some unde-
flned tra,nsitirlrrs such as d (q2, a).

Sr,4rpost: wc wattt to find d* (qr, a) nrxl d* (,1r,.\). 'fhere is a walk labelod

n, involvirrg two .\-transitions from q1 to itself. tsy using some of the A-trdgtls
twicur, wr: see that there are also walks irrvolvitrg .\-transitions to q11 arrd 92.
Thus

d* (,1t , a) : {go ' qr iqz} -

Since there is rr .\-edge between {2 alrd q0r we have irnrnediately that d. (q2, A)
contains gs. Also, since any state can be reat:hetl from itself by making no

move, a,nd rxlrrscquently using no input symtrcll, tl* (q2,.\) also contains q2.

There,ftlrtl

6* (qr, A) : {So, q'i} .

Using as mir,ny .\-tratrsitions as needed, you (rirrl also check that

d* (qr , aa) : {qo, Qt ,QzI

The definition of d* through labeled wirlks is somewhat informal, so it
is rrscful to look at it a little more t:loscly. Definition 2.5 is proper, sincc'
between any vertices ui and r.r; there is either a walk labeled tu or there
is not, inclicating that d* is cottrpletely defined. What is perltaps a little
harder to scc is that this definition urn irlways be used to flnd d. (gi,ru).

Itr Section 1,1, we descrihcd art algorithm for finding all sirnple paths

bctween two vertices. We crr,nrrot use this algorithm directly flirrce, as Ex-
ilrnple 2.9 shows, a labeled walk is not always a simple path. We catt ttrodify
the sirnple path algorithrn, rernovirrg the restriction that no vettex or edge

I

Figurc ?.10

2.2 NoNDHTERMrNrsrrc Frr-rrrn AccEprERs 51

can be repeated. The new algorithrn will now generate successively all walks
of length one, length two, length tlrree, arrd so on.

There is still a difliculty. Given a ru, how lorrg can a walk labeled trr
be? This is not immediately obvious. In Exa"rrrple 2.9, the walk labeled
a between {1 antl q2 has length four. Ihe problem i$ caused by the .\-
transitions, which lengthen the walk but do not corrtritnrte to the label.
The situation is saved by this obscrvation: If between two vertices r.',. and
ui thercl is rr.ny wa,lk labeled ,ar, t,herr thr:rc mrrst be sorne walk labeled u.'
of lerrgth rro more than A + (1+ A) lrl, whcrc A is the number of .\-edgcs
in tlte grir.ph. The a,rgurnent for this is: While A-edges may be repeated,
there is always a walk in which every repeatexl A-edge is separated by arr
edge labeled with rr nonempty symbol. Otherwise, thc walk contains a cycle
labeled .\, whir:h can be replaced by a sirnple path without changing the
Iabel of the walk. We leave a fbrmal proof of tlfs clairn ir,$ an exercise.

With this observation, we have a, urethod for computing d* (q,;,ru). We
elvalua,te all walks of lerrgth at trxrst A + (1 + A) ltul originating at tr,;. We
select fiom them those that are labeled zr. The terminating vertices of the
selected walks are the elements of the set 6* (qi,,ut).

As we have rt:rnarked, it is possible to define d* irr ir, rercursive fashion
as was done for tlte tleterministic case. The result is urrfcrrturrtr,tely not very
transparent, arrd arguments with the extended transitiorr fun<:tion defined
this way are hard to follow. We prefer to use the rnore irrtuitivc and more
manageable alternative irr Definition ?.5.

As for dfa's, the larrguagc acr:cpted by an nfa is definecl forrnally by the
cxtended transition function.

lrR,Ffin',tllllellrii ,ti

The language -L accepted by a,rr nfa, M : (Q,X,d,qo,F) is defined as the
set of all strings accepted in the abovtl scrrsel. Fcrrma,lly,

L (M) : { r i r € X* : d* (qo,w) n I ' I n} .

Irr words, the language consists of all strirrgs ur fbr which there is a walk
labeled 'u I'rom the initia,l vertex of the transitiorr graph to some final vertex.

, i t ;

Exumple 2.10 What is the latrguage accepttxl by the a,utomaton in Figure 2.9? It is car,sy
to see from the graph that tlrtl orrly way the nfa can stop in a final state
is if the input is either a repetition of the string 10 or the empty strirrg.
Theref'ore the automaton accepts tlr: larrgrrer,ge I = {(10)"'; n > 0}.

62 Chopter 2 FINITE Aurouil,rt

What happens wherr this automaton is presented with the string tu -

110? After reading the prefix 11, the automaton linds itself in state q2, with
the transition d (q2,0) undefined. We call such a, situatiotr a dead configu-
ration, and we r:an visualize it as the automaton sirnply stopping without
further action. But we must always keep in mind that such visualizations
are imprecise and carry with them some darrger of misinterpretation. What
wc carr say precisely is that

d * (q0 ,110) = o .

Thus, no final state can be rttached by processing u, - 110, arxl hence the
string is not accepted.

I

Why Nondeterminism?
In reasorritrg about nondeterministic mat:hirres, we should be quite cautious
in using irrtuitive notions. Intuition c:an tlasily lead us astray, and we mrrst

be able to give precise arguments to substarrtiatc our conclusions. Nonde-
terrrrinisrn is a difficult concept. Digital conrputers are completely deter-
ministic; tlteir state at anv time is uniqucly predictable from the input and
the initial state, Thus it is natural to ask why we study nondeterttftristic
rnachifies at all. We are trying to rrrodel real systems, so why includc such
nonrnechartical features as choice? We ca,n an$wer this question in various
wiiys.

Many deterministic algorithrns rcrluire that one make a choice at $omc)
stage. A typical example is a game-plarying progrant. Flequently, the best
move is not known, but ca,n be f'rrrrnd usirrg arr exhaustive search with back-
tracking. When several tr,ltt:rnatives are possible, we choose one arrd follow
it until it becomes clear whcther or not it was best. If not, w€l retreat to
the last decision point and explore the othtrr <:hoices. A notrdeterministic
algorithur that can tnake the best choice would bc able to solve the problern
withoul backtra,cking, brit a, dtltcrrtritristic olre can simulate nondeltcrmirristtt
with some extra wrlrk. F<rr this reason. noncleterministir: rnat:hirrrls calt serve
rrr morlt:ls of search-and-backtrack a,lgorithms.

Nondctcrrnirristn is sometimes helpfirl in solvirrg probletns easily. Look
at the rrfir itr F'igure 2.8. It is clear that thertt is a cltoice to be made. The
first alternaLive leads to the acceptarr:t: of tlte string ail, while the seconrl
accepts all strings with an even mrmhnr of a's. The Ianguage accepted bv
the nfa is {a3} u {ot" : n > 1}. While it is possible to find a dfa fcrt this
Ianguage, the nondeterminisrn is quite natural. The language is the urriotr
of two quite difftrrcrrt sets, and the uondeterminism lets us decide at the
olrtset whir:h case we want. The deterministic sohrtion is not as obviouslv

2.2 NounptrrRMtNrsTrc Frnrrrn Accnlrnns 5S

rclated to the definition. As we go orr, we will see other and more convincing
exarnplt:s of the rmefulness of nondeterrnirrisrn.

In the sarrrc vein, nondeterminism is an effective rrrcr:hani$m for describ-
ing some cornplicated ltr,ngua,ges concisely. Notice that tlrc definition of a
gralrlrrlar invtllves a nondeterministic element. Irr

,9 - a,9bl.\

we can at any point choose either tlrc first or the second production. This
It:tu rrs specify many different strittgs usirrg only two rules.

Firrally, therre is a technica,l reason for irrtroducirrg rrondctcrminism. As
we will see, tltlrtirirr results a,re more easily established for rrfats thtr,n for
dfats. Our rrext maior resrilt indica,tes that there is rro essential diffcrcnce
betweetr tlrt:sc two types of automata. Consequently, allowing rron(lctermin-
ism ofterr sirrrplifies f'rrrmrr,l arguments without affecting the gerreralitv of the
conc:lusiorr.

l. Prove in detail the claim made in the previous section that il in a trarrsitiorr
graph there is a walk labelerl rl, there must be some walk labeled tu of length
rro rrrore tharr A + (1 + A) l,rrrl.

Fitrd a dfa that at:r:epts the langua,ge defined by thc nfa'in Figure 2.8.

In F igure 2 .9 , f ind d* (q6 , 1011) and d* (g1 ,01) .

In Figure 2.10, I incl d- (qo,a) and d* (r;r , l) f f i

Fbr the nfa, in Figurc ?.9, f ind d- (qo, 1010) and d* (t71,00).

Design at nfa with rto rnore than five states for thc sct {abab" ; rr. } 0} U

{ a , h a ' o : r r , > 0 } .

4 .

5 .

6

,

3 .

8 .

9 .

O C.rrr"t.,rct an nfa with three statcs that accepts the language {tr,b,abc}-. W

Do yorr think Exercise 7 can be solvccl with fewer than three states'l ffi

(a) Firrrl an nfa with three states that acccpts the language

L : {a" : rz > 1} u {I,*aA' : rrr } fi, fr;' t

(b) Do you think the larrgrrage in pa,rt (a) can bc a,cccptcd lry an nfa
with fcwcr than three states'/

> n)

\lpt' l,'ind an nfa with lbur states lbr -L : {a" : rr > 0} U {h"u.: n } I}.

@ Wtli"tr of thc strings 00, 01001, 10010, 000, 0000 are arceptetl by the following
rrfa?

54 Chopter ? Flt{trr Aurolrere

/^\f- \ ? o /
__.\

12. What is the complement of the language accepted by the nfa in Figure 2,10?

13. Let .L be the language accepted by the nfa in Figure 2.8. Find an nfa that

accepts I u {a5}.

14. Give a simple description of the Ianguage in Exercise 1.2.

(rs.)fina an nfa that accepts {a}* and is such that if in its transition graph a
-

single edge is removed (without any other changes), the resulting automaton
accepts i") W

16. Can Exercise 15 be solved using a dfa? If so, give the solution; if not, give

convincing arguments for your conclusion.

17. Consider the following modification of Definition 2,6. An nfa with multiple

initial states is defined by the quintuple

M : - (Q , E , d , Q o , F) ,

where 8o C Q is a set of possible initial states. The language accepted by
such an automaton is defined as

L (M) : {tr.' : d* (q6, trr) contains gy, for any q0 € Qo,St € F} .

Show that for every nfa with multiple initial states there exists an nfa with a
single initial state that accepts the same language. Nft

18. Suppose that in Exercise 17 we made the restriction Qo fl F : fi. Would this
affect the conclusion?

(rg./Use Definition 2.5 to show that for any nfa

d- (q, uu) : U d* (p, r) ,
pE6* (tt,u)

for all q € Q and all trr,u € D*,

2o. An nfa in which (a) there are no tr-trartsitions, and (b) for all g e I and all a e
E, d (q, a) contains at most one element, is sometimes called an incomplete
dfa. This is reasorrable sirrce the conditions make it such that there is never
arry choice of moves.'

0

2.3 EQUIvaIENCE oF DptpRturt'ttsrrc AND NoNnnrnnN.rrNrsrrc FInrIre AccnRrnns D D

For E : {a, b}, convert the incomplete dfa below into a standard dfa.

W Equ ivo lence o f Determin is t i c ond
Nondeterminist ic Fin i te Accepters

We now come to a fundamental question. In what sense are dfats and nfa's
differerrt? Obviously, there is a difference irr their definition, but this does
not imply that there is any essential distinction between them. To explore
this question, we introduce the notion of equivalence between automata.

lIM

Two finite accepters.Ml and M2 are said to be equivalent if

L (M r) : L (M 2 , ,

that is, if they both accept the same language.

As mentioned, there are generally many accepters for a given language,
so eny dfa or nfa has many equivalent accepters.

.11 is equivalent to the nfa in Figure 2.9 since
they both accept the language {(10)" : n, } 0}.

Figttre 2.11

56 Chopter 2 Frrurrp Auronara

When we colrlpare different classes of automata, the question invariably

ariscs whether one class is more powerful than the other. By rnore powerful

we mean that an automaton of one kind can a<:hicve something that cannot
be done by any rrutomaton of the other kintl. Let us look at this cluestiott
for finite accepters. Since a dfa is in essence a restricted kind of nfa, it is

clear that any language that is accepted by a dfa is also accepted by some
nfa. But the converse is not so obvious. We htrve added nondeterminism,
so it is at least corrceivable that there is ir larrguage accepted by some nfa

for which we cannot find a dfa. But it turrrs out that this is not so. The

classes of dfa's and nfa's are equally powerful: For every language accepted
by sorrre rfa there is a dfa that accepts the same language.

This result is ttot obvious and certa,inly lms to be demonstrated. The

argument, like most argurnents in this book, will be constructive. This

me&ns that we can actually give a way of corrverting any nfa into an equiv-
alent dfa. The corrstruction is not hard to understand; once the principle is

clear it becomes the starting point for a rigorous argument. The rationale
for the construction is the following. After arr rrfa has read a string ?u, we

may not know exactly what state it will be irr, but we can say that it must

be in orre state of a set of possibltr states, saY {qz, Qjr...,QnI .An equivalent

dfa after reading the same string rrrust be in some definite state. How can
we make these two situations correspond? The answer is a nice trick: Iabel
the states of the dfa with a set of states in such a way that, after reading

ru, t lre equivalent dfa wil l be in a sitrgle state labeled {Uo,Ui,...,qa}. Since
for a set of lQl states there are exa,t:tly 2lQl subsets, the corresponding dfa

will have a fi,nite number of states.
Most of the work in this suggested construction Iies in the analysis of the

nfa to get the correspondence betrveen possible states and inputs. Before
getting to the formal description of this, Iet us illustrate it with a simple
example.

Convert the nfa in Figure 2.12 to arr equivalent dfa. The nfa starts in state
gs, so the initial state of the dfa will be labeled {qs}. After reading an a, the
nfa c:an be itt state q1 or, by making a .\-transition, in state q2. Therefore

the corresponding dfa must have a state labeled {gr, qz} and a transition

d ({ s n } , a) : { q t , q z } .

In state q0, the tfa has no specified transitiort wltetr the input is b, therefore

d ({ sn } , b) : @.

A state labeled g represents an impossible move ftrr the nfa and, therefore,
means nonacceptance of the string. Conseqrrently, this state in the dfa mrrst

be a nonfinal trap state.

Figure 2.12

2.3 Eeurvar,ENCE oF DnrnRrr,uNrsrrc AND NoFrnErrgRMINrsTIc FrNrrn AccBnrens 57

We have now introduced into the dfa the state {h, qz}, so we need to
find the transitions out of this state. Remember that this state of the dfa
corresponds to two possible states of the nfa, so we must refer back to the
nfa. If the nfa is in state Q1 and reads an a, it can go to q1. F\rthermore,
from 91 the nfa can make a .\-transition to q2. If, for the same input, the
nfa is in state q2, then there is no specified transition. Therefore

d ({q t , qz } , a) : { g r , q r } .

Similarly,

d ({qt , qz} ,b) : {qo} .

At this point, every state has all transitions defined. The result, shown
in Figure 2.13, is a dfa, equivalent to the nfa with which we started. The nfa
in Figure 2.12 accepts any string for which d* (q0,ru) contains 91. For the
corresponding dfa to accept every such w7 aray state whose label includes 91
must be made a final state.

I

Figure 2.1S

Chopter 2 FIruIrn Aurovete

Let .L be the language accepted by a nondeterministic finite accepter M1" :

(8r, E, dry, qo, .Fry). Then there exists a deterministic firrite accepter Mn :

(8o, E, d;l, {qo} , Fp) such that

L : L (M p) .

Proof: Given M1y, we use the procedurc nf a-to-tlfa below to construct the

trarsition graph Gp for X,tIp. To understand the constructitln? relllefiIber

that Gp has to have certain properties. Every vertex must have exactly

lxl outgoing edges, each labeled with a different element of E. During the

construction, some of the edges may be missing, but the procedUre continues

until they are all there.

procedure: nfa-to dfa

L. create a graph Gn with vertex {qs}. Identify this vertex as the initial

vertex,

2. Repeat the following steps until IIo lrlore edges are missing'

Take any vertex |qo,qj, '.', {t} of Gn that has no outgoing edge fbr sorne

a € 8 .

Compute d* (g1,a) ,d* (q j ,a) . . . ,d* (q* ,o, .

Therr form the uniotr of aII these d*, yielding the set IU,q*,"',QnI'

Create a vertex for Gn labeled {qt,q*,"',{'} if it does not already

exist.

Add to Gp alr edge from {qr,qi,...,4t} to tqt, Q*,...,{ '} and label it

with a.

3. Every state of GIr whose label containu a.ny qy € Flv is identified as a

final vertex.

4. If MN accepts),, the vertex {So} i" Gsr is also made a final vertex'

It is clear that this procedure always terminates. Each pass through the

Ioop in Step 2 adds arredge to Gn' But Gp has at mo$ 218'^/l lXl edgcs,

so that the loop eventually stops, To show that the constru<:tiorr also gives

the correct aIISwer, we argue by induction on the length of the input strirrg'

Assume that for every u of length less than or equal to n, the presence

in G1y of a walk labeled u from qo to qi implies that in Gn there is a walk

labeled tr from tsol to a state 8l : {...,gi,--'}- Consider rrow any u : ua

and look at a walk in G1r labeled r,rr from qo to q. There must then be a

walk labeled u frorn qo to Q,i and an edge (or a sequence of edges) labeled

a liom qt to qt. By the irrductive assurrrption, in Gp there will be a walk

labelecl u from {qo} to Qa. Bui by construction, there will be an edge from

Qa to sone state whose label contains ql. Thus the inductive iutsumption

2.ll EeuIv.q,t,HN(rE oF DnrnnMlr'usrrc AND Nolotrpn.rr,rrNrsTr(l !-rNrrp AflfletrnRs 59

lnlds fbr all strings of length rz * 1� As it is otrviously trrrt: for z : 1, it is
true for all n. The result then is that whenever dir(So,trr) contains a firml
state 91, so tl(xru the label of di(gs,tt). To complete the proof, we reverse
the argrrtrent to show that if the label of di(qs,tu) contains g/, so rrrust
dh (qo, ru). r

Ihe argumerrts irr this proof, tr,lthough correct, are admittedly somewhat
terse, showing only tlte ntajor steps. We will fbllow this practice in the rest
of the book, emphasizing the basic ideas irt ir proof arrd omitting minor
deta,ils, which you may want to fill in yourself.

The construction in the above proof is tedious but irnportarrt. Lnt uu
rlrl rr,nclther exa,mple to make sure we understand all the steps.

�2.14intoat lequivalentdetenni t r is t ic t r rac l r ine.
Sittcc t)-1,,(q0,0) : {qo,qt}, we introduce the state {qo,qr} in Gt and add
an edge labeled 0 between {q6} and {,lo,sr}. In the $irrne wity, rnnsidering
dlu (qo, t) : {qt} gives us Lhe trew state {q1} arrtl an txlgc labclud 1 between
it and {(ro}.

There a,re now a number of missing edges, so we continue, using the
(:orrutruction of Theorem ?.2. With o : 0, ri : 0, J : 1, we compute

di' (Sn' 0) U div (qr' 0) : {,It,q,qzI .

This givus us thc new state,'{qo,g',ez} and th.e transition

dn ({qo , s r } , 0) : { { 0 , e r ,Qz I .

T l rcr r , r rs ing a, : I , i : 0 , . l : I , k = 2,

dfu (so, 1) u (ti/ (q', 1) u dfu (sr, 1) : tsr, sr]

makes it necessary to introduce yet another state {q1 ,qz}. At t}ris point,
we have the partially constructed autornaton shown in Figure 2.15. Since
there a,re still some missing edges, we continue until we obtain the complete
sohrtion in Figure 2.16.

I

Figure 2.14

, n

Chopter 2 Frutre, Autottl'rn

Figrue ?.15

(--lrl -r.
{ ,___,/ ,/

Figure 2.16

@
v'l\

l r r J)

@

't\
V; / ')

\ ,

2,3 EeUIVALIINCE oF DErnRuIuIsuc AND Nounu'rpRltlNISTIC FINITE AccEP'I'ERS 61

One important conclusiolr we can draw from Theorem 2'2 is that every
Ianguage accepted by an nfa is regular.

1, Use the construction of 1lheorem 2.2 to convert thc nfa in Figrrre 2.10 to a

dfa. Can you see a sinrpler an$wer rrrore directly?

2, Convert the nla in Exercise 11, Sectiorr 2.2 into an cquivalent rlfa. ffi

/ftor'rve.t the ftrllowing nfa into an equivalerrt tlfa.

4, Carefully cornplete the arguments in the proof of Theorcm 2.2. Show irr tletail

that if the label of d-i; (q6,ur) contairrs 97, then dfr (So,tr.') also corrtairrs q1'

4 (DIs i t true that f trr arqy nfa M : (Q,x,d,{o,F) the cornplcment of I(M) is

J
*

equal to thc set {u e X* : d* (qo,u) nF: @}? If Bo, prove i t . I I not ' give a

counterexample..
'?

ft? fr it trr.re that ftrr every nfa M : (Q, X, d, r7o, F) the complement of I (M) is
f

*
eQual to the set {tr e E- ,d" (qo,ur) r-r (Q - F) # s) ' l I f .so, prove i t ; i f not '

. ... give a r:outtterexantple.| / \ -tXZ/ p.o"* ttrat for every nfa with an arbitrary numbcr of final rtfates there is an

eqrrivalent nfa with only one final state. Can we make a siurilar claim for

clfh's'l ffi

Firrd an nfa without ,\-trarrsitirrns and with a single firral state that accepts

thc sct {a} u {b"' : n, > 1}. ffi

9J Let Z be a regular langrrage that does not contain,l. Show that thcre exists

arr rrfa without ,\-transitions and with a single final state that accepts I.

L0, Define a dta with multiple irritial states in an analogorrs way to thc correspond-

ing nfa in Flxercise 17, Section 2.2, f)oes there always exist au equivalerrt clfa

with a single initial state'l
t-l

t j Provc that all finite languagcs are regrtlar. ffi

i" @) Show that if /- is regular' so is IE'

+ 13. Give a sirnplc verbal descriptiot of thc la,nguage ar:r:epted by thc dfa in Figure

2.16. Use this to find another dfa, erpivaletrt to thc given one, but with fcwer

statreB.

#)
{a

\ 0

Chopter 2 FIuIrn Aurov.arm

w : at .a2o"3a�4, , . ,

e. t ten \w) : t t '2a4. . . .

{i+\ f,"t .L be any langrrage. f)efine euen (trr) as the string obtained by extracting
-

from tu the letters irt even-mrmbe.red positions; that is, if

then

Corresponding to this, we can definc a language

eaen(L) : leuer t (u . ,) : ' r r r e I) .

Provc that if Z is regular, so is euen (I), ffi

15. Frtrm a Ianguage .L we create a rre;w language chopL (l) by renxrvirtg the two'�efrmosr svmbors
ffiL;'Ti ; :TjTl',,, :,,

Show that if .L is regular then cft.op2 (tr) is also regulat. ffi

Reduct ion of the Number of $totes in
F in i te Automofo*

Any dfa defines a uniqrte la,nguage, but the colrvortte is not true. For a givcrr

language, there are rnany dfa's that accept it. Thcre may be a considerable
diflerence in the numlrer of states of such equivalertt inrtomata. In terms of

the questions we have corrsidered so far, all solutiorrs arc equally satisfactory,
but if the results a,re to be applicd in a practical settitrg, tht:re may be

reasolls fcrr preferring one over antlther.

The two dfa's depictcrl in Figure 2.17(a) and 2.17(b) are equivalent' a$ ir

fcw test strings will ctuickly reveal. We notice sottre obviottsly unnecessary
fcatrrres of Figure 2,17(a). The state q5 plays absolrrtelv no role in the

autornrrton since it can nevet tlt: retr,ched from the initial state q0. Such

a statt: is inaccessible, and it carr btr removed (along with tr.ll transitions

relalilg to it) without affec:ting the lrrrrguage accepted by the irrrtomaton.

But even aftcr the removal of q5, the first tlrttomatotr has sollre redlrndant
parts. The states rcachable subsequent to the Iirst move d(S0,0) rrrirror

those reachable frotn a first move d (So, 1). The secorrd eurtomaton cotnbines

these two options.
I

Figure 2.1?

2.4 RpnucuoN oF rnn NuunnR on Smrus IN FINITE Aurouare 63

From a strictly theoretica,l point of view, there is little reason for prefer-

rirrg the automaton in Figure 2.17(b) over that in Figure ?.17(a). However,
in terms of simplicitv, the second alternative is clearly preferable. Repre-
sentation of an automatorr for the purpose of computation requires space
proportional to the number of states. For storage efficiency, it is desirable
to reduce the number of stir,tes as far as possible. We now describe an
algorithm that accomplishes this.

rii-0-it iltlLfi i

Two states p and q of a dfa are called indistinguishable if

,5* (p, r) € F implies d. (9, ro) € f',

and

d* (p,u.') f f ' irnplies 6* (rt,u) f F,

lbr all tu € E*, If, on the othcr harrd, there exists some string u e E* such
that

d* (p, r) € F and 6* (q,ut) f F,

or vice vcrsa, then the states p and g are said to be distinguishable by a

slrrng ?{).

@

Chopter 2 Fu-rtre Auroneta

Clearly, two states are either indistinguishable or distinguishable. In-

distinguishability has the propertie$ of an equivalence relations: if p and q

are indistinguishable and if q and r are also indistirrguishable, then fro are
p and r, and all three states are indistinguishable.

One method for reducing the states of a dfa is ba^sed on finding and

combining indistinguishable states. We first describe a mothod for finding

pairs of distinguishable states,

procedure: mark

1, Remove all inaccessible states. This can be done by enumerating all

simple paths of the graph of the dfa starting at the initial state' Any

state not part of sonte path is inaccessible.

2. Consider all pairs of states (p,q). If p e F and q fr F or vice versa,

mark the pair (p, q) as distinguishable,

3. Repeat the following step until no previously unma,rked pairs are marked.

For a l l pa i rs (p,q) and a l l a e X, compute 5(:p,o) :po and 6(q,a) :

eo. If the pair (po,eo) is nmrked as distinguishable, mark (p,q) as

distinguishable.

We claim that this procedure constitutes an algorithm for marking all dis-

iinguishable pairs.

The procedure nlurlr. applied to any dfa M : (8, E, 6,q0, F), terminates

and determines all pairs of distinguishable states.

Proof: Obviously, the procedure terminates, since there are only a finite

number of pairs that can be marked. It is also easy to see that the states

of any pair so marked are distinguishable. The only claim that requires

elaboration is that the procedure fiuds all distinguishable pairs.

Note first that states q,; and qj are distinguishable with a string of length

ru, if and only if there are transitions

(2 .5)

(2 .6)

for some a € X, with q6 and g1 distinguishable by a string of length n - l-
We use this first to show that at the completion of the nth pass through the
loop in step 3, all states distinguishable by strings of length rz or less have
been marked. In step 2, we mark all pairs indistinguishable by .\, so we have
a basis with rz : 0 for an induction. We now a,ssume that the claim is trrte

and

6 (qr , ,a) : qn

6 (q i , o) : qu

2.4 RbDUCT'roN oF rsp Nulrnnn, op Srarns ru Frlrrrn Aurotrlnrn 65

for all i : 0, 1, ...1n - 1. By this inductive assumption, at the beginning of
the nth pass through the loop, all states distinguishable by strings of length
up to rl - 1 have been marked. Because of (2.5) and (2.6) above, at the end
of this pass, all states distinguishable by strings of length up to n will be
marked. By induction then, we can claim that, for any TL, at the completion
of the nth pass, all pairs distinguishable by strings of length rz or less have
been marked.

To show that this procedure marks all distinguishable states, assume
that the loop terminates afber rz pase. This means that during the nth
pass no new states were marked. Flom (2.5) and (2.6), it then follows that
there cannot be any states distirrguishable by a string of Iength rz, but not
distinguishable by any shorter string. But if there are no states distinguish-
able onlv by strings of length n, there cannot be any states distingrrishable
orrly by strings of length n * 1, and so on. As a consequence, whett the loop
terminates, all distinguishable ptrirs have been marked. r

After the marking algorithm has been executed, we use the results to
partit ion the state set Q of the dfa into disjoint subsets {qn,qj,...,Qr},
{qr,q^,'..rQn},'.., such that any (t E I occurs in exactly one of these
subsets, that elements in each subset are indistinguishable, and that any
two elements from different subsets are distinguishable. Using the results
sketched in Exercise 11 at the end of this section, it can be shown that such
a partitionirrg can always be found. Flom these subsets we construct the
minimal automaton by the next procedure.

procedurer reduce

Given

f r :
(8,E,d,q0,F), we construct a reduced dfa

as follows.

1 . Use procedure mark to lind all pairs of distinguishable states. Then
from this, find the sets of all indistinguishable states, say {ft, Qj,...,Qnl1,
{qr,q*r. '.tQn}, etc', as described above'

For each set {qa , Qj , ..., enl of such irrdistinguishable states, create a state
labeled i,j . . -h for M.

For each transition rule of M of ihe form

6 (q,,a) : qe,

find the sets to which q' Ttd qo belong. If q' € {U,ei,...,qr} and

Qp € {qt,Q*, ' . . ,8 ' } , add to d a rule

2 .

3.

T U , i ' " k , a) : I m . . . n .

66 Chopter 2 Fmrrn Aurorr,rnra

The initial state f11 is that state of M whose label includes the 0.

F ir th* set of all the states whose label contains i such that ga € F.

Consider the automaton depicted in Figure 2.18.
In step 2, the procedrre mark will iclentify distinguishable pairs (qo, g+),

(qr,qn), (qz,q+), and (g3,ga)' In some pass tlrrough the step 3 loop, the
procedure computes

,l (gr, 1) : q+

and

d (qu, 1) : gr .

Since (qs,g+) is a distinguishable pair, the pair (qo,qr) is also marked.
Continuing this way, the marking algorithm eventually marks the pairs
(qo,gt), (qo,qz), (qo,gt), (qo,q+), (qr,q+), kh,qn) and (qs,qa) as distinguish-
able, leaving the indistinguishable pairs (q1, qz), (h,q3) and (qr,m).There-
fore, the states q1,{2,n3 &r€ all indistinguishable, and all ofthe states have
been partitioned into the sets {So}, {qr, qz,qs} ancl {ga}. Applying steps 2
and 3 of the procedure reduce therr yields the dfa in Figure 2.19.

I

4 ,

o .

Figure 2.18

Figure 2.19

2.4 RpnucuoN oF rHn NuNaenR on Smrns IN FINTTE Auroraarn 67

Given any dfa M, application of the procedure reduce yields another dfa

fr such that

F\rthermore, M is minimal in the sense that there is no other dfa with a
smaller number of states which also accepts L(M).

Proof: There are two parts. The first is to show that the dfa created by
reduce is equivalent to the original dfa. This is relatively easy and we can
use inductive argument$ similar to those used in establishing the equivalence
of dfa's and nfa's. All we have to do is to show that d. (g;,Tr,) : qi if arrd

only if the label of F(ga,ur) is of the form...j.... We wil l leave this as an
exercise.

The second part, to show that M is minimal, is harder. Suppose M has
states {ps,pt,pz,...,Fm.l, withps the init ial state, Assume that there is art
equivalent dfa M1, with transition function d1 and initial state gn, equivalelt
to M, but with fewer states. Since there are no inaccessible states in M,
there must be distinct strings 'trr,'trz,...,wn srtch that

d " (p o , w t) : P t , i : 1 , 2 , . . . , m .

But since Mr has fewer states than fr, there must be at least two of these
strings, sa,/ ?116 and ur1, such that

di (qo, wn): d i (s0,1, , ,) .

Sincepl andp; are distinguishable, there must be some strin&z such that
d. (po, upr) : 6* (pn,z) is a final state, and d* (qn,.r*) : d* (pt'z) is a

nonfinal state (or vice versa), In other words, rurr is accepted by M and
rurr is not. But note that

di (so, tupn) : di (di (qo, wk) , n)
* dl (di (qo,ut) ,r)
: .li (qo, trrr) .

Thus, M1 either acceg$ both tlrz and ur;r or rejects both, contradicting
the assumption that M and M1 are equivalent. This contradiction proves
that M' cannot exist. I

L(M) : " (f r)

/-
,l

Chopter 2 FIullp Aulor,tn'r'e

1. Minirnize the rturrrber of states in the dfa in Figure 2.16,

(d
ltrrq

minimal dfa's for the larrguages below. In each case prove that the rcsult
rs mlnlmal,

(*) f I : { o " b " ' ' n } Z , m l l l

(b) r : { a "h : n> 0 } U {b ' a : n } 1 }

(c) I : {o"o : n , > 0, r l l3} f f i

(d) r : { a ^ : n t ' 2 a n d n + 4 1 .

3. Show that the automaton generated by prot:etlure re.du,ce is deterministic.

fr)
Virri*i"e the states in thc dfa depictecl itr the ftrllowing diagram.

f1/ Strow that if .L is a norrernPty langrrage ,such that any r.l in .L has length at
lea^st rz, then any dfa accepting -L rnust have at least n, f 1 states.

6. Prove or disprove the following conjecture. If M : (Q, X,,t, q6, F) is a' minimal

dfa for a regrrlar la,ngua,gc .L, then M : (Q,E,d,go,Q - f') is a minima,l dfa,
for Z. ffi

f Z) Sl.,* that inrlistinguishability is an equivaletrce relation but that rlistinguisha-
-

bilitv is not.

8. Show the explicit steps of thc suggested proof of the first part of Theorem

2,4, namely, that M is equivalent to the original dfa,

** g, Write a cornputer pr()grarn xhat produce.g a rninimal dfh for any given clfa.

10. Prove the fbllowirrg: If the states g* and qa are indistinguishable, and if q,,

and q., arc distinguishable, therr r71, arxl g,, mrtst be distinguishablc, ffi

ffi

2.4 RnnucrloN oI,' rxn Nuvel;R oF STATES IN F'INITE AUToMATA 69

11. Consider the following process, to be done after the corrrpletion of the pro-

cedure rnar,b. Start with some state, saY, {0. Put all states rrot marked

distinguishable from ge irrto an equivalerrce set with qcl. Then take another

state, not in the precedirrg equivalence set, and do the sarne thing' Repeat

until there are no more states aw,ilable. Then formalize this suggestion to

make it an algorithm, and prove that this algorithm does indeed partition

the original state set into equivalence sets.

R * g u l q r L q n g u q g e s
o n d R e g u l q r
Grtt m mq rs

ccording to our definition, a Ianguage is regular if there exists a finite
acce.pter for it. Therefore, every regular language can be described
by some dfa or some rrfa. Such a description can be very useful,
for exarnple, if wr: vrant to show the logic by which we decide if a

given string is in a certairt language. But in many instances, we need more
(roncise ways of desr:ribitrg regular languages. In this chapter, we Iook at
other ways of representinpJ regular languages. These representatiorrs have
important practical applications, a rnatter that is touched on in some of the
examples and exercises.

f f iM Regulor Expressions

One way of describing regJular languages is via the notation of regular
expressions. This notation involves a combination of strings of symbols
from some alphabet E, parentheses, and the operators *, ., and +. The
simplest case is the language {a}, which will be denotetl by the regular
expression a. Slightly rrrore complicated is the language {a, b, c}, for which,

71

72 Chopter 3 Reculan LANGUAcE$ nruD ReculAR GRAMMARS

usirrg the * to denote uttiott, we hirve the regular expression a+b+o We use
' for cont:eltenation aud + for star-closttre in a, similar way, The expression
(o,1-b. c)* sta.rrds frrr the star-closure of {a} U {bc}, that is, the language

{.\, a, bc, aa, ubr:, hco,, hcbc, aaa, a,abc,,,. },

Formol Definition of o Regulor Expression

We construct regulrrr expressions from prirnitive constituents by repeatedly
applying certain recursive rules. This is similar to the way we con$truct
f amiliar arithntetic erxpressions,

it$,q,firril.ii,g- rfltltil ,lr,ril

Let E he a, given alphabet. Then

#,.\, and n € X are all regular expresrtions. These are called prirnitive
regular expression$.

If 11 a.nd 12 are regular expressions, so are rt*rz,rt-rz, ri, and (r1).

A string is a regular expression if and only if it can be derived from the
primitive regular expressions by a firritc mrmber of applications of the
rules in (2).

(a + b ' c) ' . (c + o)

is a regular expression, since it is constructed by application of the above
rules. For example, if we take 11 = c and rz : fr, we find that c * fi
and (c * o) a"re also regular expressions. Repeating this, we eventually
generate the whole string. On the other hand, (a + b+) is not a regular
expression, since there is no way it carr be constructed from the primitive
rcgrrlar expressions,

I

l .

2.

3 .

3.1 R,nculan ExpRpssror-ls 7I

Longuoges Associoted with Regulor Expressions
Regular expressions can be used to describe some simple languages. If r is
a regula.r expression, we will let .L (r) denote the language associated with
r. This language is defined as follows:

The language tr (r) denoted by any regular expre$sion r is defined by the
following rules.

l. fi is a regular expression denoting the empty set,

2. .\ is a regular expre$sion denoting {A},

3. for every a € E, a is a regular expre$$ion denoting {a}.

If 11 and rz are regulax expressions, then

4. L (r1 r r2) -.L (rr) u L (rr),

5 . L (r r , r r) : L (r1) L (r2) ,

6 . I ((r 1)) : t r (r r) ,

7 . L (r f i : (I (r r)) - .

The last four rules of this definition are used to reduce I (r) to simpler
components recursively; the first three are the termination conditions for
this recursion. To see what language a given expression denotes, we apply
these rules repeatedly.

$*qmpfq 5,f, Exhibit the language L (a* . (a + b)) in set notation.

L (o * . (a + b)) : L (a *) L (a + b)
: (r (a))- (r (a) u r, (o))
: { t r , a , aaro,e,a) . . . } {o, b}

: {a, aa, e,ear , . , , b , ab, aab r , , , }

I

to*bK\"^"{

Chopter 3 Ruculnn Laucuecns aNo RBctiLA.n, GR.c\,I\,IaRS

There is otte problem with rules (a) to (7) in Definition 3.2. They define
a Ianguage precisely if 11 and r? are given, but there may be some amhri;Eu-
ity in breaking a complicated expression into parts. Consider, for example,
the regular expression a ' b + c. Wo can consider this as being made up of

rL :& 'b and r z : c . I n th i s ca$e , we f i nd t r (a ' b+ c) : { ab , c } . B r r t t he re
is nothing in Definition 3.2 to stop u$ from taking rt : a and 12 : b * c.
We now get a different result, L(a-b*c) : {ab,ac}. To overcome this,

we could require that all expressiolrs be fully parenthesized, but this gives
-* crrmbersome results. Instead, we use a convention familiar from mathemat-

ics artd programrning languages. We establish a set of precedence rules for
evaluation in which star-closure precedes concatenation and concatenation
precedes union. Also, the symbol for concatenation may be omitted, so we
can write r1r2 for rL .rz.

With a little practi<re, we can see quickly what language a particular

regular expression denotes.

Exomple 3.3 For E: {a,b}, the expression

r = (& + b) - (a + b b)

is regular. It denotes the Ianguage

L (r) : { a ,bb ,aa ,abb ,ba ,bbb , . . . } .

We can see this by considering the various parts of r. The first part, (a * b)*,
stands for any strirrg of a's and b's. The second part, (a * bb) represents
either an a or & double b. Consequently, -L (r) is the set of all strings on

{a,b}, terminated by either an a or a bb.
I

The expression

y : (aa)" (bb)- b

denotes the set of aII strings with an even number of a's followed by arr odd
number of b's; that is

L (r) : { a2 "b2*+ t : n } o , * > 0 } .

Goirrg from an informal description or set notation to a regular expression
tends to be a little harder.

I

ts.1 Rl;cur,nn FlxpREsSroN$

r H*Wnrple 3.S For X = {0, 1}, give a, regula,r expression r such that

L(r): {rrr e X* :ur ha,s a,t lea,st one pair of consequtive zeros},

One catt arrive at alt arrswer by relirsclrrirrg sorntlthing likc this: Evcry utring
in I (r) must conlaitr 00 somewhere, but what rxlrnc:s llc:frrrr: irnrl what gorrs
after is completely arbitrary. An arbitrary strirrg orr {0, 1} carr bc dr:rrotrxl
by (0 + 1).. Putting these observations together, we arrive at the solution

r . : (0 + l) . 00 (0 + l) .

r the la,'guage

1 : {tu € {0, 1}. : rl }rirs rro llair of rxrnser:rrtivo zeros} .

Even though this looks similar to Exanple 3.5, the answer is harder to
construct. One helpful observation is that whenever a 0 occurs, it rnust be

lg[g*-gg-"gi.,-ly H_Li.^ s uctr a subsrrirffi
by atr arbitrary nutrrber of 1's. This suggcsts thrr.t thr: irrrswcr irrvcllvr:s tlrrl
repetition of strings of the form l .' . 101 . . ' 1, that is, the language denoted
by the regula,r expression (I-ilI I+)". However, the a,nswer is still incornplete,
sirrcrr the utringu ending in 0 or c:onsisting of all l's a,re una,ccollnted f'or.
After takirrg care of these special cases we arrivc at thc arrswcr

7 : (r *011*) - (0 + A) + 1 - (0 + A) .

If we reasorr sliglrtly differently, we rniglrt corrrc up with arrother arrswer.
If we see .L as the repetition of the strings 1 arrd 01, the shorter expression

? ' : (1 + 0 1) - (0 + I)

rniglrt llu rua,t:Ircrl. Although tlrc two erxpressions krok rliflilront, both ir,rrswcrs
are corl'ect, as they denote the sarne language. Generally, lhere are an
r.rnlimited nunrber: of regula,r exlrressions for any given langua,ge.

Notc that this la,rrguagc is tlrc txlrnlllcmt:nt of thc languagc irr Exarnple
3.5. Howtlvtlr, tlrc rc:gtrlir,r cxllrcssiorrs ar(l rrot verv sirnililr irrrrl do ttot suggest
clearly l,he close relationship between the languages.

I

The last example introduces the notion of equivalence of regula,r ex-
pressions. We say the two regular expressions are equivalent if they denote
lhe same la,ngua,ge. One ca,n derive a variety of rules fbr simplifvirrg rtrgrrlirr

, D

I

76 Chopter 3 F,lculan. Lauc;uacns aNn R,ncuLeR GR.q.N'lN{,\}ts

expresuirlrrs (st:t: Exclrt:isc
have littkr rreed for such

18 irr the following exercise section), but since we
rnanipulations we will not pursr"te this.

1 .

,

(,4)

L s ,

t'ind a,ll strings in I ((a + t?)- b (a * ab)-) of lerrgth less tirart ftrur.

Does the expressiorr ((t) + 1) (0 + 1)-)- 00 (0 + 1)- denotc thc language in F)x-

arnple 3.5'l ffi

Show that r : (1 +01). (0 11.) also denotes the langrrage in Exarnple i1'6.

Find two other equivalent expressions.

Firxl a regular expressiotr fbr the set {a'b"' : ('rr *'rn) is even}.

Give regular e.xpressions for the following langrrages.

(a) I r : {1 t " l l " , r r } 4 , 'n t g 3 } , O

(b) , I , : {u, '"b" ' : Tr. < 4,rr l { i1},

(r:) The corrrplelnent of Ir, ffi

(rt) The trrrnlrlernetrt of -L2.

{o , b , c } .

(")

(l ')

(c l

(d)

* (")

@ Wfrot languages do thc cxprcssions (#.). ancl a# clcnote?

7, Give a sirlple verbal
/ \ q I / \ + \

LL \aLL) Dil, \(n,)) .

of t lre larrguage L((au)r b(aa)- +

8. Give a regtrlar expression fo, L", where .L is the larrguage in Exert:ise 1.

(9 i C i t * a rcgu la rcxprcss io t r fo r L : fanb^ : r t lL ,m,
j l ,n ' rn> 3] . $

fO,) tnir ' ra a, regula,r expressiol for I : {o,h"t.r . t :n,} i } , tu e {a,b}+}.

L1, Find a regular exptessiorr frrr the cornpletnent of the language in Example 3.4'

12. Find a regular expressiou for L: {uut : t , , w e {a,b}-, lol : ?}, f f i

13, Firxl a regular expressiorr for

f : Iu E {0, I}- : ur has exactly one pair of consecutive zeros}

,D Ctu" rcgular expressiotrs for the following languages on

all strirrgs .,.rrrt,rirrirrg exactly one a,

all strings corrtir,itritrg IIL) Illore than three a's,

all strings that contain at least ollc occurreltce of each symbol in

r , s
all str:ings that contain no run of a's of length greater than two,

all strings in whir:h all nrrrs of n's have lerrgths that are rrrultiples

of three.

IJ.1 R,EGULAR EXPRESSIONS

Write regular expressions for the ftrllowing languagcs on {0, 1}.

(a) all strings cnding in 01,

(b) all strings not entlirrg irr 01,

(c) all strings txrrttaining an even number of 0's, S

(rl) all strings having at least two ot.:curreltces of the substring 00
(Note that witlr the rrsrtal interpretation of a substring, 000 corr-

tains two such oct:trrrences).

(e) all strirrgs with at most two occurrences of the substring 00,

* (f) all strings not corrtainitrg the substring 101.

16J Find regular expressions for the following larrguages on {4,6}.

(u) / : : {ru : lur lrrrodS = 0} {f f i

(b) f : { t n : n o (t o) m o d 3 : 0 }

(c) L = {w : no(ur)mod5 > 0}

17. Repeat parts (a), (b), and (c) of Exercise 16, with 5 : {4, b, c}.

18. Determine whether or not the following clairns are true for all regular expres-

sions rr arxl rz. The svmbol : stands for e<luivalence of regular expressiotts
itr the scuse that both expressitltts denotc the same language.

(a) (r i) - : r i ,

(b) r i (r r * r :) * : (" + r ' r) * ,

(c) (r r * r r) . = (r i r f i) . , S

(d) (r r r r) - : r i r i .

L9. Givc a general method by wirich auy regular expressiort r can be changed into

f rsuch tha t (I (")) " : L (F) .

20. Prove rigorously that the cxpressions in Exarnple 3.6 do indeed rlenote the

specified larrguag;e.

21, For the case of a regular expression r that doelt rrot itrvolve ,\ or @, give a

set of necessary arrl sufficient couditions that r rrrust satisfy if L (r) is to be

infinite. S

22. Formal languages carr be used to dcscribe a variety of two-dimcnsional figures.

Chain-code languages are dcfinccl on the alphabet X = {u, d, r, l}, w}rere t}rese

symbols starxl for unit-lcngth straiglrt lines irr the dircctions up, tlrrwn, right,

arrd left, rcspectively. Arr exarnple o1 this notation is 'urdl, wirich stands for

the squarc with sides of urrit length, Draw pictures of the ligurcs denoted try

the expressions (r'd)-, (urrLdru,)-, alrd (ruldr')'.

23. In Exercise ?2, what are sullicicnt conditions orr the exprcssion so that the

picture is a r:losed cotrtour iu the sense that the beginning and erxling point

are the sarne? Are thcsc conditions also rrecessarv'l S

Tf

,'1i)

78 Chopter 3 Rnculen Laucuncns .+run Rr:crJr.nR GRAMMAR$

6+)i"a an nfa that accepts the larrguage L(o,a,- (a+b)).

CE)l'ina a regular expression that rlenotes all bit strings whose
terpreted as a binary integer, is greater than or equal to 40.

26, Find a regular expression for all bit strings, with leading bit
a binary irrteger, with values not bctween 10 and 30.

value, when in-

ffi
1, interpreted as

Connect ion Between Regulor Expressions qnd
Regu lor Longuoges

As the terrninologv srrggests, the connection betwct:rr r{rgrrlar languages and
regular expressions is ir close one. TIte two concepts artl e$sentia,lly the
satne; for every regular ler,nguage there is a regular exprcssion, and fbr every
regular expression there: is rr regular language. We will slmw this in two
parts.

Regulor Expressions Denole Regulor [onguoges
We first show that if r is a relgular expression, then .L (r) is a rcgular la,n-
gua,ge. Our definition says that ir. ler.ngua,ge is regular if it is accc:ptrrrl hy some
dfa. Bet:arrse of the equivalence of nfats ir,nd dfa's, a language is also regulirr
if it is rr,ccepted by some nfa. We rrow show that if we have arry rcgular
expressiorr rr 'we (:irn construct an nfa that arx:epts I (r). The constructiorr
for this relies orr the recursive definition for I (r). We first construct simple
automata for parts (1), (2), and (3) of Definition 3.2 on page 73, then show
how they can Lre corrrbirx:d to implement the rnore complir:a,ted parts (4),
(5) , and (7) .

Let r' bc ir regrtla,r expression. Tlten thrlre exists some nondeterrrrirristir:
finite accepter tlnt ir.{rcepts L (r). ConsequentlS I (r) is a regular language.

Proof: We begirr with automata thal, accept thc ltr,ngua,ges for the sirnple
regula,r expressiorrs o, .\, and fl, € E, I'hese are shown in Figure 3.1(a),
(b), and (c), respectivcly. Assrrme now that we havc irutomata, M(rr) and
M (rz) tha,t accept larrguagcs rlenoted by regular expressions 11 and 12,
rcsptx:tively. We neecl not explicitly r:onstruct these autornata, but may
represerrt tlx,.m sr:henra,tically, as in -Figurtt 3.2. In this schema, the graph
vertex at the lcft represents the initial state, thc one on the right the firral
state. In Exercise 7, Srxrtion 2.3 we claimed that frrr every nf'a there is an
cqrrivalent one with a sirrgkl fina,l state, so we lose rrothirrg in rr,ssuming that
tlxrrr: is only one final statc. With Jl,f (r1) and M (rr) rt:prcst,'nted in this
way, wo then construct autorrrata frlr the regular expressiorrs ,r.1 | 12, r1t s,
and rf. The constructions are showrr in Figures 3.3 to 3.5. As irrrlit:a,ted

3.2 CoNNEcttot'r BnrwpnN RncuLaR ExpREssIONs Arrrn RuculaR Latqcuecns 79

Figure 3.1

(a) rrfa accepts g.

(b) nfa accepts {tr},
(c) nfa accepts {a}.

Figure 3.2

Schematic

representation of an

nfa accepting Z (r).

(c)6)(e)

in the drawings, the initial and final states of tlte constituent machines lose
their status and are replaced try rrew initial and final states. By stringing
together several such steps, we call build automata for arbitrary complex
regular expres$ions.

It should be clear from the interpretation of the graphs in Figures 3.3
to 3.5 that this cotrstruction works. To argue more rigorously, we can give a
formal method for constructing the states and traruitions of the combined
machine from the states and transitions of the Jrarts, then prove by induction
on the number of operators that the construction yields an automaton that
accepts the language dettoted by any particula.r regular expression' We will
not belabor this point, as it is reasonably obvious that the results are always
correct. I

.L (r), where

, : (o+ bb)- (ba. + A) .

Figure 3.3
Automaton for
L(rt * rz).

M(r)
'/-_\.
t)
,_./,

80 Chopter 3 Rncul,c,n Ler-rcuacns ar'ro Rnculan Gn-q,rr,rrr,raRs

Automata for (a * bb) and (ba* * A), constructed directly from first princi-
ples, are given in Figure 3.6. Putting these together using the construction
in Theorem 3.l., we get the solution in Figure 3.7

I

Figure 3.4
Automaton for
L (rrr2)'

Figure 3.5
Automaton for
't (ri).

Figure S.0
(a) Mr accepts
L (a + bb).
(b) Mz accePts
f, (ba. {- tr).

Figute 3.7
Automaton accepts
.t ((a * bb).
(ba- + I)).

d M ,

r-\t fln ,-]**-/*\--,rV

(a)

! M z

b r /--\
1-J

6)

3.2 CollruncrroN Bnrwnnr-r Rncur,AR ExpRpssIols arul R.nculeR LANGUAGE$ 81

Regulor Expressions for Regulor Longuoges

It is intrritivt:ly reasonable that the rxtrrvurst: of Theoretn 3.L should hokl,

and thrr,t for clvtlry regular language, thero should exist a corresponding
regular exprussiort. Sitrce any regultr,r lir,nguagc: ltas an a"ssociated nfa a,nd
hence a transitiotr graph, all we neecl to rlcl is to lind a regula'r expresuitlrr
captr,hlc of getrerating the la,bels of all thc walks from q0 to anY fintr,l state.
This dot:s not Iook too clifficr.rlt brrt it is corttplicated by the existerx:c of
cycles thaL catr oftetr be travt:rsc:tl arbil,rarily, itr any order. This creates
a bookkeeping probklrn that rnusl be hanclled carrcfully. Tltere are several
ways to do this; one of the tnore intrdtivtt approaches requires a sidel trip

into what are called generalized transition graphs. Since this idtlir is

used h<":re in a limited way and plirys rro role in our further dist:trssiorr, we

will deal with it informally.
A getreralized transition graph is a transition graph whosc edges are-

lub*l t

sition graph. 'Ihe label of a,rry wrrlk from the initial sta,te to ir lirral state is

tfi---e concatenation of several regular expressions, and hent:tl itself a regular I

expression. The strings denoted by such regular exprtlssiotrs are a subset
of the language accepted by the generalized transition graph, with the full

languagc being the union of all srr<:h generated subsets.

Figure 3.8 represerrts a generalized transitiorr graph. The language acrxlpted
by it is L(o* + o* (o+b) c*), as should be clear ffom an inspet:t iorr of the
graph. The edge (qo, go) Iabeled n is a cycle that can genertrtc any trumber

of a's, that is, it represents L(o.). We could have labelad this edge a*
without changing the language accepted by the graph.

I

The graph of any nondeterministic finite accepter (:an be considered

a generalized transition graph if the edge labels are interpreted properly'

An edge labeled with a singlc symbol a is interpreted a^s an edge labeled
vritlr the expression a, while atr edge labeled with mrrltiple syrnbols a,b,...
is interpreted as an edge labeled with the expr()ssioll a f b * .,.. Flom
this observation, it follows that for everv regula'r latrguage, there exists a

Figure 3.8

e

) t

a ,

L j

,T
" \ J

Figure 3.9

Chopter 3 Rncur,en LANGUAGES aNo R.pctll,.cR GRAMMARS

generalized transition graph that accepts it. Conversely, every language

iccepted by a generalizecl transitiolr graph.is,reqular.. Siriffiiabel of

Tvery w-at[-In a genetralized transition graph is a regular expressi6n, this

appears to be an immediate consequence of Theorenr 3.1. However, there

are some subtleties in the argument; we will not pursue them here, but refer

the reader itrstead to Exercise 16, Section 4.3 for details.

t a i a , . 1 , a J 1

want to create an eqiiiVEittint'f6neralized transitiorr graph with one less state

by removing g. We can d0 this if we do not change the language denoted

by the set of labels that can be generated as we go from q0 to q.f . The

corntructiorr that achieves this is illustrated in Figure 3.9, where the state

q is to be removed a"rrd the edge labels &,b, ...stand for general expressions'

rhe casiae------fiiEteilETfie ntosfi'e"eiili" tlie sense' th@
to all three Yg$!c9! qiL+j,(l: Irr ca^res where an edge is missitrg in (a), wtr

ornit the corresponding edge in (b).

The construction in Figure 3.9 shows which edges have to be introduced

so that the language of the generalized transition graph does not change

when we remove q and all its incoming and outgoiilg edges. The complete

process requires that this be done for all pairs (qi,Si) in I - {q} before

removing q. Although we will not formally prove this, it can be shown that

the construction yields an equivalent generalized transition graph. Accept-

ing this, we are ready to show how any nfa can be associated with a regular

expression.

Let tr be a regula,r language. Then there exists a regular expreti$ion r such

that .L : L(r) .

Proof: Let M be arr nfa that accepts .L. We can assullle without any

loss of generality that M has only one flnal state and that q0 f F'. We

interpret the graph of.il4 as a generalized transition graph and apply the

above construction to it. To remove a vertex labeled q, we use the scheme

in Figure 3.9 for all pairs (qt,qi).After all the new edges have been added,

(a)

3.2 CoruuncrroN Bnrwporu Rnculnn ExpRpsslot-rs AND REGULAn L.c.Ncuncps 83

Figure 3.1{)
r4

rl
rr \ /{ /-------},f\

xcr)).-------'='-/ \+-J/

n
lt-,,r'*\,1-l.-

b b a , h

n n t l
){'--L-!, A

a9'--__-J-9-"--\?
o

,",

(rn (t-(rq +r-r r,rr '*)

q with all its incident edge$ can be removed. We continue this process,
removing one vertex after the other, until we reach the situation shown in
Figure 3.10. A regular expression that denotes the language accepted by
this graph is

r : rlr2 (r+ + rsrirz)- (3 1)

Since the $equence of generalized transition gra.phs a^re all equivalent to
the initial one, lve can prove by an induction on the number of states in
the generalized transition graph that the regular expression in (3.1) denotes
L . r

-

HxsmplC fl"S Consider the nfa in Figure 3.11(a). The corresponding generalized transition
graph after removal of state q1 is shown in Figure 3.11(b). Making the
identificatio[ln1 : b + a,b" a, rz : o,bb, TB * H, T4 - af b, we arrive at the
regular expression

r : (b a ab* a)* ab*b (a * b)*

for the original automaton. The construction involved in Theorem 3.2 is
tedious and tends to give very lengthy answers, but it is completely routine
and alwavs works.

I

Figure 3.11
b+abta a+b

0 l"t
F. ab*b A-{ r' }----11 r';1
\---'l \+J/

(b)

Chopter 3 Rnculan Laucuaces amo R.nculaR GRAMMARS

trnq'tmplu t.t n Firrd a regular expression for the language

Figure 3.12

Figure S.13

L-- {* e {rr.,b}. : ru,,(ur) is even and n6(ttr) is odd}.

An attempt ttt construct a regular expression directly from this description

lcacls to all kinds of difficulties. On the other hand, finding a nfa for it is

easy as long ir,s we rr$e vertex labeling effectively. We label the vertices with

EE to dcnotc zrrl e,ven number of rr,'s and b'E with O;Lto detrote an odd

,rFumber of a's anr-an ,:.re.n *t*ne"Iffia*nd * ott]With this we eaJilil

get the solFion in Figffe.3'fZ'
We can now apply the conversion to a regular expression in a nre<:hanictrl

way. First, v/e rcmove the state labeled oE, giving the generalized trarrsition

graph in Figure 3.13.
Next, we rerllove tlrc vertex labeled O0' This gives Figure 3.14'

Finally, we applv (3.1) with

rr: aa+ ab(bb). ba,
' r z : b + a b (b b) - a ,

\ r c : b * a (b b) * b a ,
I / " \ +
\ r + : d \ I t l) 0 , . . -

!---+---'

Figure 3.14

: i .2 colnpcjrrohr Bp'rwpEN RnculaR Expn,ESSroNS eur R.ncur.an LeNcuecns 85

b + a(blt).ba

EE e9
b + ab(bh)*a

+ ab(bb)rba

The final expression is lorrg irrxl corrrplicated, but the
tivcly straiglrtfbrward.

way to get it is rela.

I

Irr Exarnple 1.15 and in Exercise ls, Section 2.J., we explored the t:orrncx:ti6rr
bt'twenn finite accepters and sorne of the simpler constituents rif prr.rgratr-
rrtirrg larrgrrages, such as identiflers, or integers and real numher$. Tlxl rc-
lation bctweerr finite autorna[a and regular expressions mean$ thilt wc can
also use regular expressions irfJ rr wiry of describirrg these features. 'Ihis is
eas.y to see; firr examplc, thc sct of all acceptable Pascal integers is clefined
by the regular expression

Regulor Expressions for Describing Simple Pofierns

f')r'q'�
stl,d* ,

the UNIX opera-ting systenr reqg$ll?fl jlq jgl[t4;I*
iry"
Ll"t'x "t)

wherc.s staruls fcrr t lte sign, with possible values from {t,-,A}, ir,rxl r/
stands frlr the dicits 0 to L

Ptrsr:al irrtcgers are a sirnple case of what is sometimes clallccl a "pat-

$crtt," a terrn that refers to a set of objects having $ome common propcrtics,
g{t-T,,tf a1q5brrg ref'ers ttr
gories. Often, thc kcy to successful pattern nratching Ls fincling an effective
way to describe the pattertis. This is a cornplicir.tccl ancl exterrsive area of
computer scienut to which we calt only briefly allude, The example below
is a simplifitrd, but rrcvertheless instructive, dernonstration of how tho irluas
we ha,ve ta.lkNl attout stl far have been found useful in pattern mtr,tchirrg.

� r r i r " t t : l r i r rgoccurSintextec l i t ing.Al l textec l i tors
allow files to ht: st:arrrrcd for the occurrerlce of a given strin65; mclst rNlitors
c:xtt:rrd this to penrtit searching for patterns. For extr,mple, tlrrl eclitor ed in

86 Chopter 3 Rr;cur.en LANGUA,GI;s nNu llecuI,an GRAuneRs

as eln instruction to sea,rch the file for the flrst occurrence of the string ab,

followed by arr arbitritry ntrmbtlr tlf tz'tl, f'ollowed hy a c. We see from this

example tltat the UNIX editor can recogtrize regular expressions (although

it uses a sornewhat different convention for specifying regular expressions

than the one used here)'
A challenging task in suclt ar} applicatioil is to writc an effici<rrrt program

for rec:ognizing string patterns, Searching rr file for occurrellces of a givcn

string is a very simple progranming exercise, but lterc tlie situ.rtion is more

complica,tecl. We have to deal with an unlitnited rrurrrber of rrrbitrtr.rilv

rrlmplicatefl pa,tterns; furthertnore, the pattertrs are not fixed beforeharrd,

but created at mrr tirnc:. Tlxr pa,ttern description is part of the input, so

the recognition pt:ocess must be flexible. To solvc this probltrm, ideils from

arttoma'ta' theorv a,re often used.
If the pa,ttern is specified by a regular expression, the patterrr recxrgrri-

tion prqgram can take tltis description and cotlert it into arr cc|rivalerrt nfh,

lsing the constructiorr in Theorem 3,1, I'heoretn 2'2 rrray therr be ust:tl ttl

recluce this to a dfa. This clfa, in the fomr of a trtrnsition tatrltt, is eft'ectively

tltr pl,ttern-ma,tching a,lgorithrn. AII the progranllllel has to do is to proviclt)

a rlrive,r that gives the general framework for using the table' Irr this way

we carl autotnatically }tarrtlltl il lilrge number of patterns that are defined at

run titne.
Tlxl lffit:iunr:y of the progra,m must be considered also. Tlte constructiorr

of finite autorrrata I'rorn rtlgrrlar tlxpression$ using Theorems 2.1 and 3,1 tettds

to yielcl autorrrirta with rntrny states. If memory space is a problem, the state

reductiorr rrrethotl rlt:st:ribed in Section 2.4 is helpful. / T

l� llse the conrrtrrrction in 'l'heorem 3,1. to find an nfa that arcepts the language

L (ub'aa, I bln,* a,h).

2. Fiflcl aII rrfa t]rat accepts the complement of the language in Exercise 1,

@ Ciu* an nfa that accepts the larrguage L((a+ b)- b(o + bb)") ' f f i

[1)
Find clfa's that accept the Ibllowing larrguages.

(a) r (aa . "+-aba. t i .) f f i

(b) t (ab (a * ab). (a * aa))

(c) I ((obab)" * (aaa. f b).)

@) r (((aa .) . b) -)

3.2 cor'rNncrtor'r Bnrwnnrq R.nculnn Expnnssror-rs ehrr R.ncuLaR LANGUAGES

5. !'ind dfa's that accept the following languages,

L : L (.ab* a*) U I ((ab)- ba),

L : L (ab* a*) n r ((ab)- tu).

87

(a)

(b)

6 .

t .

Find an nfa for Exercise 15(f), section 8.1. use this to crerive a regular
etpression for that language,

Give explicit rules for the cons-truction suggested in Figure 3,g when various
edges in 3.9(a) are missing, ffi

-.,
f$,/Consider the following generalized transition graph.

(a) Find an "^equivalerrt gerreralized transition graph with only two
states. ffi

(b) What is the language accepted by this graph? W

".'--*
qLlwhat langr.rage is accepted by the following generalized transition graph?

a + b a + b '

a a b + t

Q0r)Find regular expressions for
tomata,

the languages accepted by the following au-

88 Chopter 3 Rlculan LANGLTAGES AND

(")

RECULAR Gnauuil,Rs

0

11, Rework Exarrrple i3.10, this tirrre elinrinating the state OO first'

(@ f itta a regular expressiorr for the following languages on {a'b}'

r4.

13 .

(u) I : {rrt : no (ru) and rr,6 (rrL) are trot}r everr}

(b) , : {tt : (n,,, $u) - nt, ('u)) mod it : 1}

(.) , : { t n : (n o (t n) - n ' 1 , (T a)) r n o d 3 l 0 }

(d) 1, : {ur : 2n* (u) + :3n6 (u.') is even}

!'ind a regular expression that generates the set of all strings of triplets defin-

ing correct binary addition as in Exercise 23, Section 2'l'

Prove that the constructions suggested by Figrrre 3.9 generate equivalent

generalized transition graphs.

Write a regrrlar expression for the tret of all Pa^scal real rrumbers'

Find a regular expression for Pa^.rcal lrets whose elementsr are integer mrmbers'

In sorrre applicatiOns, srrdr a-s Prograrrfr that cheCk spelliilg, we Inay rtot ileed

arr exact rrratch of t[e pattern, only a1 approxirnate otre. Once the notion

1 5 .

16 .

tT .

3,3 Rrcur.nrr, Gir,alrlr,q,ns 89

of an approximate matt:h has been madc precise, autornata theory can be
applied to corrstruct approximate patterrr rnatchers. As arr i llustratiorr of this,
consider patterrrs derivcd from the original orres by inscrtion of orre syrnbol.
Let 1, bc a, regular larrguage on }J and define

' i ,r tsert(L) *
{uau: a E X, utt € L} .

ln effer:t, i'rtsg'L(L) contains all the words crcated from tr by inserting; a
spuriorrn^ syrrrbol anywhere in a lvrrrtl.

* (a,) CJiverr an nfa for 1,, shr:w how orre can construct an nfa frrr rirr.serl (.L). ffi

**(b) LJiscuss how you might use this to write a pattern-recognitiorr
program for i,n,ser,t (tr), using a,s inprrt a regular expression for .L.

* 18. Aner'logous to the previous cxcrcise, corrsi<ler all words that can be forrnetl frorn
1, by dropping a single syurtrol tif the string, lbnnally rlefirre this operation
rlrop for lang;uagcs. Ctustnr<:t arr nla lbr droTt(L), given an nIa for .L.

Usc the conrrtnt:tion in Theorem 3.1 to find nfa's for L(aa) arxl -L(O*). Is
the result corrsistent with the defirrition of thesc la,nguages?

tffiffiffi Regulor Grqmmqrs

A third wa.y of describing regrrla,r lariguages is hy means clf certain simple
grer,mrniirs. Grarnmars a,re of'tr:il ail alternative way of specifying languages.
Whcrrrlver we define a, ltrrrguage family through irrr automaton or in sorncl
other way, we err() irrterested in knowing what kind of grammar we can
associate with tlrrl farnily, First, we look at grarrrmars that gurxlrate regular
Iangua,ges.

Right- qnd Left-Lineor Grqmmqrs

A grirrrtrnar G : (y,T,S,P) is said to be right-linear if a,ll prorluctions
are of the fbnn

wlrere A, B E V, a,nd l; E 7'+
prloduct,ions a,re of tlu: lirlrl

A -- rB,

A --+ it:,

A gra,rnrnilr is said

A - I1t:,

Lo be left-linear if all

90 Chopter 3 Reculln LeNcuacrs ann R,rc;trl,q,R GRAMMARS

or

A - t t ,

A regular gramfirar is tine tha,t is either righl-liilear or lcft-lirreirr.

Note that in a regular Hrirrnma,r, a,t nlost one varia[le appt)ilfs tl1 the

right sicle of any productiorr. f'\rrtheilnore, thet Erlablgjlxsl tllsistent'lv

bir either the rightrnost or leftmost sy"tbg]gi$Effi

..| �.NiN$Ns[liEihi.-"egramma,rGr:({s},{o,l,},S,Pr),withP1givenas

t ion.

S - rtbSla

is right-linear. The granunar G2 : ({S,5r, Sz} , {o, b} , S, fz), with produc-

ticlrrs

S - Stab,

Sr -r Srnbl5zo

'52 + ft''

is lcfb-linear. Both Gr and G2 are regula.r gramma,rs.

The stltpttntle:

S + a , h 9 + a h a b 9 + r t b a b a

is a clerivatiorr with Gr. Flom this single instance it is ea"sy to conjecture

that .L (G1) is thc lirrrguage clenoted by the regular exprtrssion r =. (ab)- a. In

a sinilar way, we tlirn $ee that L (G2) is the regular language I' (aab (ob).)'
I

' 5 - , 4 .

A - u.Bl.).,

B - A h .

is not rcgrrlrr,r. Although every production is either in right-linear or left-

Iinear fbrrn, the gra,mmar itself is neitlrt:r right-linear nor left-linear, and

,i.lti$[$, BI , {o,,t } , S', P) with producti''s

il.lJ Fl,ncul.q,n GnAr,IrueRs 9 l

tlrt:refore is not regular, The gramnlirr is *rr .x*r'ple of a linear
A litrear granrmar is a grammilr irr which at most, one iEliiElEorrr (xr(:rrr
on tne rlght $Idet rtf arry]1lp,4tletjo-L without restriction orr tht: llositiorr of*+-"-#. +':**-::-*:*
ttris varia,bte. cleir.rly, a,fcsular qratunalh_alwavslilear, tlrt rrot all linear
gl'aloqrar$ arre regqtal_

(Jrrr rrcxt goal will be to show tha,t regulrrr grarrrrnars are associa,tecl
with rcgulirr larrguages and that fbr every regulirr language there is a, regula,r
grirnrrrrirr. Thus, regular grammars a,re a,nothcr wrry of talking about regu)a,r
Iirrrgua,ges.

Right-Lineor Grommors Generote Regutqr longuoges
First, we show tlmi a language generir,tcd liy ri right-linear gra,rnmar is tr,lwir,ys
rtlgulil,r. To do so, we coustruct tr.n nfir that ruirnics the clerivations of a, riglrt-
lirrear grammar. Note that ther scntcrrtial forrns of a right-linea,r grirrnrrriir
lul'e the special fonn in whic:h thcrc is exactly one variable a,ncl it rir:<:1rs as
l,he rightmost symbol. Srrl4xlse now Lhat we have a, step in tr rlr:r.ivation

a b - . . c D + a . b ' . ' r d E ,

a,rriveri tr.t try usirrg a production D + rIE. The corresponding nftr <:rr.n
imitatc this step lry going from statc D to state E w]:err a, svmbol d is
r:nrxlurrtered. In this scheme, the stir.trl of the automaton corre$poncls tcl t|e
variable in the sententia,l ftrrm, whilc the part of the string a,lreacly pr'cessecl
is identical to the terminal prclix of the sentential form. This sirnple iclea is
the basis for the fbllewirrs theorem.

LeL G : (V,T,S, P) ht: * riglrt-lirrear grarnmar. Then tr (CJ) is a regular
ranguage.

Proof: We assume that V = {V0,y1,...}, that s: Vo, a,ncl t}ra,t wr: have
Jrrodrrctiorrs of the form Vs -i r)tvi1V - uzVj,,,,or V, -1 ,t)t,t... If .ro is
a stritrg in tr (G), then btx:inrstr of the lorm of the proclu:tiorrs in G, t]re
derivation must have thc fbrrrr

V o 1 u t V ,

1 tt'ttJ,tV.;

* _ _
4 I) 1 1) 2 - . . U p V 7 1

4 1111)2 ' ' " uk l J l = ' I t J . (3 .?)

rhe automaton to he t:orrstnrcted will reprocluce the rklrivation by ,,con-
suming" ea,ch of thtlstl u's irt turn. 'Ihe

initial stir,tc of the autornaton will

I

92 Chopter 3 Rncuren Lencuacns .lrun RpcuLRR GRAMMARS

btl labeled Vs, and for each variable Va there will be a nonfinal state labeled

Vl. For ea<'h production

f i - -+ a1a2" 'a*Vi ,

the automaton will have transitions to connect V.i and Vi that is, d will be

defined so that

d . (Yo , & raz ' ' ' a *) : V i '

For each prodrrction

V ' a t a z " ' f t r n t t

the corresponding transition of the automaton will be

6* (U, &t&2 " ' g , r) : Vy,

where V7 is a final statc. The intermediate states that are needed to do this

are of no concern and can be given arbitrary labels. The general scheme

is shown in Figure 3.15. Thc mrmplete automaton is a,ssetnbled from such

individual parts.
Suppose now that w e L (G) so that (3.2) is satisfied' In the nfa there

is, by construction, a path from V6 to V; labeled u1, e pa,th from V; to Vi

labeled u2, innd $o on, so that clearly

V1 € d* (H6,'u.r) ,

and tl is ar:cepted by M.
Corrversely, ir*uuume that trr is accepted by M. Because of the way in

which M wa,s constructed, to accept ur the automaton has to pass through a

seqqence of states Vo,Vr,.,. to y/, lr$ing paths labeled u1,a2, '... Therefore,

rr rmrst have the form

' u t = l t t \ 1 ' 2 " ' L l nU t

Reprcscnts V|+ a ra r... a^V.

(F A n ,)
\-_-/ \ -./

fl=-6
\J \7

Represents V;+ a rar... d*

3.3 RnculnR GnauueRs 93

Figure 3.16

and the derivation

V" + utV 4 u1u2Vi 3 up2. ' - unVn 4 u1u2. . . . t)7y, t)7

is possible. Hence ur is in I (G), irrrd the theorem is proved. I

to'that accepts the languagr: generated by the
grammar

V(t - aVt,

V - o,bVolb.

We start the transition gra,ph,with vertices Vo,Vt, and VJ. The first pro*
drrctiott rule creates an edge la,l,reled a betwecrr tr/s and trzr. Fbr the se<;ond
rule, we need to introdurxl att additionnl vertex so tha,t there is a path Ia-
beled ob between lt and Fo. Finally, we neecl to rrdd an edge labeled b
between Vr and Vy, giving the autornaton shown irr l'igure 3.16. The lan-
guage gerrerated bv the gramma,r ir,nd accepted hy the automaton is the
regular la;rguage L ((aab). ab).

I

Right-l-ineqr Grqmmqr$ for Regulor longuoges

To show that every regular langua,ge t:irrr be generattxl by some riglrt-linea,r
grammar, we start fronr the dfa fbr thc language ilnd reverse thc construc-
tion showrr in Theorem 3.3. The sta,tcs of the dfa now become the variahles
of the grarnmar, and the symbols causing the tra,rrsitions hetxlrne the termi-
nals in tlte productionu.

If .L is a regular language on the a,lphabet E, then there exists rr right-linear
gramrnar G : (V, t ,5 ,P) srrch that L: L(G).

g4 Chopter 3 Recul.+n LANculcEs AND REGULAn GnaltltaRs

Proof: Let M: (Q,t,d,qo,F) bc a, dfa that ac:r:epts,L' We assume that

Q : {qo,qr1. . . tqn} and E : {at ,az1. . .1am}. Conutruct the r ig l r t - l inear

grarunar G : (V, E, S, P) with

v = {qo ,Q t , " ' ,Q , r }

and ,5 : gu. For each tra,nsition

i l (q t ,o i) : qn

of M, we put irr P the produr:tion

qi + a.jqh. (3.3)

In addition, if 96 is in F, wc add to P thc productiott

{r --+ .\. (3'4)

We first sltow that G dcfined in this wir,v can gelrerate every strirtg in

,1,. Consider u € L of the fortrt

w : (] . i ,a j " 'ani l t ,

For &/ to acccpt this string it must make moves via

d (q o ' a t) : q o ,

6 (q, ai) : e,,

d (q" , an) : q t ,

6 (q r , a t) : q y e F '

By txrnstructiorr, the gralnllrar will have orttt productiort ftrr each of tlxrse

dts. Therefore we cirn make tltc derivatiotr

Qo I ut,ep 4 aiai4r I aiai " '(LnQt.

1 u, ; ,a , . i . ' 'akarq l 1 a ia i , ' ' (Ik&r , , (3.5)

with the granrlrlar (J, and u E L(G).

Conversely, 1f u e L (G), tht:n its derivation must havc the form (3'5).

But this implies tliat

ii* (qo, ataj ' ' ' apal) : Ql t

complcting the proof. r

3.3 It.[]cuLAn GRnnrnraRs 95

I'igure 3,17 s(so, o) = {sJ lo -d(t

E(qt,,) = {92} {t-Ett

E(q, b) = {qt} 9z -bg,

E(qy o) = {s} lt --aQJ

?.rEF 9t -L

For ther purpose of constructing a grammar, it is usefhl to note that the
restrictiorr that M be a. tlfa is uot essential to the proof of Theorem 3.4.
With minor modification, the sarne constnr(:tion can be used if M is an nf'a.

-
H$nuwtplo $', I $ Construct a right-linear gr&mmirr fot L (aab* a,). The transition firnction for

att ttfa', togcther with thc corresponding gramrrrar prodrrctions, is given in
Figure 3.17. The result was obtained by sirnply following the construction irr
Thtxrrern 3.4. The string aabcr, can bc clerived with the constructed grarrrrnar
bv

Qo 1 (rh) 0,aQ2 I aahq2 =+ aabaqs + aaba.

Equivolence Between Regulor Longuoges ond
Regulor Grommors
The previous two thrlclrerns esta,bliuli the connectit:rr between regular lan-
guagcs and right-lincirr grammars. One can make a simila,r connection be-
tween regular langrrages and left-linttar gramma,rs, thereby showirrg the com-
plete txlrivalence of rcgular gr&mmirrs and regular languages.

A lanSirrage tr is regrrlar if and only if there exists a left-linear ggammar G
such tha t L : L (G) .

Proof; We orrly outline the main idea. Given any left-Iirrear grammar with
productiorrs of the fbrm

A --+ Bu,

A + r j ,

I

Chopter 3 Recrrlan Lnuclul,cus ANtl RH(IuLAR GnRunlns

we r:onstruct from it a right-linear grammar G try repla,cilg every suc:h

prodrrction of G with

A - u R B ,

1{ _ + t.t&,

respectively. A few examples will ma,ke it clear quicklv that ,L (G) :
/ / ^ \ \ R

(, (")) . Next, we use Exercise 12, Section 2.3, which tells us that the rc-

verse of any regular larrgrage is also regular. Since d is right-lirrcrrt, /, (d)

is regular. But then so are.L ((d))R, 'nd,L(G)' r

Prrtting Theorems 3.4 and 3.5 together, wc a.uive a,t the equivalence of

regular larrguages and regular grarnmars.

A Ianguage -L is regular if and orrly if there exists a regrrlar grammar G suc:h

tha t L : L (G) .

We now have several ways of describirrg regular languages: dfa's, nfa's,

regular expressions, and regqlar gra,mmars' While in sorne irrstarxle one or

the other of these may be most suitable, they are all cqually powerful' They

all give a complete and unambiguous definition of a regular langnage' TIle

connection between all tlrcse concepts is established by the four theorems

il this c:hapter, as sltowrr in Figure 3.18.

Figure 3.18 Regular er<pressions

3.1 Th

dfa or nfa

3.3

Regular Brammars

Theorem eorem 3.2

Theorem Theorem 3.4

ll.3 Rncure,n. GRerr,rrunRs 97

1. Construct a dfa that accepts the language generated by the grammar

S - abA,

A + baB,

fi + u.Albb.

2. Find a regular Blarnmar that generates the language L(aa* (ab + a)-).

S. Constnrct a left-linear grarnrnar for the larrguage in Exercise 1,

t
Lj,) Corrstruct right- antl left-lincar grarrlrrrars for the larrguagc

L : {a t th " ' : r r , } 2 , rn > B} . f f i

5, Construct a riglrt-linear grailrrrrar lbr the langrrage L((aah.ab).).
', (O f itta a regular grarrrrnar that generates the language on E : {r.r,, b} consisting'

of all strings wittr no more than three a's.

7. In Theorem 3,5, prove that l, (e) : (f (G))8. W

1 G Suggest a construction by whicJr a left-linear grammar can be obtairrecl from
an nfa directly.

9. Find a left-lirrear grammar f<rr thc language in Exereise 5.

1 @ l-inrl a regular grailrrrrar for the larrguagc L -
{a"lt"' t n I mis even}, S

11. F'ind a regular gramrnar that generates the language

L = {w € {rr., b}- t n" (w) * 3rr.6 (ur) is even} .

(t
G Find regular grammals for the following languages on {a, b}.

(e) L : {ut : no (u) and nr, (zrr) arc both even} ffi

(b) , : {w : (no (w) - no (to)) mod 3 : 1}
'

(c) I -
{w : (n* (ur) - ru6 (,rrr)) mod:l I 0}

(d) , : { tn : lno (u r) - 116 (t r) l i s odd} .

\\ (l$y'Show that for every regular language not containing.\ there exists a right-
v linear grammar whose productions are restricted to the forms

A - a B

w h e r e A , B e V a r d a e T

A + t L ,

98 Chopter 3 Rnculen Leucuac+ps aFIIr Rnculan Gn.q'r'tM.cn,s

{r+} Sho* that any regular grarrrlrrar G for which L (G) + g must havc at least
\--'l one procluctiorr of the form

4 + r .

where A e V and r ET* .

15. Find a regrrlar gramlnar that generates the set of all Pa"scal real numbers.

(rc .) fe t G1 = (Vr ,E ,5r ,Pr) be r igh t - l inear and Gr = (Vr ,X ,Sr ,P?) be a le f t
V lin*u. grammar, atttl a^ssume that Vr and l/z are disjoint. Consitler the linear

g r a r n m a r G : ({ S } U y r U y z , t ' . 9 , P) , w h e r e . 9 i s n o t i n V t J V z a n d P :

{5 * SrlSz} u Pr u Pz, Show that -L (G) is regular. $l#

Proper t ies o f
R e g u l q r [q n g u q g e s

e have defincd rergular languages, studied $om(] wirys irr which they
c:arr tre represented, and have $een ir f'cw rlxirrnples of their usefillness.
We now raise the qrrcstirlrr of how general regula,r la,ngrralgcs arc.
Could it be thnt cvt:rv forrral language is regula,r'/ Rrrhaps irrry

set we can specify c:a,n llct acx:eptecl by some, albeit velry txlrnplex, finile
automaton. As we wiII scc shortl.y, l,he atrswer to this r:rirrjrx:ture is cleliniLely
no, But to understarxl why this is so, we rnust inqrrirc rnrlrtl cleeply into the
nature of rcgulirr larrguages ancl see what propt:rtics the whole fa,rnilv ha,s.

Thc fir'st que.stion we raise is wha,t ha,Jrpr:ns when we perforrn operations
on regular latrguages. The opera,tiriris wcr corrsider are sirnple set opuratiorrs,
such as concatena,tion, ns wc:ll as operations in whir:h etr.ch string of a lan-
guage is chrrngrxl, a,s frrr inslance in ltlxercise 22, St:c:tiorr 2.1. Is the result-
ing langua,ge still rtrgular? We refer to this a,s ir, closure question, Closure
propertios, tlltlxrtrgh tnostly of theoretica,l intorcst, ireltrl us in discrirnila,ting
hetween thc various language fa,milies we will crrt:ounter.

A srx:orrtl set of questions a,bout ltrngrra,gc: frrrnilies deals with our ability
to tltx:ide on certain properties. Frrr r:xirnple, cari we lell whether a lirrguage

99

Chopter 4 Pnorenrrns on RrculAR LANGUAGES

is finitc or not? As we will see, such qttestions are easily tr,nuwered fbr regular
Ianguages, brrt are not as easily answered for other larrgua,ge families.

Finallv we consider the important question: How can we tell whether
a given language is regular or not? If the language is irr fa<:t regrrlar, we

can always show it by giving some dfa, regular expressittn, or regular gram-

mar for it. But if it is not, we need another line of attack. Ont: waY to

show a language is not rcgultr,r is to study the geueral properties of rcgrrlirr
Ianguagtrs, that is, characteristics that are sharcd bv a,Il regular languages.
If we know of some such property, attd if we can show that the candidate
languagc rloes not have it, then we catr tell that thc larlguage is not regular.

Irr this chapter, we look at a variety of propt:rtieu of regular languages'
These properticu tell rrs a, great deal about what regular languages can and
canrrot do. Later, when we look at the same quttstions fbr other language
families, similarities and differences in these propcrtics will allow us to con-
trast the various language families.

Closure Propert ies of Regulor Longuoges

Oonsider the following questiorr: Given two regular languages -L1 atrd -L2, is

their union also regular? In spec:ifit: instances, the auswer may be obviotrs,

but here we want to addrcss thc problem in general. Is it true for all rt:gular
trr and Lz7 It turns out that the arlswur is yes, a fact we express by saying
that the family of regular langtragcs is closed under union. We catr ask

similar qucstion$ about other types of operationu on languages; this leads
us to tlte study of the closure properties of larrguages in general.

Closure properties of variorrs language farnilies utrder differcrrt opera-
tions are of considerable theoretical interrest. At first sight, it may rrot bc

clear what practica,l significance these propcrtieu have. Admittedly, sotne of

Lhenr havr: vt:ry little, but many results are useful. By giving us insight iulo
the general nirture of language families, clostrrc properties help us answer
other, more prac:tic;ill qrrestions. We will see ittstances of this (Theorem 4.7

and Example 4.f3) lir,ter in this chapter.

Closure under $imple Set Operotions

We begin by looking at ther closrtre of regular lattguages urrder thc (:ommon

set operations, such as ttnion and irrtersection.

If L1 and.Lz are regular l iulgtrages, then so are -L1 U L2, L1 -tL2, L1L2,fi
arrd.Li. We say that Lhe farrfly of regular languages is closed ullder ulri()rl,
irrtersection, concatenatioll, cornplcmentation, a'ttd star-closure.

Proof: If .Lr and L2 tne regular, then tltere exist regula,r expressions rr a,nd
12 such that,Ll : L(rt) and tr2 : L(rz)'By defi l i t i t lr l , r l *?'2' ?"1 ?'2' f l ' I ld

,1.1 CLosuRE PRoPIIR:I'IEs orr Rncur,nR LANGUAcEs 101

ri are regular exprtlssiotts denoting thc latrguages tr1 U L2, L1L2, and -Lit

respectively. Thrrs, closure unrler trrrioll, conca,tena,tiotr, and star-clttsrrre is

inmedia,te.
To show c:losure under rcrnlllerneutation, k:t, M : (8, X,,)' 96, i-) be a

dfa that accepts tr1. 'Ihen ther tlfrr,

M : (Q ,X , d , (0 , Q - F)

accepls Zr. fnis is rather strariglrtforwa,r'd; we havc already slggcstcrd Lhe

result irr Exercise 4 in Scrtion 2.1. Noter tltat in the defirritiotr of a' dftr.,

we a,ssrrrnecl d* to be n total function, so that d* (qu,rrr) is deliled fbr all

tr € E*. Cotrsequently eitlrt:r d* (qo, u) is a final state, in which case ru € tr,

or t) * (q6, 'u) e Q- F and w e L.
Dcrnonstrating cllosure under intel$t:ction takes a little tnore work. Let

L t : L (M1) anc l Lz : L (M2) , wh t r r c M t : (Q ,x ' , I r , { o ,F r) and Mz :

(P,X,dz,Po,.F2) are clf ir, 's' We constnrr:t from Ml a,nrl M2 a combintlt l au-

tomatrr r r L4 : (A, f , f , (go,pn) ,F) , whose state set 8: e x P consists
\ - ' /

of lrairs (q.i,:lrj), atrd whosc trarrsiliou functiorr d is such thnt M is itr state

(q,,f,.) whenever M1 is in sta'te qi a,rrd M2 is iu stir,tc Pi' Ihis is:rt:hieved

by taking

f ((qo ,pr) ,a) : (t r * , ,p t) ,

d1 (q1, a) : {r

dz (Pl n,) : P'

F is clefitrecl as the set of nll (,Jo,pti), such thirt Qr e Ft a,rrd pi € Fz. Thcrr

it is-r, sitrple matter to show Lha,t ur E tr1 f'l ,1,2 if a,nd orrly if it is arx:cptecl

by M. Consequently, trr fl 12 is regrrlirr. I

The proof of t:losure under irrtt:rsection is a gtlod exampltl tlf a coustruc:-

tive proof. Not orrly does it t:stablish the dcsircd result, but it also shows

explicitly how to construct ir, finile acceptt,'r for lhe intelrscctiou of two rc:g-

ula,r la,rrguages. ConsJtructive pr:oofs tlt:cur throughout this book; thcy are

irnpurtirtrt because tlx:y give 1rs iniriglrt into the rrlsrtlts and ofttlrt serve a"s

thtr strrrting point fix practica,l tr,lgtlrithms. Hert:, as itr tnany c:ases, there

4rr: sfiorter but nttrrt:ottstructive (tlr al least nrtt so obviously r:onstructive)

argurrtettts, For tlosure uuder irrtrlrsection, we start witlr DeMorgan's la,w,

Erpation (1.3), ta,king the complcrnetrt of hoth sicles. Then

whencvcr

a,nd

L 1) L 2 : L t l L z

Chopier 4 Pnopnnrrns ol R.Bc(rr-AR Larqcuecps

for any languages -Lr and tr2. Now, if tr1 and L2 are regular, then by closure
under complementation, so are Z1 and -L2. Using closure under union, we
next get that Z1 UL is regular. Using closure under complementation once
more, we see that

f f i t : L t t t Lz

is regular.
The following example is a variation orr the same idea.

Wowtha t the fam i l yo f regu Ia r l anguages i sc losedunde rd i f f e rence ' I n
other words, we wallt to show that if .L1 and .L2 are regular, then L1 - L2
is necessarily regular also.

The needed set, identity is immediately obvious from the definition of a
set difference. namely

L r - L z : L r f \ L z .

The fact that ,Lz is regular implies that Ia is also regular. Then, because
of the closure of ragular languages rrnder intersection, we know that tr1 rf 12
is regular, and the argument is complete.

I

A variety of other closure properties can be derived directly by elemen*
tary arguments.

The family of regula.r languages is closed under reversal.

Proof: The proof of this theorem wa^s suggested as an exercise in Section
2.3. Here are the details. Suppose that .L is a regular language. We then
construct arr nfa with a single final state for it. By Exercise 7, Section
2.3, this is always possible. In the transition graph for this nfa we make
tha initial vertex a final vertex, the final vertex the initial vertex, and re-
verse the directiorr on all the edges. It is a fairly straightforward matter
to show that the modified nfa accepts ruE if and only if the original nfa
accepts u. Therefore, the modified nfa accepts .Lft, proving closure under
reversaJ. t

4.1 CI,osuRr.: Pn,opnnrrns or R,tcuu,R LAN(+rrAGEs 103

Closure under Other Operotions
In acldition to the standarcl operations on la,nguarges, orre ca,rl dclirre other
operatiorrs atrd investigatc closure propertics for thenr. Thr:re are ma,ny srrr:h
results; we select only two typical ones. Others are explored in the exrlrc:ises
at tht: crrd of this sectitxr.

lil$fin�irt.�lt'l't:|"ll#1 ' 1i',,

Supposc X and I a,re alphabels. Then a, function

h : } j - f *

is tr,llcld a homomorphism. In words, a hornomrlrphism is a, substitution
in which a single lettcr is repla,ced with a string. Tlrc dourain of tlrtr function
h is c:xtended to strings in a,n obvious fashion; if

1 r .) : u L a z ' . . Q r o ,

thcrr

h, (ut) : h, (a1) h (az) .. . h (a.) .

lf tr is a, la,nguage on X, tlrcrt its homomorphic image is defined a,u

h (L) : { h (r) t w E L } .

Sxsnple 4,1 Let X: {o, ,b} and f : {a,b,c} arrd def ine h by

h ' (u) : 1 , 6 ,

h , (h) : bbc .

Tlren h, (n,ba) : abbhca,h. Tlte homomorpltic ima,ge
Ianguagc h (L) : laha,b, abbbcabl.

If we have a regular exprt:ssion r
prrrssion lctr h(L) carr Lre obtnirrcd by
to each E syrrrbol of r.

for n latrguage I, tlten a, regular ex-
simply applyirrg the homomrirphism

of L : {aa, aba} is the

I

104 Chopter 4 Pnornnuns op R,uctrt .AR LAN6SAGES

W,ke E: {a,b} ' , r rr t t : {b,c,d}. Def irxr h hv

h (a) : 4 6 " " '

h (b) : 6,1,,'.

If f. is the regular latrgttage denoted by

then

r = (e * b.) (aa) . ,

11: (t lbtc + (bdc)-) (d,bcctlbt:c)*

rlenotes the regulirr lernguage h (L).

The generrrl result on the closure of regular languirges under any horrxl-

morphistn folklws f'rom this exarnplc in an obvious lrlanner.

Let /r, be a, holrorrtorllhism. If -L is a regular la,nguage, tlten its homomorphic
irna,gc ft,(I,) is also rtlgular. The fanrily ttf regula,r latrguages is therefore

closed rrrrrlt:r atbitrar.y }tottrorrurrphisms.

Proof: Let ,1, trt: a. regular languag<l denoted by sonre regular expressioll

r. We fincl h(r) by substituting h,(a) for each sytnbol o € E of r. It r:an
be shown directly by an appeal to the definition of a regula'r expressiorr

that the result is rr regular expression. It is equally ea^sy to see that thc
rcsrilting expressiorr denotes h (r). All we need to do is to show that for
()very ru e L (r'), thc txrrresponding h (rr') is in L (h (r)) arrd conversely that
for every u in L (h,(")) t lterc is it ttt i tt .L, such that u : h(w).Leaving the
details as an exert:ise, we claitn that h (tr) is regular. I

l|iM

Let L1a,nd L2 be latrgurrgcs on the sarne alphir,bet. Then the right quotient

of tr1 with trz is cleflled rrs

L t / L z - { r : r y € . L 1 f o r s o m e y € t r 2 } (4 1)

To form thr: right quotietrl of -L1 with /12, w€ t,akc ir,ll the strings in.L1 tha,t
have a sufrx bclonging to tr2. .Evcry such striug, af'tcr removal of this sullix,
trelongs to L1f L2.

I

4.1 Clostlns Fn,opnRTrns ol' R,l:cjulan LANCUAGFT$ 105

-
Hr+r{rtrplo s'4 If

L1 : {a"b" ' : n } 1 , rn > 0} U {ba,}

thcln

L2 : {l|!I : m, } 1} ,

l,t I L2 : {att6"' ; rz } I, ?n, > 0} .

The strings itt .L2 consist of orre or rrlore b's. lllhrlrt:fore, we arrive at the
answer try rcrnoving one or rtrore b's from those strings in .L1 tha,t tr:rrrrinate
with at least one l) as a sulfix.

Note tha,t hcre L1, Lp, and Lt/Lz ale all reE;ular. This suggesto- that
the right quotient of any two regular la,nguages is also regular. We will
prove this itr lhe next theorem by a, constnr:tion that takes the dfa's for
L1 ir.rrrl .L2 altd constnrcts from them a, tlfa for Lt/Lz.Bt:ftrre we describc
the r:onstnrction in firll, lct us see how it a.pplies to this exer,rnple. We start
with a, dfir for l1i sa/ thr: automaton Mt : (Q,X,6,qu,F) irr l ' igure 4.1.
Since iln inrtotttaton for L1f L2 urust accept ir.ny prefix of strings in,L1, we
will trv to rrtodify M1 s{r that it accepts z if there is any y satisfying (4,1).

Figure 4.1

and

Figure 4.2

Chopter 4 PRopeRuEs or.' R.Bcur,nn, Lnrlcue,cps

The dififrculty comes in finding whettrur there is some g such that ty E L1
nnd 37 € L2. To solvc it, we determille, f<rr ca<:h q € 8, whether there is a,
walk to a final sta,te labeled u sur:h tha,t u € Lz, If this is $o, anY r such
that d(q6,2) : q will be in L1f L2. We modify the automaton a,ccordingly
to make t7 a finnl sta,te.

To apply this to our present ca^se, we check each state qq, Q1-, Qz, Qt, Q+,
qb to see whether there is a walk labeled bh* to any of the q1, 92, or 94. We
see that otrly 91 and 92 qualify; eo, Q3, 94 do not. The resulting automaton
for L1f L2 is shown in Figure 4.2. Check it to see that the construction
works. The idea is gerreralized in the next theorem

I

If L1 and L2 axe regular lauguages, tfu:n L1f L2 is also regular. We say that
the family of regular languages is closed under right quotient with a regular
la,nguage.

Proof: Let Lt : L (M),where M : (8,8,,5,q0,F.) is a dfa. We constnrct

ir,nother rfia fr : (A,X,li,qo,F) u. follows. For each et. € Q, determine if

there exists a y €. L2 such that

d* (qo, y) : q1 € F.

This carr be done bv looking at dfa's M; = (Q,X,d,{i,F). The arrtomaton
Mi is M with the irritial state q0 replaced by gi. We now determirre whether

4,1 Closunr: Pnopr:t{rlr:s or RucuLA.R L.c.I-tcuacns 107

there exists a E in L(Mt) that is a,irto in -L2. Frrr this, we can use the
construction fbr the interscctiorr of tvro regular languages given in Theorem
4.1, finding the transition graph for L2-tL (M1). lf there is any path between
its initirrl verttrx arrrl any final vertex, then .L2 a L (M) is not empty. In

tlrat case, acld qi to F. Repea,ting this f'or every et, E Q, we determitre F
and thereby construct M.

To lrrove that "L (fr) : Lr/Lz, let r be arry elemetrt of L1f L2. Then' \ / ' '

there must be a, g € L2 such that rg e trr. This implies that

d* (qo, ry) e F,

so that there rnust be some q € Q such that

d. (gu, r) : q

alnd

d* (g,g) e F' .

Therefore, by construction, q € F, and fraccepts u because d* (go,z) is in
F .

Converscly, for any r accepted by M, we have

d * (q u , r) : q e F .

Rut again by rxrnstructiotr, this implies that there exists a 37 € tr2 suclt
tha,t d* (q,'a) e F. Therefore r3t is in L1, and r is in LtlLz.We therefore
corrclude that

and fiom this that LtlLz is regular. t

L t : L (a * b a t t *) ,

L z : L (a b *) '

We first find a dfa tha,t trt:cepts tr1. This is easy, and a solution is given in
Figure 4.3. The examplc is sitttple etrough so that we can skip the formalities
of the r:onstrrrction. Flom the graph in Figure 4.3 it is quite evident that

L (M o)) L 2 : s ,

L (Mt) . Lz : {o } ,1 s ,

L (M z) . L z : { o } # a ,

L (M : t) i L 2 : s .

, (f r) : L t tLz ,

Figure 4.3

Chopter 4 PRopnnrrEs oF REGuLAR LANGUAGES

Therefore, the automaton acceptin1 LtlLz is determined. The result iq

shown in Figure 4.4. It accepts the language denoted by the regular ex-
pression of a*b* a,*batt*, which can be simplified to a*ba*. Thh:us L1f L2:

L(a"ba") .
I

Figule 4.4

\s'

4.1 Cr,osuRE PRopERTTEs or Recur,eR LANcuAcEs l0g

1. Fill in the details of the constructive proof of closure under intersection in
Theorem 4.1,

2. Use the construction in Theorem 4.1 to find nfa's that accept

(a) r ((a + b) a.) n.L (baa.), ff i

(b) L (ab. a.) n L (a* b" a).

s. In Example 4.1 we showed closure under difference for regular languages,
but the proof was nonconstructive. Provide a constructive argument for this
result.

4. In the proof of Theorem 4.3, show that h (r) is a regula.r expression. Then
show that h (r) denotes h (I).

show that the family of regular languages is closed under finite union and
intersection, that is, if L1,L2,...,.L, a,re regular, then

L u = U L t
; : 1 1 , e , . . . , n)

and

L t : n L e
d : { 1 , 2 , . . . , n }

are a"lso regular.

6. The symmetric difference of two sets Sr and Sz is defined a,$

Sr $,Sz = {n t n E ,Sr or fr € 52, but,r is not in both .5r and Se},

show that the family of regular languages is closed under symmetdc differ-
ence,

7, The nor of two languages is

nor (L7, L2) : {w : w {, L1 and w f L2} .

show that the family of regula,r languages is closed under the nor operation.

ffi
8' Denne rhe compremenrffjTl,T':;1."::.-",

J",,
Show that the family of regular languages is closed under the cor operation.

,. /- l r-b
(g/Whi"tt of the following are true for all regular languages and all homomor-

phisms?

(a) h(hu r , .z) : h(Lr) u h(L{ * fv-*

(b) h (21 r-r .L2) = h(Lr) nh(Lz) . F,r ls.

(c) h(LrL2) : h(L1)h(L) l r . - . - * r

110

4i l l I L , , ,n / / , (rq . .

Chopter 4 PRopuwrttrs oF REouLaR Lat'Icuacns

./.\
\ f to)t" t Lt : L(o,*haa*) and.Lr : L(abo'-) . Firx l L1f L2.

, ' 7 . - - 'R

\O ., fojjEhow that L t : LrLzlL:r is not true ftrr all languages I't and Lz'

"
"

{fi\ SuDDose we krrow that .Lr U .Lz is regula,r and that -L' is finite. Can wc
\\ U "on"tuae frotn this that Lz is regula.r'l ffi

13. If I/ is a regrrlar language' prove that L1 : {ua : u, E L,lul : Z} is also regular'

14. If tr is a regular language, prove that the langrtage {uu : u E L,u E Zr} is

also regular. W

t\ F)
The left quotient of a language -Lr with respect to 1,2 is definecl as

LzlLl : {g : r € L7, 'r11 F- L1], '

show that the farnily of regular languages is closed under the left quoticut

with a regular language.

Show that, if the statement "If 'Lt is regular n'rrtl trr utrz is also regular' then

^Lr must be regular" were true for all .Lr and .L2, thefl all languages would be

regular, Wffi

Theto,il of a laflgrrage is defined as thc set of all suftixes of its strings, that is

tu,i,t (L) : {y : ny € -L for some r € t- } .

Show that if .L is regula,r, so is toal (l).

The head, of a language is the set of all prcfixes of its strirrgs, that is,

h.eo.tl(L) - {n : ny e L for solne gr € t.} .

Show that the family of regula,r languages is closed under this operation.

ffi
Defirte an operation thi,rd on strings arrtl languages as

th i rd (anzo" ta4a! , t t (; ' ' ') : asaa ' ' '

with the appropriate extension of this defiflitiorr to languages. Prove the

closure of the family of regular larrguages under this operatiotr.

Forasrring(rrtrz...^,:::,;nt,:,,:TT:Trutr,:,

Flom this, we can define the operation on a language as

shift(L): {u: 'u : sl i , f t(ru) for some trr € .L}.

Show that regrrlaritv is preserved utder the.shilt operation.

16 .

L7.

1 8 .

19 ,

20.

\\ c90-0"'
enchan,g c (.ataz ' " t tn- 1 I t ' ') : Qryt , t7z ' ' ' f t n- r t r7,

aI]cI

exch,ange(f) : {u : a : exchange (Tr.,) for some 'u e -L} '

Sbow that the family of regrrlar langualges is clcisetl under euchan'ge,

4,2 Elnvnrvrnrr,v QrrusrroNs ABour Rncur.eR LANLITJA#E$ 111

* ??. The shulfle of tu'o languages ,r an(l Zz is rlefinetl as

shuff ie(L1, L2) : {w1u1utzuz, . . l r}6?}n1 i wtwz...wm € Lt,

u1u2.,,1)m € Lz, for al l ru. l ,ul € X*)

show that the farnily of regular languages is crosed under the sh'ffie
operation.

* 28' Define an operati.rlmi'nuss on a language .L as the set of all strings of tr with
the fifth symbol frorn the left rcmoved (strings of length less than fivc are left
unr:harrged). Show that the family of regrrlar larrguages is closed under the
rruinusS operation,

* 24. Definc the operation le-ftsi,tte on .L bv

Ieftsi ,de(t) :
{?,,

,ruruq e L} .

Is the family of regular languages closed under this oper,ation?

25. The m,in of a language .L is defined as

rn i .n (L) : { tu e l : t } re re i s no u E L ,u E E+, such tha t u r : . ro } .

Show thal, the family of regular larrguages is closed under the rnriru operation.
,/_-\

2.+\39Let Gr and Gz be two regular grammars. Show how ()rre can derive regular- glrammars tbr the larrguages

L(Gt) r L (Gz) f f i

L @r) r, (Ga) ffi

L (Gr)- ffi

Elementory Quest ions obout
Regu lor [onguoges

wc rrow conre to a very fundamenttrl issue: Given a language ,L and a string
to, can we determine whethel ol not ,ar is an elemcnt of .L? This is the
membership q*estiorr and a method fbr anuwrlrirrg it is called a member-
ship algoritlmr. very little can be done with languages for which we carrrrot
{ind elficierrt niembers}rip algorithms. The question of the existence arrcl na-
ture of rrrerrtbership algorithms will be of great concern in later cliscussiorrsl
it is a;r issue that is often difficult. trtrr regular languages, thorrgh, it is an
easy lrratter,

We first consider whir,t cxactly we rnearl when wet say ,,given a lan-
guage...." In ma,ny a,rg1r'rr:rrts, it is irnportant that this be unambiguous.
we have used several ways of describing regular languages: informal verhal

\a.l

(b)

((rJ

t t 2 Chopter 4 Pnoprnuns or Rpcul,nR Lerucu.qc+l:s

rlcsr:riJltiqns, set nqtation, finite altomata, regular expressions, and regrr-

lar grarrrrrrars. Orrly tlxr la,st three are sufficiently well defined for use in

theorerns. wc thcrcfcrrc sa,y tha,t a regnlar language is given in a stan-

dard representation if arrd orrly if it iiJ dQst:rihed by a flnite automaton,

a regular expressiotr, or a rt:gtrlir'r grilrnfiIirr.

Given a, standard representation of any regular larrguagc tr on x and any

u € X*, there exists an algorithm for detertninittg wltether or nttt ru is in I,.

Proof: We represent the lalguage by some dfa, tltetr test 'ur ttl stNr if it is

accepted by this automtr,ton. I
-

Other irnportant questiorrs arc whether a language is finite or itrfinite'

whether two languages are the same, attd whether orrc langrttr,ge is a subset of

another. For rtlgular langrtagJes at least, these questions are easily arrswcrtld.

there exists an a,lgorithm fbr determining whether a reglrlar lirrrgrtir,ge, given

irr sta,ndir,rcl representa'tion, is etnpty, Iitrite, or infirritc.

Proof: Tlrg itrrswt:r is a,ppa,rent if we represent t,he latrguage as ir trirrr,qititln

graph of a dta. lf there is ir, sinrpkr pnth fiom the initial vertex to any firLal

velrtex, then the la,ngr-tage is ttot enrpty.
To dt:termine whethel or ttol a, Ianguage is infinitc, find aII the vertices

that are the base of sorlre cyclg. If irlY of these a,re on a path from au initial

to a final vertex, the lattgtttr,gc is irrfirritc. Otherwise, it is finite. I

--

The question of the eqrrality of two languages is also an importailt prac-

tica,l issue. Often several defilitions of a programming language exist, and

we need to know whether, in spite of their dificrent irppearances, they spec-

ity the same language. This is gelerally a difficult problertt; cvtrn ftrr regula,r

larrguages thel ilrgument is not obvious. It is 1ot possible to arguc on il

serrtence-by-sentence comparison, sirtce thiS works only fbr finite languages.

Nor iu it ea-$y to see the answer by looking at tlte regular expression$' gram-

ma.rs, or clfa's. An elegant solution uses tfue alreatly estahlished closure

propr)rties.

Given standard representatiols of two regular lalgtrirgils -L1 iilIrl tr2, there

t:xists an algoritlrm to determiue whether or not Lt: Lz.

Proof: Usirig .L1 irntl -L2 wer define the la'ngua,ge

t4 : (L1 .16) | (t ' t n t ' z) .

_____-----

4.2 Er,nttnltrnnv Qun$.r.lr)Ns AIlotTT R.BculeR LnFrL+r.J.Ac.;r{s 118

Bv closure, -t3 is rcgular, arlcl we ca,n fincl a dfa M tha,t accepts 1,3. Once
wtl httvc: M we can theu use the a"lgoritlrrn in I'heorern 4.6 to cletsrrnirre if
tr;j is ettrpty. But from Ex(n:is(: 8, Section 1,1 we see thirt Lt : fr if ancl
trnl.y if Lt : Lz. I

These resrrlts are fundamental, in spite of br:irg obvious ancl unsurpris-
ing. For tlgular languages, the questions raisrld by Theorems 4.b to 4.2 r:an
bc zrnswcred easily, but this is not ir,lwir,ys the case when we deal with larger
farnilies of langrrages. we will encounter cluestions likc these on several oc-
casions la,ter orr. Anticipating a, Iittle, wc will see that the answers ber:gr1(:
irrcrcasirrgly rnore difficult, tr.nrl rlvcrrtually irnpossible to fincJ.

For all the exercises in this strtion, assume tha,t regrrlar lir,rrguages are given
itr stanclard representtr.tion.

1. Show that there exists irn algoritlrnr to determine whether or not ur E Lr - Lz,
for arry given to and any regr.rlar larrguages.Lr arlcl /.1. ffi

2. Show that there exists ari algorithm for determirrirrg if tr1 C 1,2, for any
regular languages Z1 arrd Zl. ffi

3, show that there exists an algorithm for cleteruining if A e ,1,, for any regular
language tr.

4. Show that for any regular Zr and.L2, there is an algoritlrru {,o dctermine
wlrcther or not ^L1 : LtlL,t.

5, A larrguage is said lobe apa,l,irtd',rne languagc if ,1, : tr/i. Fi'd an algorithm
for dctermining if a given regular language is a Jralildrorne language. ffi

6. Exhibit an algorithm for tleterrnining whcther or not a regular language .L
contains any string rrr such that tuF € 1..

7. Exhibit an algorithtr that, given any three regular languages, L,L1,Ls, de-
termines whether or not L : I,tLz.

g. Exhibit an algorithrn that, giverr any regular language .L, tletenninerr whcther
or rrot .L : .L*,

g, Let tr be a regular langrrage orr X arrd,fi bc any string irr E*. Find an
algorithrn to dctermine if "L coltains any tu such that fi is a substring of it,
t l rat is, such that w : ufru, with u, ? € X*.

10. Show that there is an algorithrn to detemrine if 1, : shuf f Ie (tr,,L) fbr any
regtilar L.

11. The operation tnil(L) is defincd as

tail (L) : {u : uu E L,u,, 'r. ' € X" } .

114 Chopter 4 PRoenRrrus on Rncttl,n'n tn'ucu.q.cns

show that there is an algorithm for determining whcther or uot .L : tail (L)

for any regular .L.

12. Let .L be any regrrlar larrguage on E : {a, b}, show that an algorithm exists

for determining if tr contairrs arry strings of even length, ffiS

t'ind an algorithm for cletennining whether a regular language tr contains an

infinite numher of even-length strings'

Describe arr algorithrn which, when given a regular gramrnar G, can tell us

whelher or not L (G) : E-.

l den t i f y ing Nonregu lor Longuoges

R.cgular languages ca,p be inflnite, as rlost of our examples have demon-

strated. Thc ftrct that regular languages are associated with autt>mata tha,t

have finite nrcm()ryl however, impOses Some limits on the structure of a

regular language. Sotne ttarrow rcstritltions mlst be obeyed if regularity

is to holcl. Intuition tells ns that a language is rtlgulir"r only if, in process-

irrg arry strirrg, the infbrmation that has to be rernernbertxl zrt a.ny stage is

strictly lirnitecl. This is true, but has to be shown prtx:iuely to be used in

arty rntlarringful way. There are several ways in which this precision can be

achieved.

Using the Pigeonhole PrinciPle

The term "pigeonhole principk:" is rrsed by mathematicians to refer to the

fbllowing simple observation. If we put z objects into rn boxes (pigeonholes),

ancl if TL > rrll then at least one box must have rnore tltarr one item in it.

This is such an obvious far:t that it is surprising how many deep result$ can

be obtained frotn it.

..fi'lll

Efufffnfm 4rS Is the larrgrrage tr - {anbn : rz > 0} regular? T}rc answer is no, as we show

using a Proof bY contradiction'
Suppose .L is regular. Therr some dla M : (8' {a, b} , d, {0, F) exists for

i t . Now look at d* (Qo,ot) for i : I ,2 ,3, S ince there are an unl imi ted

rrurrrber of zj's, brrt only a finite nunber of states in M, the pigeonhole

urinciple tells us thtlt there must be sonre state, say q, such that

d* (qu, o") : q

1 S .

d* (q, i , e* ') : q,

4.3 InururrnyrNc Nor-rRpcuLAR Lnlrcuacos lfE

with n t' m. But sirrce M accepts a"bn we must have

d. (g,b') : q7 €. F.

Flom this we can conclude that

d* (go, a*bn): d. (d. (qo, an'),b")

: 6 * (q , b " t
: Af.

This contradicts the original assumption that M accepts a^bn only if n :
rn, and leads us to conclude that tr cannot be regular.

I

In this argument, the pigeonhole principle is just a way of stating pre-
cisely what we mean when we say that a finite automaton has a limited
merlory. To accept all anbn, an automaton would have to differentiate be-
tween all prefixes a* and a-. But since there are only a finite number of
internal states with which to do this, there are some rr and m fbr which the
distinction cannot be made.

In order to use this type of argurnent in a variety of situations, it is
convenient to codify it as a general theorem. There are several ways to do
ttris; the one we give here is perhaps the most famous one.

A Pumping Lemmo
The following result, known as the pumping lemma for regular larrguages,
uses the pigeonhole principle in another form. The proof is based on the
observation that in a transition graph with n vertices, any walk of length z
or longer must repeat some vertex, that is, contain a cycle.

Let L be an infinite regular language. Then there exists some positive
integer ?rl such that any w e L with l.ul) m. can be decomposed as

with

and

such that

is a lso in .L for a l l i : 0 , 1,2,

w - e g k ,

l r u l 1 m ,

l s l > 1 ,

^ ' , - * . , ' ' z *w i - & g e) (4 2)

116 Chopter 4 PttopsRrlns or RnculAR LANC;UAGES

is "pumped,tt ltence the term puntping lemma for this result.

Proof: If ,L is regular, there exists a dfa that rexrogrfzes it. Let such a

dfn, havtl states labeled qo,qr ,Q2t...tqrr. Now take a, string trr in,L such that

l",ffiEl] Since tr is assumed to be infinittr, tfuis can always he dqne.

Cornider the set of statcs tlte automaton gocs through as it proces$cs ?rJ'

say

Qo, Qt ' Qi ' , , , , Qf -

Since this sequence has exactly l,r.'l + I entries, at lea"st one state must be

repeated, arrd such a repetition rrnrst start tro later than the nth move' Thus

the sequcrrce rnust Iook like

Qot Q l . , Q i , . . . , (l r ' , - . - , Q r t ' . ' t Q f t

indicatirrg there tnust be substrings 'x, r A i z of ru such that

d* (qu, r) : e , ,

d* (g", u) : q,',

d* (q', z) : q.r,

with lrgl { rz * 1 : m, and lyl } t. F}om this it immediately follows that

,5* (qn, rz) : Qf ,

as well as

rf. (eo, nyzz) : qr,

d* (80' rY3z) : q7,

and so on, completittg the proof of the theorem. r

-

We have givcrr the pumping lemma only f'or irrfinite languages. Finitt:
Ianglra,gr:s, although always tegttla,r, r:annot bc putnped since prrmpirrg auto-
mrrtir:a,llv creales an infinite set. Tlrl tlrtlorerrt does hold for finitt: lirrrguages," ,{^Jl.ry ^,but it is Vac.r.roliE/ 'l'he nl irr the putnpitrg lemtna is to bt: taken larger tha'tr
tlte lotrgest string, so thir.t rro strilg can be purnptld.

The pumpirrg lcrnrna, Iike the pigeonhole argtrtnettt in Example 4.6, is

rrsed to strow that cert,aitr la,ngrtages a,rtt not regular, The demonstration
is ir,lways by cotrtracliction. Therc is rrothirtg in lhe pumping lerrrrnit, as we
hir,vc'stated it here, which ca,n llc rrsc:tl ftrr proving that a languir,gc is regular'

To paraplrrase this, every uuFiciently long strjqg in 4 cql_b9*b[aken

isg_!L:e.: p.rT iT
iy"h

. y an--arbitrary number of repetitions of
thc rnidd-le part yields another string in .L. Wtr say that the rtriddlc strittg

4.3 Irnrurrr'ylNc NoNREcLTLAR LaNcuacns IIT

Even if we coulcl show (ancl this is rmrrnir.lly qrrite difficult) that any pumped
stringJ rnust be in lhe original larrguir.gc, there is nothing in the stalernent
of Theoretn 4.8 that irllows us to r:orrrhrrle flrrm this that the language is
rcgrrlar.

[ltulnflg [;t ' , ' Usirrg t]rc prrmping lemma to show LhaL .L : {unltn : n > 0} is not regula,r,
Asstrrntt thrr,t L is regular, so thaL Lhe puutping lt:rnrnil must hold. We do
trot krrow the va,lue of nt,, but whatever it i$, wc ctr,n always .hodeE t&]
Tlxtreftrre, the substring y musl consist c'rrtircly of a's. Suppose lyl : ft.> t
Thcrr thel string obtained by using i : 0 irr Erpatiorr (a.2) is

'Ll)O : t1711-lrhm'

rr.rrd is clearly not in .L. I'his conLradicts thc pumping lemma and thereby
indit:irtcs thnt the a,ssumption that .L is regular rmrst bc fir,lse.

I

In applying the purnlrirrg l{:rnrna, we must keep in mind what the the-
orem says. We are guirrarrttxxl tlrc existence of an nz as well as the decom-
position rEz, but wc: rkl rrot krrow what they are. We cannot clain that we
have reached a contradiction just bcr:ausc the pumping lenrrna, is violated
firr some speciflc values of rn, rsr 'ryz. Orr tlxr otherr hand, the punrping
leurua holds fbr cvery ?1, e tr and every 2,, 'I'herefore, if the purnpirrg lernrnil
is violatecl everr for orro 'iu or i, thcn the language cannot be regular.

The correct argument can be visualiztxl ir,ii rr game we play aga,inst an
opponent. Our goal is to witr Lhe gatrte by tlsttr,blishing ir, contradiction of
the pr.rmping lernma, wirile the opponcrrt triels to foil us. There are fbur
moves in the garne.

it+ 1. 'Ihe opporrerrt pir:ks rru.

2, Givt:n ?7?,, we pick a, string ,ur in ,1, of length cquerl or grcatcr tharn rn.
We are free to r:]rorisr: irrry ?1r, srrb.jer:t to 'ro € .L ancl lrul > rn,,

3. l'he opponent c:Iroosrls tlrr: rkx:ornllosition rgra, subject to lzyl f nz, l3rl >
1. We have to assurnc tirir"t thr: opllonent ma,kes the; choice that will make

) it hardest for us to wirr tlrt: girrntl.

\ 4. Wc try to pick i in such a way that Lhe purrrpecl strirrg ti.r,,, rk:firrcrl irr
Erlrir,tion (4.2), is not in.L. If we can do so, we win the garrrt:.

T , t A strategy that rrllows us to wirr whiltcver the opponent's r:hoices is

IL\tvdlF**
| /1 vdr'e ta,nta,mount to a, proof thal the language is rxrt rcgulir,r. Irr this, Step 2 is

t:rtrt:ia,l. Wrile we canuot forc:e Lhe opponerrt to pick il pa,rticulilr tltx:om-
pr-rsitirlrr of 'rl, wc mrly be rr,ble to choose tl so that the opponent is very

1 1 8 Chopter 4 Pnornnlus or.' Rr,:(+lrl,.q,n Lewcua.cns

Figure 4.5

u . . . a h . . . b h . . , h a . . . a

F-+-t---------------
E J Z

restricttxl irr Step 3, forcing a choice of r, g, ir.rrcl .e that allows us to produce

a, virilrrtion of puttrping letnma on our next rrrtlve.

Nnl(th at' ili sltorla/ 7 , : { w w f l : r u e X * }

is trot regrtltr.r.
Wha,tcvclr rrl the opponent picks on Step 1, wc carr always choose a34

aE-shetyn irr Figure 4.5. Because of this choice, trrrtl the requirement that

f f isrestr ic tedinSteplJtoc}roosi r rgaythatconsists*cirtirblflbf
a's. In Step 4, we use i : 0. The strirrg obtained in this fashion

has fewer o,'$ on thc lcft tharr orr the right and so cannot be tlf the fbrrrt
u,tuft. Tho,rt:ftrrc -L is trot regular.

which is in L. To dcfca,t us, the opponetrt need only pick

U : u a '

Now zr,. is irr -L for all i, atrd we lose.
Ttr ir,1l1lly the purnping letntna we cannot ir.Jsurnc that the opponent will

rnirk(r ir wrong rnove, If, ,in the ca-se where wu pit:k 'u) : [tr?"', the opponent
wc:rt: to pick

a : Q ,

then t 0 is a strirrg of odd length ilrrd therefore trot iu .L. But any trrgu-
ment that assurne$ thtr.t thc oJrportettt is so accommodating is autornatically
incorrer:t.

I

he of l le /arn. 61*t .
t - , ,

J r) / t (q n a 6 t
f o r . (e

t / . :
L 0 t t s I / g & # t r a / /

t a 5

or h , s)< ,n ,

f lo, l j r ' , t { {o

/ht ; f u, 'n u);
I
I

It,.o y, lro'/.n, +rt L.

'
F Note that if we irad chosen ru too short, then the opponent could have

t:hosen a g with a,rl even numher of bts. In that case, we could not have
t l

k o{ reached a violation of the pumpirrg lerrrrna orr the last step, We would also
'

fir"il if we were to choose a string cxrnsistirrg of all ats, say,

hor{ 'til : ttrZ'o ,

4. lJ I t ru rq ' r ' r r , ' y lNcNoNREcuLARLexcuacns 119

Let X : {a, b}. The languirge

1, = lut E X* : rzo (,ru) < n6 (u)]

is not regular.
Suppose we are given rn,. Since we have cornplete freedorn irr choosirrg

rrr, wc pick ut * tt"'b""t r. Now, beca,use lrgtl cannot be greater than rrz, the
opllonent r:a,nnot do a,nything br.rt pick a g with all a's, that is

y : a k , r ! h < r n '

We now pump up, using zi : 2. The resultirrg strirrg

?il2: 5*trl-|E6m+L

is not in .L. Therefbre, the purnping lerrrrna, is violated, ancl -L is not regular

The larrguagtl

7, : {(ab)" ak : r-t > h, fo > 0}

is not regular.
Civen rrz, we pick a,s our string

ut: (ab\"'t7 a"'

which is in -L. Because of tire constraint l*El < ?r-4,. bo!l;g-g+cl*U-rlrJ:! bq-
illtp_pg1! g{_tbg p_tlirrg nade up qf."g!lS, The choice of r does rrot affect
tht,'+r,rgument, so let us see wha,t ca,n be done with y, If our opponent picks

(gL-:-6,, wc t:hoose i = 0 and get ir. string not in .L ((a,b)- a-). If the opponent
piclks;r7:,g.b,ywc ca,rr choost) rl :0 rr,gir.irr. Now we get the string (ab)tt'a"',

- rvltich is _Illl_t iqLl. Irr thc sarrrc wily, wc can dea,l with ir.ny possiblu r:hoir:el
by the opponent, thereby proving our clairn.

I

Slmw tha,t

L : { e r r l ; r z > 0 }

is not regular.
Ciiven Lhe opponentts choice for rrz, we pick as 'u the string a"'l (unless

the opponent picks nt 13, in which case we can use aill as trr). The various

120 Chopter 4 Pnorenuns or RnGtJt an, Latqcuecns

decotnpositions of tu obviously differ orrly in the lengths of the uubstrirtgs.
Suppose the opponent picks y srrth thtrt

lul: h < m'

We then Iook at z.s which has length m,l - k. This string is irr l, only if
there exists a j su<:h that

m t - h : j l

But this is impossible, since for rn) 2 and k { m we havc

h ! : . r n l - t u > (m , - 1) !

Therefore, the lartguage is not regular.
I

In some cases, closure propcrties can be used to relate a given problem
to one we have a,lready cla"rsified. This ntay be much simpler than a direct
application of the putrpirrg lemma.

Show that the language

L : { a "bkc ' ' t k I h> 0 . h > 0 }

is not reeular.
It is rrot clifficult to apply the pumping lemma, clircctly, but it is even

easier to use closure uuder homomorphisrn. Ttrktl

h (a) : u , h , (b) : a , h (c) : c

lhF"
h(L) : {antht"n+k : n * k > 0}

: { a i c i ; i > U } ,

but we krrow this language is not regular; thereforc .L carrrrot be regular
either.

I

Show that the ltr,ngrrtr,gt:

l : { a r , . b t . : n l I }

is not regula,r.

4.il Innur' lpyrNGNoNRECLILARLar'rcuA,cns 121

I'Iere we need a trit of irrgemrity to apply the purnping lernrrra dirrx;tly.
Clhoosing a string with ri, : l+ 1 or n, E l*2 will not do, since our opporrerrrt
citrr illwalys choose a decomposition that will ma,ke it impossible to pump
thc string orrt of the language (that is, prrurp it so that it has an equal
trutrrlrer of a's arrd b's). We rnrrst be rnore inverrtive, Let us ta,kl n.: m,l
and I : (rn * 1)!. If thc ollporrcnt now chooses a g (by necessity corrsistirrg
of all a's) of length h < rt,, we purrrp r. tirrx:s to generate a string with
rn! + (i,* I)k a's. We can geL a corrtradir:t ion of the pumping lemma if we
r:ilrr pick i suclt that

n z ! f (i - 1) A : (r r r , * 1) !

I'his is rrlwir,ys possible since

. . nt, ntl
r - r T

f r

arxl A { rn,. The riglrt side is tirerefore an inttlgur, irnd we have srrcceedecl
irr violtr,ting the conditions of the purnping lernrnir.

Howcvrlr, there is a, rnuch more elegarrt way of solvirrg this prriblem.
firrllpose L were regular. Then, by I']rxrrclrn 4.1, Z ancl tire lilnguage

I ' t : T r - t . L (o * b *)

woulcl also be regular'. tsut -L1 : fntlhtt: rz > 0], whicli we have already
classifit:d as rurrrrcgrrlilr. C)onsequently, tr cannot be regular.

I

The purnlling lcmmil is difficult fbr several reasons. Its staterrrerrt is
complicated, irrrtl it is oir.sy to go a,stray in applying it. But everr if wr:
tnaster the teclurique, it rniry still be ha,rd to see exactly how to use it. The
pumping lernrna is likc a girrnc with r:omplica,ted rules. Knowledge of the
ntlqrs is esseutial, br.rt ihat alotre is rrot errough to plir,y rr. good game. Yon
alsrl rrrxrd er, good strategy to win. If yoLr can apply the purnpirrg lcmma,
correctly to sotne of the rnorc rliffir:ult r:ases in this book, vou a,re to be
congratula,tecl.

Prove the fbllowing version of the pumping lemnra. [f L is rcgular, thcn there
is an nz such that, every .u € Z of lerrgth greater than nr, ca,n be decomposed
as

(t

' tD : f rUE1

r22 Chopler 4 Pnopnnrtns oH ltr:ctrlan, Lar'{cuacns

with

lyzl < rn,

l s l > 1 '

such that nyo z it irr .L fbr all i.

Prove the frrlkrwirrg generalization of the prttrrping lemma, which irrclutles

Thcorcm 4.8 as well us Exercisc 1. as special cases.
If .L is regular, therr there exists an m,, such that the following holds for

every sufficiently lurg ur € .L and cvery one of its decornpositions llr : I.t,tltl.tz j

with u,r,rr,z € X*, lul) tn, i l 'he middle str ing u can bc writ ten asu: 'rAz1

with le;'grl < rn, lgl) 1., such t,hat, ulrgi z'uz E L tor all i : 0, 1, 2, ... m

Sl row tha t the la r rguage t ' : {w :n* (u t) : " r6 (t r ') } i s t ro t rcgu la r . I s .L .

regular?

2

3 .

(i)e.o"* that the following larrguages are not regular.

(u) f : {a , " I t l t t k : I+ } n+ l } f f i

(b) , I : { o " 6 l o a : A t I n - l I)

(c) I : {anblak : n : I or l f k}

(, 1) . L : { o . " b t : n { 1 1

(c) Z, : {ut : n,,(tu) t ' nt (,ru)} f f i

- (f) t -
{unn : 'u r € {4 ,b } - }

(g) L : { tu r r l , r r , r ,R : t l e {a ,b } " }

*-;-
(a) I : {an : n } 2, n' is a prirne nutrber} ffi

4 . t) l D
\J'', , Fa.,t

.gt*.,
Lrro,*+-(b) L : {a"' : tt' is rxrt a prime number} 1 l

f . ' i ; ' . t v t - (c) l , : { t t n : n : A 2 f o r s o m e h > 0 } - o q K , . ^

'

l_
-

_/
-(. t) .L - {a" : n. :2k for some h > 0}

(e) I : {an : n. is the product of two pritre numbers}

(f) , = {an : n is either prirne or the product of two or more prirne numbcrs}

(fl n"t*.*inc if the following larrguages ou X : {a} are regular

6. Apply the pumping lcmrna directly to show the result in Example 4.12.

. j nr la (r] rno* that thefol lowinglarrguageis trot regular. \ n> lL- \
L - ' \ f l t - n > i 1 - r \ ,

o l " - g x n
t 5 * ' i

_ . " . r t _ . t " , , t ' - ; " (\ (* \, "nl_ L:{*n'-h : n = r}_1,{""r,- ,"L;;r,} .-,,,/ t} ,(i)
@erov*

ordisprove the ftrllowing statement.""If trr arrtl .Lz are nonregular lan-
guages, therr -Lr U -Lr is also nonregulat. ffi

4,3 IuuvrrnyrxcNoun,ncuI,An,L.tNc;ulcrs 123

Consider the latrguages below. For each, make a corriecture whether or not it
is rcgular. Then prove .your conjecture.

(a) Z , : { a n b t u , k : r r l l l k > 5 } m

(b) f I : { a " b l a k : r r , } 5 , 1 > 3 , h S l } f f i

(c) .L -- {a"bl : nf I is an integer}

(d) /. : {a*b{ : rz "1- I is a prirne nurnber}

(e) {a."ht : n, < t. < 2nI

(I) , I : { a " b t : n > 1 0 0 , 1 5 1 0 0 }

(e) r : { a " b r : l n - l l : 2 }

\fOJ l,r the following langua,ge regular?

[, : {w1c'u2 i Lurl ,rrz € {o,, b}. ju)r + : iuz}

il{ l"t -Lr and .L2 bc regular lt-r.nguages. Is the languag s 7 : {tu : ,ut € L1,utr e LJ}
-J necessarily rcgular'l ffi

|2. Apply the pigeonhole arguuent rliret:tly to the larrguage irr Exarnple 4.8.

1_t:)A*
the followirrg larrguages regular?

(a) I : {u '* r r , ' ' r i ' r t r j 'L t1 'u) e {a, b}+ } W

* (b) /, : {tnuwRu i u,1r) jrLt e {a, 6}+ , lr l } lul} dS

l , : { r , * t ' r , r ,
' " ' l

L
u ,w E l a ,b l J

' /5-,
rl+(L5.

)fet f be a,n infinite Lrut courrtable set, arrd associate with ear;h'---
languagc .Lo. Thc smallcst sct containing every .Lu is the union
infinite set P; it will be c.lenoted by Upep1,p. Show by cxample
fatrily of regular larrguages is rrot r:losed urrtler irrfirrite urriorr. ffi

* 16, Consider the argurnerrt irr Set:tiorr iJ.2 that the langrrage associated with any
getreralized trartsition graph is regular. The larrguage assor:iaterl with sut:h a
graph is

- | | - /r , : LJ L \ , r 'p) ,
D e P

whcrc P is thc sct of all walks through the graph and ru is the expression
associated with a walk p. I'he r+et of walks is genera,lly infinite, so tha,t in light
of Exerr:ise 15, it tloes rrot irnrnetliately follow that -L is regular. Show that
in this case, beca,use of the special nat,ure of P, the infinite uniorr is regula,r.

G4 tr thc following languagc rcgular'l

(

(

| " , .
i ' r ' i

/ $

, P E P A

over the
that tirc

Chopter 4 Pnopnnrlrs or RncutAR LANGUAGES

tr /+ *fipfr the family of regular languages closed under infinite intersection? ffi

\L .r- dE-J Suppose that we know that Lt I Lz and trr are regular' Can we conclude
/\ .#

trom thls that .Lz is regular?

19. In the chain code language in Exercise 22, Section 3.1, Iet .L be the set of

all u e {u,r,ld}* that describe rectangles, show that .L is not a regular

language.

Contex t -Free
L o n g u o g e s

n thc la,st chapter, we rliscoverud that rrot all latrgrta'ges artl rcgular.

Whilc rcgular langua,ges are ttfft:r:tive in describing t:elrtilirr sitttple

llatterns, one does not rrt:c:tl to look very fa,r fbr exir,rnples of nonreg-
ular languages. The rclcvartce of these limitations to programming

larrguages becomes evirlt:rrt if we reinterpret somt: of tlte exatnples. If in

L: {q*\rn : rz > 0} we sutrstitute a left pa,renthesis I'or a atrd a right parell-

thesis for b, then parentheses strings such as (0) and ((0)) are in -L' tlrt
(0 is not. The la,nguage therefore clescribes a sirnple kincl of nestud stmc-

ture fbund irr programmittg la,ngutr,gos, indicating that somtr llrollerties of
programmirrg lattguages reqrtirer sorncthitrg beyond regrrlar lirrrguages. In
rlrrlclr to cover this and otlrt:r rnore complicated fuaturcs we tttLtst enla,rge
the farnily of langJrragt:s. This leads us to considt:r context-free langrrir'gcs

ancl grammars.
We begin this r:ha,1lter by clefining context-f'rtxr gralrunars a'ncl ltr,nguirgcs,

illustrating the dqfirritions with some simplc: cxarnples. Next, wc txrrrsider

the importa,nt nx.'rrtbtlrship problem; in prrrticular we ask how wt: t:irn tell

if a given strirrg is clerivable fiorrr a givtlti graurtnar. flxpla,irririg ir setrletrce

through its grilrnrnirtical deriva,tion is fir,rriiliar l,o tnost of rrs f'roru ir stucl.y

125

126 Chopter 5 Cournxr-FRno Lancuacns

of natural languages and is callexl parsing. Parsing is a way of describing
sentence structure, It is irrrportirrrt wh(lnevrtr we need to understand the
meaning of a sentence, as we do frrr irrstirrrce in tra,nslating from one language
to a,nother, In computer science, this is rclt:vilnt in interpreters, compilers,
a,ncl other translating prograrrrs.

The topic of context-free languages is perhirys the most important as-
pect of firrmal la,nguage theory as it applies to llrugrilmming la,ngua,ges.
Actual progritrnrning la,nguages have many fealures that c:arr bo clescribed
elegarrtly try means of context-free languages. What frrrrnal lar.nguage the-
ory tells us irtrout rxrntext-fiee languages has irnportant applic:rrtiorrs in the
design of prograrnrnirrg ltr,ngua,ges as well as in the constructiclrr clf clfficient
conpilers. We touch rrpon this briefly in Section 5,3.

ffi;;mffim Context-Free Grommors
The procluctions itr it rtlgrrlir,r grarnmar are restricled in two ways: the left
side musl be a sirrglr: variilblr-', while tlre right sicle has a spcc:ial forrn. To
crea,te gl'alrtlrrars thirt irlu rntire powerfirl, we rnust relax sorne of tlrrlsc: rostric-
tions. By retaitritrg the rcstrit:tion on the left side, but perrnittirrg arrythirrg
on the right, we get corrtc:xt-fi'rxr grarnma,rs.

M
A gramrnar G: (V,T,S,P) is said to be context-free if rrl l prodrrctions
itr P have Lher ltrrrn

A + i l ,

where ,4 e V and 'r t (V u ?)..
A lir.rrgutr,ge I, is said to be corrtext-frtxr if and only if there is a context-

free grarnmar G srrch tha,t tr : L(G).

Every regular grarrurrar is rxrntext-free, so a regular langrragr: is trlso a,
rxrntext-free one. But, as we krrtlw f'rom simple examples such as {u"h"l,
thclrc are nonregular languages. Wt: ha,ve already shown in Exarnple 1.11
thrrt this language can be generirtctl tly tr. crrntext-free grarnmar, so wc s(xl
tltat tlxr fer,mily of regular Iatrguirges is a proper subset of the fanily of
cotrt ext-frrt la rrgrrir ges -

CouLext-1'rtx) grirmmar$ derive their trattrt: frorn thcl fa,ct tha,t the sub-
stituliotr of thc: variable on the left ol a produr:tiori t:ilrr be rnade any time
sttch a, variable appears irr il st:rrtential form. lt, does rrot dt:pcnd on the

Exomples of Context-Free Longuoges

$*sqtrsf H $;l The gramma,r (J : ({S} , {o, b} , S, r), with productions

S --+ a5a',

.5 --+ b$b,

, 9 - 4 ,

is t:orrtext-free. A typical clerivation irr this gramma,r is

5.1 Conrnxr-li*Rps GnalrunRs 127

symtrols in the rest of the senterrtiir,l frrrtrr (lhe contcxt).
'I'his f'eaturtr is

the consecluenr.:et of rrllowittg only a, sirtgle va,ria,bk: ori Lhe left sidc of the

procluctiorr.

S + a.Su + aaSe,a + aubSbaa) n,a,bbu'tt'.

'I'his makes it clear that

L (G) : { u , r u B ,
' r r r e { a , b } . } .

The languagc is context-f'rrlc, but as shown in F,xample 4.8, it is uot regrrlar

S - abR,

A - uaBb,

R + bbAa,

A - 4 ,

is context-free, We letr,vt: it to the rea.tlt:r to show thnt

L(G): {ab(bbaa)" hha,(ba)' ' : n, > 0}

Both of the above erxanples involvcl gral]lmars thirt ate not only c:ontext-

free, blt lirrc:ar, Regular ir,rrd liuear grafiIIIIarS are clearly croutext-fitlt:, but

a context-free gramnlirr is uot neces$rrrily linear.

T

128 Chopter 5 Conrnxr-Fn,pp Lerrc+u.q,cns

WWWW rhe language

:IIWiliWWilWWMW

7 , : { a " b * : n l m , }

is context-frrxl.
lb show this, we need to protlurxl a, context-free grarnmar fbr the lan-

guage. The castl rtf n : ?7? was solved in Exa,mple 1.11 and we c:a,n build
on that solutiorr. Take the case ??) rn. We first generate a string with an
equal number of ats and b's, then add extril fl,'s on the left. This is done
with

^9 - ASr,

5r - a5rb lA,

A --+ aAla.

We can use sirnilar rea^soning for the casc n { m,, and we get thu answer

5 - ASr l ,SrB,

,5r -i a$rbltr,

71 -+ aAla,

B --+ bBlb.

The resulting gra,mmar is contuxt-free, hence tr is a context-free languager.
However, the grammar is rrot lirrerirr.

The particular ftrrm of the grarrmrar given here was choserr frlr the pur-
pose of illustration; there a,re many other eqrrivalent context-frrle grammars.
In fact, there are some sirrrple linear ones for this language. In Exert:ise ZE
at thc end of this section yolr are asked to firrtl one of them.

I

Consider the grammar with productions

.9 - a.5'bl55l,\.

This is another gramma,r that is context-fiee, but not lirrrrar. Some strings
in .t (G) are abaabh, aababb, and ababab. It is not difficult to urnjecture and
prove that

L : {, e {4,, b}
* : no (w) : nr, (ut) and no (u) } 26 (u) ,

where u is any prefix of 'u,'). (b.l)

We can sec the connection with programming larrguir,ges clearly if we rt:-
place c, and b with lc:ft a,nd right parerrthtrses, respectively. Thc language .L

5.1 Cournxr-FRnn GR,ttutrr.c'Rs 129

inclucles sur:h strirrgs as (0) ancl 0 () () and is itr fa'ct tht: sct of all lrroperlv
nestr:rl paretrthesis structtrrt:s lbr the colrllnorl prtlgratntnitrg la,ngtrilgt:s'

Here again therel ilnr rriany other eqrriva,lcrrt gralrtlrla,rs. Brrt, irr contrast

to Example 5.3, it is rrot so easy to sexl if there are any lint:irr oiles' We will

have to wait r.rntil ()hrrpter I befbre w(t (tirrr auswer this qrltlstiott'
T

Leftmost ond Rightmost Derivqtions

In context-free grirfirilrars that a,re not lirrcar, a derivation rnay involve sen-
tentia,l frrrms with more thaln tlrrc variable. In srrch (iases, we have a chtlice
in the order in which variiltrles are repla,ced. Trlkc for example tht: grarrrrnar
G : ({A,8,5} , Io,bl ,5, P) with produr:tions

t. S -+ AB.

2. A --+ aaA.

3 . , 4 - 4 ,

4 . 8 - t s b .

5 . 8 * + A '

trt is ea,sy to sr:c that this gra,mrnar getrerates the language L (G) = {aznb*' ,
rz) 0, rn, > 0].

Conuidcr rrow the two dt:rivatiotrs

s 1,ta 4 aaAB4 naB S uaBb 4 aab

i.r,ntl

s 4 .+n 1 e'at' 4 aaABb 4 q,a,Ab \ aab.

In order to show which producliott is a,ppliexl, we have numbcred the pro-

ductiotrs and written the appropriate mrrnber on the + syrttbol. F\'om this

we see that the two deriva,tiorrs rtot only yield tht: sarne sentent:tl but use

exactly thc sarne procluctiqrrs. The clifferentre is etrl,irely in tlrc order in

which t}r: productiols arc aplllied. To rem6vt: suclt ilrelevant factors, we

often reqrrirc that the va,riabltrs be replaced in a specific order.

M
A rlcrivatiou is sa,id to be leftmost if irr each step tlrt: leftmost varitr,ble

in the sententia,l forrn is replaced. If in each step the rigltttnost va,ritr.ble is

replaced, we call thc derivatiou rightmost.

Chopter 5 Cor'rlrjx'l'F nr:r: Lnrvc:uaclns

Figure 5.1

),-\
_1/

WnsicJer the gI'aIIuIIar wit} prochrctions

S --+ a,AB,

A --+ hRh,

fi __+ Al.\,

Then

S + uAB + a,hBhB + abAbB + abbBhhB + abbbbB + o'bbbb

is a lefturost rlcrivation of the string abltbb. A rightmost derivation of thc
same striug is

S + aAB + aA + u.hBh + abAh + abbtsbb + ahhhh

Derivotion Trees

A second way of showing derivat,iotrs, indt:pcndent of the order irr whitlh
prodttctiotrs arc usud, is by a derivation tree. A derivation tree is irrr

orclered tree itr which rxrdes are la,beled with the lcft sides of productiotrs

arrcl irr which the children of a node rcpresent its corresporrdirrg right sides.
For example, Figrrre 5. 1 shows part of a tlcrivation tree representirrg thc
prodnction

A - o.bABc.

In a derivation tree, a uode labeled with a variable occurring on the left

side of a production ha,s children consistiug of the symbols ou the right side

of that productiorr. Bcginning with the root, latrtrlerd with the start syntbol

and ending in leaves that ir.re tertninals, a derivatiorr tree shows how each
variable is replaced in thc durivation. The followirtg tlcfinition makes this
trotiorr precise.

[Rlnfii.fi�i�������������'f,tf,ffi,n,,.Nil$,lil,

Let G = (V,7,5,P) be a c:orrtr:xt-fiee gramlnar. Atr ordcred tree is a
derivation tree for G if ancl orrly if it has the following propcrtics.

I

5,1 CoNTEXT-Fnnn Gnnurutnns 131

The root is latreled ,9.

Every leaf has a la,bel from T U {I}.

Every inttrrior vettex (a vertex whic:h is not a leaf) ha,s ir. la,trcl frotn V.

If a vertex has labc:l A € V, and its chiklrt:rr are Iabeled (from ltrft to

right) o,1, a2,...,e,n, then P must conta,in tr, llrclductiou of the ftrrrn

A -+ u1u2 , ' , an ,

5. A leaf lahtllcxl\ Itas no siblings, thrr.t is, a vertex with a t:hiltl labeled A

ca,n have no other children.

A tree that has properties 13, 4 and 5, but itr which I docs rrot rrecessarily
holrl and in which property 2 is replacecl by:

2a. Every lcaf has a label fiom V U 7'U {I}

is said to be a, partial derivation tree.
The string of syrnbols obtained by reading the leaves of the trct: frotn

Ieft to right, omittirrg itrry ,\'s encoutrtered, is sirid to be the yield of thc tree.

Tlre descriptive term Icft to right ca,n he givt:rr it precise meaning. Tht: yield

is the string of trlrrninals in the ordt:r they are ettcoutrtered whetr the tree
is traversed in a depth,first rnarlrrer, always ta,king thc lefttrtost, tttrexplorttd
branch.

,$u\WWNNWW,W$I Consicler thc grarnmar G, with procluctions

S --+ aAB,

A -+ bBb,

fr --+ rtlA.

Thc tree in Figure 5.2 is a partial derivatiqn trce for G, while tlrc tree in

Figure 5.3 is a deriva,tiott tree. The string abBbB, which is tlrc vield of the

first tree, is a sentential form of G. The yielld of the second trtrtr, abbbb is a

sentence of I (G).
I

l .

2.

3 .

4.

Figure 5.2

Chopter 5 Cournxr-Fnnn L.lNc.tt)AcHs

Relqtion Between Sententiol Forms qnd Derivotion Trees

Derivation treeu give a very explicit and easily comprehended tlescription

of a derivation. Like transition graphs ftrr {inite automata, this explicitness

is a great helJr in making argurnetrts. First, thongh, we must establish the
connection between derivntions and derivatiott trctts.

.Let G -- (V,T,S, P) be a context-free gralilnar. Then fbr every 't € I (G),

tlNrre exists a derivation tr*,' of G whose yield is ir.'. Conversely, the yield of
trny derivation tree is irr -L (G). Also, if t6; is atry partirr.l derrivation tree for
CJ wlxrsc root is labelecl 5, tlrcrr thc yield of fs is a senterrtial fbrm of G.

Proof: First we show that frrr every sentential fortn of I (G) there is a cor-
rcsponding partial derivatittn tree. We do this by indrrction on the number
of stcps in the derivation. As a basis, we note that the clainred result is true
for every scntential form clerivable irr one step. Since S + u implics that

there is a production .9 -r u, this follows imrntldiately from Definition 5.3.
Assr.rme that for every sentential form derivablc in n, steps, there is a

corrcsponding partial derivation tree. Now any ?rr derivable in n * I steps

Figrre 5.3

5.1 CoNTEXT-I"II IJE Gnaultarr$ 133

must be such that

S I r A y , n , a E (v u 7 ') * , A € V ,

in rr, steps, arrcl

r A y + ' I A 1 A 2 " ' Q , , , . ! J : W r A L E V t l T ,

Since try tlte iucluctivc assunrption there is a partial derivatiorr tree with

yield :rA'g, aud sint:t: the gramrnar tnust have llroduction A + a1a2' ' '(trrrLr

we see that bv expanding thc leaf labeklrl A, we get rr, partial derivation tree

with yield r&rfl|" 'amA: rlr. By itrdrrctiorr, we therefi lre claim that the

rcsult is true for all sententirrl forms.
In a similar vein, we r:arr show that t:very partia,l derivation trr:c repre-

sents some scrrtential fbrrn. We will loave this a"s tlrr exercise.

Since a clcrivatiorr trr:c is also a, partial derivatiorr tree whosc leaves a,re

terninals, it follows that c:very sententlc in I (G) is the yield of some deriva-

tion trcrr: of G anrl tha,t the yielcl ()f every derivatio[tr:ee is irr l/ (G). I

Dcrivation tretls show whic*r productitlrrs are userl irr o[ta'ining a sen-

tclrx:e, but do rrot give tlx: order of tlx:ir applica,titlrr. l)erivtltitlrr trees are

ablt: to represent atry derivation, reflet:ting the fa,ct that this tlrtler is ir-

relqvattL, au gfus(:rvation whidr allows lltJ to close tr. gap itl the preceding

discussion. By cle{initionr any u E L(G) has a dcrivation, }rut we havet

rrot cla,imefl that it a,lso had a leftmost or rightrrrost derivtr,tiotr. flowevcr'

once wo have a, derivatiotl tree, wc catt alwaYs get a leftmost clerivatiott by

thinkirrg of the trce as having been brrilt irr such a, way that thc leftmost

variable in thc tree was rr,lways expantled lirst, Fillirrg iu a, firw details, wc

are Iecl to thr: rrot surprisirrg result that any ?tr € I (G) has a, leftmost and a

rightmost rlerivation (fbr cleta,ils, sce Exercise 24 at the erl(l of this scction).

Conrplete tire argumerrts in F)xample 5,2, showirrg that the latrguage giverr is

gerrerated bv the gra,mtnar.

l)raw the dcrivatiorr Lrcc corresponcling to the dcrivatiorr ilr Example 5.1,

Give a derivation tree for w : ahhltu,u,bbaba for the grammar in Example 5.2.

Use the derivation ttee to find a leftmost derivation'

show that the grarnrnar irr Example 5.4 does in far:t generate the language

describerl irr Equation 5.1. W

Is the language irr Exatnple 5.2 regular?

Cornplete the proof in Theorcrn 5.1 by showirrg that the yieltl of cvery partial

c{erivation tree with root ,9 is a serrtetrtial form of G'

1 .

,

3.

5 .

s.

134 Chopter 5 Conrrnxr-FRnr L,q,mcuacps

b
f! Find corrtext-free grammars for the following languages (with rr. > 0, rn) 0)

(u) I : {anb* : rt. 17n + 3} ff i

(b) , I : { u , " h " ' , n I n z - L }

(c) I : { a ^ b * : n l 2 r n }

(d) .L : {a 'b* :2n.1rr"< 3n} S

(*) I : {t l e {a, b}* : n^ (w) t ' nu (w)}

(f) .L - {Trr e {a,b* :no(u) > n6(u) , where r . ' is any pref ixof ur}

(e) I : {w e {o.,bl" : no (,w) : 2nt, (ur) + t}.

F ind context-free grarnrrrars for the following languages (with n,) 0, rn)
o , h > o) .

(a) I : { a ^ b c h : r l : m o r r n ! , h } f f i

(b) , I : {a "6*o"n : n : rn o r m I k }

(c) t r : { a n b * t k : h : n I m)

(d) . L : { a ' o b * c k : n + 2 m : t +)

(e) L : { a " b * c k : k : l n - * l } W

(f) f : {w e [a,b,c]* : nn (tu) + nr, (ut) I n. (w)]

(e) I : {a"h"'ck,h I n + rn)

(h) f : { a " b * c h : k > 3 } .

9' Find a context-free grammar for head(tr), where .L is the language in Exercise

/\\
7(a) above. For the definition of head, see Exercise 18, Section 4.1.

(10) Tndacontext-freegrammarforE: {o,b} forthelanguage p=
{anu^u?b : w E\ - / x-,n > 1].

*11. Given a context-free grammax G for a language tr, show how one can create

*--, from G a grammar I so that l, fe) = head.\L).
/ '\ | \ ./

(L2/ Lct L: {a"hn : n > 0}.
\ J

(a) Show tl::,;l Lz is context-free. S

(b) Show that .Lh is corrtext-frec for a"try given A) 1.

(c) Show that Z and -L* are context-free.

13. Let .Lr be the language in Exercise B(a) antt .Lz the Ianguage in Exercise g(d).
Show that Lt J Lz is a context-free language.

, 14. Show that the following; language is context-free.

L :
{uorur,, ,

i r t ,rr , , t t) e {a, b}+ , lul : l . .ul : z}

*r5' show that the complement of the language in Example 8.1 is context-free. W

5.1 Cot' l rnxr-FRer:ClR.nnrlunRs 135

16. Show that the cor[plefirent of t]re latrguage in Exercisc 8(h) is cotrtcxt*free.

fu-f) Sir. ,* that thc langrrage L : {wicl l)z i 'u. l , . t t)2 e {o. tr} ' ,*, t ur i t} , with } j :

{n,, b, c}, is context-free.

18', Show a tlerivation tree for the string aabbbb wit'h the grarntnar

g + , 4 8 1 . \ ,

A + ttB,

B - S b .

Civc a verhal tlescription of the language gerreratcd by this gralrlmar'

4ti9)orrsicter the grarnrnar with prorluctions
_--.,"

S * aaB,

A * bBiiltr,
f i + A a .

show that thc striilg aabbabba is rrot in the larrguaE;c generatecl by this

gau,rrrrrt"a. w

2O. Consider the tlerivation tree below.

I.'inrl a simplc graurrrrar G for which this is the clerivation tree of the strirtg

-rr:1ntrb'
Thcn find two ntore serrtettccs of I (G)'

/ Uu)n"ntte what one rrright mean bv properly rrested parenthesis stnrctures in-

volving two kincls of pareflthescs, say 0 and []. Irrtuil,ivcly, properly nestetl

str ings irr this situatiort are ([]) , (t t l l) t() l ' but not (Dl o' ((l l Using vour

clefirrition, give a t:ontcxt-free gramrnar for ge[erating all properly nested

parelrtnescs.

Fincl a rrrrrtext-free glalnlnar for the set of all regular exJrressions on the

alphabet {a,b}. f f i

Find a context-frec grallllllar that carr generate all thc production rules for

context-free grammars with T: {a,b} and V: {A,B,C}',fa*"""^"
(24. hrouo that if G is a context-fi'ee grammar, then every u E L (G) has a lcftmost
V ancl riglrtnost clerivation, Give arr algorithm for finding sudr derivations from

a derivatiotr tree.

136 Chopter 5 Cournxr-FRr:n Larqcu.q.c;ns

F'ind a lirtear grammar for the larrgua,ge in Example 5.1J.

Let G : (V,T,S,P) bc a context-free gramrnar such that every one of its
productiotrs is of the form ,4 * u, with lul : h) 1. Show that the dcrivation
tree for anv ?rl € I (G) has a height h such that

Iog i ' lu . ' l 5h<q+

{ff iff i Porsing ond Ambiguity

We have scl firr c:oncentrated orr the generative aspects of grammars. Given
er gr&rnmar G, we studied the sc:t of strings that c:an be derived usirrg (J. In
t:itscs of practical applications, we are also concerned with the analytical sidrl
of thtr grammar: giverr rr. string tu of tclrmina,ls, we warrt to know whether
ot rrot ru is in L(G). If so, we may want to find a deriva,tion of ru. An
algorithm that can tell rrs whether'ru is irr z (G) is a nrernbership algoritlrrrr.
Ihe tcrm parsing describes finding a se(luence of productions by which a
w (L (G) is derived.

Porsing ond Membership
civen a string ru in r (G), we can parse it in a rather obvious fashion;
wtr svstematically construct all possible (say, leftrnost) derivations arrd see
wlrcther any of thern rntr,tch ru. Specifically, we start at round one by looking
at all productions of the fbrm

S + J D r

finding all r tha,t can be derived ftom ,5 irr one step. If norrc of these
rcuult in a rrratch with tu, we go to the next round, in which we irpply
all applicable prod'ctions to the leftmost variable of every r, This gives
us a sct of sentential forms, some of thcm possibly leading to ru. On each
subsequent rr)und, we again take all leftmost variables and apply all possible
productions. It rnay be that sorrrc of these senterrtial fbrms can be rtrjected
orr the grounds that ur c&n never bc derived from them, but in general, we
will have on each round a set of prnsibJe sentential fbrms. After the first
rt)und, we have serrtential forms tlmt can be derivcd by applying a single
production, after the second round wtl ha,ve the sentential fbrms that carr be
derivecl in two steps, arrd so on. If u € L (G), then it rrlrst have a leftmost
derivation of flnite lerrgth. Thus, the nrethod will eventually give a leftmost
derivation of tt.

For referrlnr:e below, we will ca,ll this the exhaustive search parsing
rnethod. It is a ffrrnr of top-down parsing, which we can viuw ir,s the
c:tirrstnrction of a dcriva,tion Lr.ec: f'rom the root down.

2.5.

26.

5,2 Pnnstllc .q,no Atr,lrrIctlIrv tBT

S--+ 55 lo5b lb5a, l I

tr,nd tlre string ru : aabb. Round tlrre gives us

1 . 5 + ,5 ,9 ,

2. S + aSb,

3. ,9 + bSa,

4. ,9 + .\.

The last two of these r:irn be removexl from further <:orrsideration ftrr obvious
reason$. R.ound two thetr yields selntctttial forms

S =+ 55'+ S,95,

S + 5 5 + a S b , 9 ,

S + $, 9 + b S a S ,

5 + 5 5 + 5 ,

which are otrtained bv re:placing the lcftrnost S in serrtential form l with all
applicable substitutes. Sirnilarly, fiom senteltial fqrm 2 we get the addi-

tional sentcrrtial fonns

S + a S b + t r , 9 5 b ,

S + a S b + a a S b b ,

S + a b ' b + u ' b S a b ,

5 + a S b + a b .

Again, several of these ctr.rr be removetl frorn contentirlrr. On the rrcxt round,
we fiud thc actual targct string from the sequenc(]

S + a S b + a a S b b + a a b b .

Tlrerefore e,ahl) is in the larrguage gencrated

eration.

by the gratnlnar rrnder consid-

I

Exhaustive search ltarsiug ha,s serious fla,ws. The most obvioqs orrtl

is its terliolsless; it is rrot to be rrsed where erflicietrt pa,rsirrg is requirtxl.

But even wfien effic:itlrrclv is a setxxrdary issue, there is tl rrtore pertirrrlrrt

objection. While the rrrelhod alwir.ys parses au € L (G), it is possible tirat

it never tt:rmiuates for strings not in L(G). This is certaitrly the cilse in

Chopter 5 CoFrrnxr-Fnnn LRwcjunoes

the previous cxir,mple; witlt m : a,hb, the method will go on producing tria,l
sentential forrns indefinitely urrlcss we br,rild into it $ome way of sloppirrg.

TIte probklrn of nonterminatiorr of exhaustive $c:irrt:h pa,rsing is relativrly
elasv to overcornc if we restrict thc: forrn that the grirrrlma,r ca,n have. If wtl
examine Exarnple 5.7, we see that the difticulty cotn(ts tiom the productions
^5' -* tr; this prorhrction can be ustld to clecrease thc length of successivc
scntcntia,l fornts, so that we canttot tell *r,sily when to stop. If we do Irot
have arry srrr',h producbiorrs, then we have rttarry f'ewer dilTiculties. Irr fh,ct,
tirere are two types of produc;tion$ we wanl l,o nrlc out, those of tlxl firrnt
,4 --+ ,\ as well as those of the ftrrrn ,4 --+ B, As wc will see in the rrcxt
chtr.pter, this restriction does not irffcr:t the power of the resulting gratnrna,rs
irr ir.ny signilicarrt wav.

The gr*tnrnirr

S' *+ 55 laSbl bS u la,hl ba

satisfies thc given requirerncnts. It generates the language irt Exnmple 5.7
without thc empty string.

Given any Iil € latb]+, the exhaustive seitrch parsing metlxrd will al-
ways termirrate in no more than lrul rounds. This is clear becauser thc length
of the senteutial ftrrm grows by at lea*st one syrnbol in each rountl. After

lruj rounds we have either produ<:ed a, parsing or we know that w { L(G).

The idea in this cxample catr be gtrneralized and rnade into a theoreur
for context-fiee languages in genera,l.

Supptrse that G : (V,7,,9, P) is a context-free gralrrilrirr which does not
have any rules of the fornr

O - * t r ,

A * R .

where A, B e V. Thetr tltt+ cxhillrstive seart:h lla,rsing met,Itorl r:ilrr be made
into an algorithm whiclt, ftll any u € X*, cither pr:oduces a parsing of trt, ot
tells us that nrr parsing is possible.

Proof; For each sentential forrrt, consider both its length and the number
of terminal synrbols. Each step in the derivation increases at lcir"st one
of these. Since neither the lerreth of a senterrtial form nor the rrtrmber of

5.2 Pansruc AND AMBrcurrtr 1SS

tertninal symbols can excced lrul, a derivation carrnot involve rlore thtr.n
2 lul rorruds, at wlfch ti're we either haver a succerssful parsing or .u cannot
bc genertr.ted by the gra,rrrrrar. I

-

While the tlxhaustive search tnethod gives a theoretical guarantee that
parsing can rr,lways be done, its practical usefirlness is limitecl becausc the
number of sentential ftrrrns generated try it may be excr:ssivelv large. Exactly
how many sr:ntentia,l forms are generated diffcrs from case to case; no precise
gt:rreral resrrlt ca,n be ester,blished, tlut we can put nome rough upper bounrls
cln it. If we restrict our$clves to leftmost derivations, w() can have no more
thnn jPl scntential forms after one rountl, no ilrore than lpl? sentential
fclrurs aJter the set:ond round, a,nrJ so on. In the proof of Theortlrn s.t, we
obsclved that parsing ca,nnot involve more than ? lul rounds; therefore. the
total numtrer of sententiir,l forms cirnnot exceed

M = lF l+ lP l ' + . . .+ l e f t * t (5 ,2)

This indic.r.tes that the work for t:xhaustive seatrh parsirrg may grow cx-
ponentially with the le.ngth of the string, makirrg the cost of the mcthocl
prohibitive. of rxrurse, Equation (5,2) is only a, bound, and often the rrum-
ber of sentcntial forms is rnuch snraller. Neverthcless, practical observation
shrws that exha,rrstive search parsing is vcry inefficient irr most cases.

The const.l:tion .f more eflicient parsing methods for context-free
gralllmar$ is a crlnrplicated mattcr that belongs to a course rlrr compilers.
We wjll rrot pursue it here excr:pt for sorne isolated results.

Frlr every context-free grarrrrnar there exists a,n algorithrn that parses any
ut E L(G) itr a nrrurber of steps liroportiorral to lrirls.

There arer severtrl known rnethods to at:hieve tliis, brrt all of them are
sufficiently conrplicatcd that we ca,nrrot everr descritre thern wittrout devel-
oping some additiorral results. In section 6.8 we will take this question up
agnirr briefly. More detnils ca,n be fountl in Harrison 1gz8 and Hopcrofb
rrnd Ullrnan 1979. onc reasorr for not pursuirrg this in cletail is that evcn
these algolithms are unsatisfactory. A rnethod in which the work rises with
the third power of the length tlf the string, while better than an e,xponential
algorithttt, is still cluitc iuefficient, antl a corlpiler hased on it woultl neetl an
excessive amount of time to parse (lverr & nroderately long program. What
we would Jikc to havc is a, pirrsing rnethod which takes tiue proportional to
the krrgth of the strirrg. wc refer to such a, rnethod as a linear time parsing

140 Chopter 5 Corurpxr-FRuu Lerucu.q,cns

algorithm. we do not know any lindar time parsing methods for context-

free languages in general, but such algorithms can be found for restricted,

but important, special cases'

ltiffiffifiF|il,�fi.�H],,tifii ir

A context-free gra,mmar G : (V,7, S , P) is said to be a simple grammar

or $-grammar if all its productions are of the form

A --+ ar,

where A € V, a E T, * € V*, and any pair (A, a) occurs at most once in P'

The grammar

g -+ c, ,9 lbS$lc

is an s-grammar. The gra.mmar

g + a,9 lb55la$Slc

is not an $-grarnmar becarrse the pair (^9, a) occurs in thc two prodnctiolE

,S __+ aS ald S + a,SS.
I

While s-gramma,r$ are quite restrictive, they are of some interest. As

we will see in the next section, Illaily featlres of comtnon programming

languages can be described by s-grarrrmars'
If G is arr $-grammar, then any string trr in f, (G) can be parsed with an

effort proportional to ltul To see this, look at the exharrstive sea,rch method

ancl the string rl : tt1Q,2.,.a",. since there can be at rnost one rule with

S on the left, and starting with a1 olr the right, the derivntion rmrst begin

with

S + a 1 A y A 2 . - ' A * .

Next, we substitlte for the variable 41 , but sinr:e again there is at most one

r:hoice, we rnust have

S 1 a 4 a z B t B z " ' A z " ' A ^ ,

We see frorn this that eaclt step produces one tertrinal syrnbol arrtl hence

the whole process must be t;omplettld in tro more that ltul steps'

5.2 PARSINc aNn AMeIcuIrY 141

Ambiguity in Grommqrs ond Longuoges

On the basis of our argument we can claim that given any w e L(G),

exhaustive search parsing will produce a clerivation tree for tu. we s&y "4"

derivtrtion tree rather than "the" derivation tree because of the possibility

that a number of different derivation trees may exist. This situation is

referretl to as ambiguity.

A context-free grammar G is said to be ambiguous if there exists some

ut E L(G) that has at least two distinct derivatiou trees' Alternatively,

ambiglitv implies the t:xistence of two or more leftmost or rightmost deriva-

tions.

The graurmar in Example 5.4, with productions ,9

bigrrous. The setttence aaltb has the trvo derivation

5 .4 .

- aSb lS^91I, is am-
lrees shown in Figure

_ l

Ambiguity is a common feature of natrual languages, where it is tol-

erated and dealt with in a varicty of ways. In programming languages,

rvhere there should be urly one interpretation of each statement, ambiguitv

rnust be rerrtoved when possible. Often w(] can achieve this by rewriting the

grammar in an equiva,lent, unamlliguous fbrtn.

Figure 5.4

n Chopter 5 Conrnxr-FRnu l,,nncuacns

Figure 5.5
Two dcrivatirxr
t re.esfora*b*c.

Wonsider the grammar G: (y,T'-E,P) with

and productions

v = { E , I } ,
T : { a , b , c , * , * , (,) } ,

E - 1 ,
E - E l E ,
ff + E,rE,
E - (E) ,
1 - a l b l c .

Tlre strings (a+b)+c and q,rb + c arc in L(G)' It is easy to see that

this grarnmar getrera.tes a, restri(:ted subset of arithrnetic expressions lbr C

and, Puq(rill-like programming Innguages. The EI&IluIIar is arnbigutnts. For

instatrce, the string u, I b*c ha^s two differtlrrt derivatitln tree5, as shown itr

Figure 5.5.
I

One way tq resolve ttre ambiguity is, as is done in programmilg marlrells,

to associate lrrecedence nrles with tlttl operalors * and *' Since + norrrra'llY

has higher preccdence tharr *, we would ta,ke Figrrre 5,5(a) a-s the Correct

parsing as it indicates thal b*r: is a subexpression to be evaluated before
perfortring the addition. I-Iowevr:r, this resohrtion is cornpletely outside the

grammar. It is better to rewrite the gramntar so that only one parsing is

ptlsuihle.

(b)

5.? Pansruc Arun $.lrercrrr'rv 143

Figure 5.6

$,*qfiplo S, t t Ttr rewrite thc; grarnmtlr in Exa,mple 5.11 we introduce ncw varia,blcs, taking
V as {ll,7,tr',1} and repla,ce thc productiorrs with

E - + 7 ,

T ' - -+ F,

F --+ I,

E * : E * 7 ,
T - + T * F ,
F -+ (E) ,

I - o,lblr:.

A derivation tree of tlrc sentenrxr tt lb + c is shown in Figure S.6. No other
derivation tree is possible for this string: the grammar is urrarnbiguous. It
also is cquivalent to the grrrrnrnar in Exarnple 5.11. It is not too hard to
justify these claims in this speciflc instarrce, but, irr general, the questiorrs of
whether a, givt:rr context-free granrrrrar is amtliguous or whether two given
txrntext-free grarnrnars are equivalent are very difficult to answer. In fact,
we will latr:r show thrrt there are no general algorithms by which thesc
questions r:iut always be resolverd.

r

In the foregoing examplrr the amhiguity came from ttre grammar in
the sensc that it crruld be removed by finding a,n equivalent unambiguous
grammiir. In somr: instanrxls, howevcr, this is rrot possitrle becausc the
a,mhiguity is in tire langrrage.

L44 Chopter 5 Corirnxr-FR.r:r: Luqcuaclli

11Spfi ni.ri g1v611 ifliif

If L is a cont(rxt-hee langurrgtl tbr which thcre exists an rtn1mbiguotls Brtt'm-
rnilr, tltett -L is snicl to be una'rnbiguotts' If t:verY Branlrlrtrr that geueratt:s L

is aurlriguous, thcn the languirgtl is called inherently ambigrrous'

It is a, somewha,t clifficult tniltter even to exhi|it art inherently aIII-

i;:]"";;"'If, il,lfl.l ;,,I'"I;ff 1lrff ;.,: flll::l il llH,llffl'''r'�
r wi t h sor''�:

Exomplo 5.13 The languagt:

L --
{a"bn t : " ' } u {atbt t tc t t ' } t

with rz alcl rn non-negativr,., is an irrhcrently anrbigrrous conttlxt-fiee la[-

gllage.

That tr is cxrntext-free is ea,sy to sitow. Notice tha,t

L : L t U L z ,

-L1 is generir,terJ by

and .L2 is
rlur.:tious

51 - 51 clA,
A -- a,Abl.\,

by arr a,na,logous grermtnar with start syrrrbtll ,52 atrd llrtr

Sz - aSzlB,
B - bEr:ll.

Thcrr -L is gette*r,tecl by the t:ombiuatiorr of these two grarntnars with the

additional produt:tiorr

i i - 51lS2.

The grarrrrrra,r is ambiguorrri siltce tlrtl stritrg A''bncn has two distinct

clerivirtions, o1e strrrting with s =* 5r, tht: pther with,5'+ sz. lt tloes of

course not follow I'rom this that -L is inhererrtlv a'mbiguous a's there rnight

exist Sorrr() other tronarnbiguolts graIIIIna,rS for it. Brrt in sotne: w,ty ['1attd -L2

hi1ve colflicting requirerncnts, tire first puttitrg a rtlstrictiotr orr the uutnber

of a,'s a,trcl bts, while the scctlnr.l does thcl seune for bts il,nd c's. A ftlw tries will

5.? Fansrrvc+ arun Auucurly l4E

tluickly cortvince you of the imllossibility of combining thgsc requiremelts
itr a single set of rules that c:over the case n : m, uniq'ely. A rigorous
argulnent) though, is quitrl teclurical. one proof cilrr be founcl in Flarrison
1978.

r

Gl "u,.t arr s-Eirarnmar for tr (a,a,u,rtt a b).

2. Firrl arr s-gramrnar for L : {.a,"lt" : ru > 1}, ffi

B, l ' ind an s-grarri lnar fbr l, : {a' ' ,n,rr :.ru } 2}.

L9
show thal sno.t s-Br'alnlnar is unambigrrous.

Let G: (y,il,S,P) be an s-srarnmar. Clive an expression for the maximurrr
sizc of P in term.r of ll,/l ancl l7l.

6. Sltow that thc following grarrrrnar is ambiguous.

S * ABlaaB,

A - a lAa,

E * b , { f f i

7, Construct an urrarrrbiguous grammar equivalent to the grammar in Exercise 6.

E. Give the dcrivation tree for (((a "f b) + c)) * o f t), using the grammar irr
Exarnple 5.12.

L Show that a regular languagc cannot be inherentlv arnbiguorrs. ffi

10. Give an unambiguous grammar that gerrerates thc sct of all regular expres-
s i o n s 6 1 X : { a , D } .

11, Is it possihle for a regular grammar to be arnbiguous?

tt
| l i :*

that the larrguage 7: {uu,I l : tu E {a,b}-} is not inhererrtty ambigu-

13. Show that the folkrwing gramlnar is amhiguous.

S + aSbS lbSasl A

L4. Show that thc grammar in Example 5,4 is ambiguous, but that the lnnguage
denoted bv it is not. W

15, Slxrw that the grammar in Exarrrple 1,13 is ambiguous.

16, Show that the grammar in Exarnple 5.5 is unambiguous.

17, Use the exhaustive scarch parsirrg rrrethod to pa,rse ttre string abbbbhb with
the gramrnar in Exanrple l-r.l'r. In general, how rnarry routcls wil.l be neederl
to parse any string ru in this language?

146 Chopter 5 Corurnxr-Fnnn LeNcuacns

Slxrw that the grammar in llxar,rrplc 1.14 is unambiguous'

Prove the following tesult, Let CJ : (y,T, s, P) lre a cofltext-free Btailrrrlar iil

wlrich every A e V oc(ilrft on the left side of at urost o1c productiol' Thert

(J is urrarrrloiguorrs.

Fistl a grammar equivalent to that in Exa'rurple 5.5 which satisfies the trrrxli-

tiorts of Theorem 5.2. m

$ff i f f i l i i Context-Free Grummors dnd
Progromming Longuoges

One of tlte rnost imporlant uses of tlrtl tlxxrry of fbrmal languages is in the

clefinition of programmitrg languagcs a,rxl in the construction of itlterpreters

nrrcl compilers fbr them. The basic problclll }rtlrtt is to define a, programming

lar,ngrr:lge precisely arld to use this clefinitiorr a.s the starting point for the

writirrg of c:ffir:icrit a,ncl reliable trauslation prograllls. Both rcgrtltr,r and

cotrtext-frec lirrrguirgt,'s tr.re important in achieving this. As wtl hirvtt $een,

regular lalguagels irrc u$ed in the recognition of certain sitrtpltl ltirttl'rns
which occur in prograrrrrning la,ngrrages, but as we arguecl in the irrttoduction

to this chapter, we rrefil c:ontext-fiee langnages to model more cortrplic:attxl

turpects.
As with most other latrguages, wc (:irrl define a programming latrguage

by a grir,mmar. It is traditiorral irr writing orr pr()gfammirrg languages lo

usc ir rxrnvention f'or specifyilg gIaIIIInars calltlrl the Bachus-Naur form or

BNF. This forrn is in essence the sarne as the notatiorr wc havtt used here,

bqt the appearallce is diffcrr:rrt. In BNF, va,ria,bles are enclosed in triarrgular

brir.r:kets. Termilal symbols are writtr:rr withorrt any special marking. BNF

illso uses subsicliary syrnbols such as l, rmrt:h in the way we have done, Thus,

tlre grirrnmtr,r in Example 5.12 miglrt appear irr BNF a*s

(erpressi,on) ::: (terrnl | (t:nytre.ssion) I (term) ,

(terrn) ;;: (/ar:tnr) |(term,) + (/octor) ,

aqcl so o1. Thg symbols * ancl + are tetgrirtals. The symbol I is used

as an alterrrator iL'J in our rrotatiotl, but ::: is usetl instearl clf -+' RNF

clescriptious of programrning lir,ngua,ges tend to use more t:xltlit;it va,riable

icleltifiers to make the irrtcrrt of the production explicit. But othcrwise there

irre no significant dilleretrccs bctwtlen the two notations'
Ma,ny parts of a Pascal-likc progra,mtning language are susceptiblc to

rlclinition lry restricted forrns of txlntext'fiee glammars. For exarrrplel, ir,

Itascirl if-then-else statetnent can be tlclfirrtld as

(i,f -state.me.nt) ::: i,f (erprt:ssi,on) (the'n-clause) \else-clause) '

18 .

19 .

20.

5,3 Cox'r'Erxr-Fn,nn GnalrlreRs AND PROGRAMMING Laucuacns L47

Here the keyword z/ is a terminal syrrrbol. AII other term$ are variables
which still have to be defirrcd. If we check this against Definititlrr 5.4, we see
that this looku liktr arr s-granunar production. The variable (if -statement)
on the left is always associated with the terrnirral z/ on the right. For

this reason such a statement is easily arrd efficietrtly parsed. We see here

a reasorr why we use keywords in prograrrntitrg languages. Keywrlrd$ not

otily provide some visual structurqr that can guide the reader of a prclgrarn,

but also make the work of a, rxlrnpiler rnuch easier.
Unftrrtunatelg not all features of;r typical programtning language (jaII

be trxpressed by an s-gramrna,r. Thtl rules for (erpress'ion) abovtl irre rtot of
this type, so that parsing hecomes lt:ss obvious. The question then arises for
what grammatical rrrles we calr pertnit and still parse cflicierrtly' In compil-
ers, extensive use has bcen tnade of what are called LL arrd LR grammars,
whic:h have the ability to express tlrt: less obvious features of a prograrrrrning

larrguage, yet allow us to pilrst: irr linear time, This is not a, sitrple rnatter,
ancl much of it is beyond thc scope of our discussion. Wtr will briefly touch
on this topic in Chapter 6, tnrt for our purposes it sufficers to realize that

$rrch granulrars exist and have brlcrr widely studied,
Irr connection with this, the issue of ambiguity take$ orr added signifl-

(jarr(ic. The specification of tr prograrrlllring language must bcl urrarnbiguous,
otherwise a program mav yield very different results wherr processed by
different compilers or rurr on different systems. As Exarrtple 5'11 shows, a
naive approach catr easily introdrrce a,mbiguity in the gra,mmar. Ttl avoid
such rrristakes we must he a,blc to recogtrize attd remove arnbiguities. A
related question is whether a language is or is not irrherently ambiguous.
What we need for this purpose are algorithms for cletecting attd remov-

ing ambiguities in cx)rrtr:xt-free grammars and ftrr tleciding whether or not

a context-free ltr,nguirge is inherently ambiguous. Unfortunately, theutr irre

very difficult tasks, irnptlssible in tlte most general scIISe' as we will see later'

Those a^spert:ts of a programming language which can be modelul by a

context-fieel grallrlrlar are usuallv rerfilrrcd to as its syntax' However, it
is rrortnally the case that rrot all programs which tr,rt: syrrtactically correct
in this serlse are in fact acceptatrle program$. For Itascal, the usual BNF

definition alkrws constructs such a,s

1)Qrr111 : r'eal;

r, z ' . ' i r t teqer

u&T 'r i ?n.[egel";

n : : 3 . 2 .

Neither of tht:stl two cotrstructs is a,crccptirble to a Pascal compilt:r, sitrce they

violate otherr constraints, such iLT "etrn irrtcger variable cannrlt bc assigtred

Chopter 5 Corurnxr-FRnn Lamcuecns

a real value," this kind of rule is part of progra,mming latrgua'ge senlall-

tics, sinrxr it ha,s to clo with how we ittterpret thtr rntrir,ning of a, pa,rticular

corNtruct.
Prograrrrrrrirrg lrr,ngrra,ge sema,ltics are a courplicatctl rnatter. Nothing

as elegattt atrtl cxlrrt:ise a,s context-free gramilrars exists ftlr tIrc Specifica'tion

of prograrnrrring lnngrrage semantics, aud Colsequerrtly some semantic fea-

tures ilrav bc poqrly definecl or ambiguotts. It is atr orrgging concern both

i1 prograrnrrrirrg larrgrtages and itr formal latrguage thexrry to find effective

rnetho,Is ftrr tle{ining prograrnming lauguage scrtrilntics. Several methods

have beel proposedr btrt none of them have }ee1 as uttivcrsnlly accepted

and as successful for sernarrtir: tlcfinition as context-free languages havtl bt''en

for svntax.

1' Give a complete dcfinition of \ex'pressiora) for Pascal,

2, Give a BNH dcfinition fbr the Pa^rcal while statement (leavilg t]re general

concept (sfc,te,nent) undefinccl)'

3. Give a BNF Hril,r[rrrar t]rat shows the rela,tion between a Pascal program ancl

its srrbprogrants,

Give a BNF definititxr of a FOttiI'RAN do statement.

Give a definition of ttre correct form of the if-else stateuent in C'

Find examples of fcatures of c that <:annot be described by context-free gtam-

IIIATS.

4.

5 .

6 .

S i m p l i f i c q t i o n o f
Contex t -Free
G r q m m q r s q n d

N o r m o I F o r m s

efore we carr study context*free languages in grealer clepth, we must
atttlrxl to st)rnt: te:t:lrrrit:irl rnirtters. Thc tlcfirrition of ir contexl-free
grirrrrrrriil irnpOses ntr rtlstrit:tiorr whatstltlver oil the right side of a
llrorlur:tirirr. However, corrrplelter freedonr is rrot necessary, ancl in facl,

is a detrirnent il sorne argumenls, In'I'heoretr b.l, we saw the corlelielce
of certairt restrictiorts olr gralrulratical forlm; elirninating rules of the forn
A - A and ,4 - B made the arguments easier, In rnany irrsta,nces, it is
desirable ttl place evell lror(l stringcnt rustrir:tirlns rlrr tht: grirrrrrrriir. Bccausc
of this, we Ileed to look irt rnethocls for' lrirnsfonning an arlritrary corltext-
free gta,mrna,r into a,n eqrriva,lent one tha,t sa,tisfies certa,in restrir:titins on its
f'rrrrn. [n this r:ha,pter wel strrdy $evrtrill trrr,nsftlrmir,tiorrs arrtl sutlstituticxrs
thu,t will bc rrscfirl irr srrbsr:tlrrclrrt rlisrlrssiorrs.

\A/tl alstl irrvt:stigtrtc rrorrnal forrrrs f'rlr cxirrtr:xt-fr(xi grarrrrrrars, A 1or-
rnal filrrn is orrt: tlurt, a,lthough rr:strir:tc:rl, is llroad errough so that, a1y
glirrrlrrlirr hlm itrr tx|rivirlertt trorrrtirl-forrrr versiorr. We itrtroduce two of the
tnost useful of these, the chomsky norrnal form ancl the Greibach nor-
mal form. .Both ltave tnatr.y practical and theoretical uses. An immecliate
applicalion of the chonrsky normal forrn to parsing is giveri in ser:tion 6.3.

149

I
1 5 0 Chopter 6 Slr,rpl,t.lcnrroN or.. Cournxr-FnEE GRAMMARS AND NORMAL FoRMS

The somewhat tedious na,ture of the material in this chapter lies in the

fact that many of the arguments are manipulative and give little intuitive

insiglrt. For our purposes, this technical aspect is relatively unimportant
and can be read casually. The various conclusions are significant; they will

be used many times in later discussions'

f f i f f i Methods for Tronsforming Grommors

we first raise an issue that is somewhat of a nuisance with grammars and

Ianguages in general: the presence of the empty string. The empty string

plays a rather singular role iil many theorems and proofs, and it is often

necessary to give it special attention. We prefer to remove it from consider-

ation altogether, looking only at languages that do not contain ,\- In doing

so, we do not lose generality, as we see from the following considerations'

Let .L be any context-free language, and let G: (V,T,S,P) be a context-

free grammar for -L - {I}. Then the grarnmar we obtain by adding to V

the new variable ,96, tnaking Ss the start variable, and adding to P the

productions

5o - ,91tr,

genera,tes .L. Therefore any nontrivial conclusion we c8,n make for , * {I}
will almost cortainly transi'er to .L. AIso, given any context-free grammar

G, there is a method for obtaining d such that -L (e) : , (G) - {I}

(see Exercise 13 at the end of this section). Consequently, for all practical

purposes, there is no difference between context-free languages that include

.\ and those that do not. For the rest of this chapter, unless otherwise

stated, we will restrict our discussion to .\-free languages.

A Useful Substitution Rule

Many rules goverrr gerrerating equivalent grarnmars by means of substitu-

tions. Here we give one that is very useful for simplifying grammars in

various way. we will not define the tenn s'implffication preci$ely, but we

will use it nevertheless. What we meaJl by it is tlte removal of certain types

of undesirable procluctions; ttre process does not necessarily result in an

actual reduction of the number of rules.

Let G : (V,T,S, P) be a context-free grammar. Suppose that P contains

a production of the forrn

A --+ r1Br2.

Assume that ,4 and B are different variables and that

B + a t l a z l " ' l a "

6.1 MerHoos poR TRnl,rsFoRMrNG GnelrlreRs LEt

is the set of all productions irr P vrhich have B as the left side. Let E :

(V,T,S,F) U- the grammar in which F is constructed by deleting

A - ntBrz (6.1)

from P, and adding to it

A --+ n rarrz ln raznzl . . . lrtanrz.

Then

Proof: Suppose that ,r.rr e L(G), so that

S 4c tr.

The subscript on the derivation sign * is used here to distinguish between
derivations with different grammars. If this derivation does not involve the
production (6.1), then obviously

S 3 6 - .

If it does, then look at the derivation the first time (6.1) is used. The B so
introduced eventually has to be replaced; we lose nothing by assuming that
this is done immediately (see Exercise 17 at the end of this section). Thus

S 4c urAuz 46 u1r1Bfrzuz +G utixr,gjr:zuz.

But with granrmar d we can get

S 16 u1Au2 46 u1fr1! in2u2.

Thus we can reach the sarne sentential form with G and d. tr 1e.r; is *secJ
again later, we can repeat the argument. It follows thrrrr, lry induction on
the number of times the production is applied, that

S 4 6 u .

T h e r e f o r e , 1 f w € L (G) , t h e n , e t (E \ .' , \ , /
By similar reasoning, we can strow that if w € L(t), tnu" w e L(G),

completing the proof. I

-

Theorem 6.1 is a simple and quite intuitive substitution rrrle; A produc-
tion A - ntBrz can be eliminated from a f{rammar if we put in its prace

, (*) = r (G)

152 Chopter 6 SrurunrC.lrlgN OF COlrrnxr-li'Run GrtRMH,laRfi aNl NOR\,IRL Fc;R.MS

the set of procluctions in which B is replaced by all strings it derives in one

step. In this result, it is necessary that A and B be different variables. The

case when A : B is partially addressed in Exercises 22 and 23 at the end

of this section.

Consider G : ({A, B} ,Io,b, c} , A, P) with productions

A --+ a,luu.AlabBc,

B -+ ahbAlb.

using the suggested substitution for the variable B, we get the grammar d

with productions

A --+ alaaAl aba,bltAclabbc,

B + ahbAlb.

The new gramma,r d is equivalent to G. The string aaabbchas the derivation

A+ aa,A4 aaabBc4 aaabbc

in G, atrd the correspotrdittg derivatiotr

A + a a A + a a a b b c

ln (j.

Notice that, irr this ca*se, the variable B and its a^lsociated prgductions

are still in the grammar even though they can no longer play a part in any

clerivatiorr. We will see shortly how ulch unnece$$ary productions can be

removed from a gralrfnar.
_ I

Removing Useless Productions

Onn invariably wants to remove prodlctions from a glammar that can ne,ver

take llart itt any derivatitln. FOr example, in the grAmrn1l wlxlse errtire

production set is

S - a^9b l . \ lA,

A - a A ,

the protluctiorr ,5 -+ A Clearly playS nrl l()ler a$ -4 CAnnqt be trarrsfortrtxl

into a terminal string. While A can occur itr a string derived frorn 5, this

can never lead to a sentence. Retnoving this production leaves the Ialguage

unaffected and is a simplification by any definition'

nxqmpli o.t

6,'l Mr:'r'sor$ FoR TRANSFoRMTNG Gn.a,rr,rlrnns lEB

Let G : (V,7,5,P) be a ctlntext-free granrmar. A variable A e V is saicl
to be useful if and only if thenr is at least one ?rr € tr (G) such that

S # r A y 1 w , (6 2)

witlr r, y in (V U7').. In words, a variable is rrseful if and only if it occurs
irt at least one derivation. A variable that is rrot useful is called useless. A
production is useless if it involves arrv useless variable.

[xornpl+ s'2 A variable may be u$e]ess because there is no way of getting a terminal
string from it. The case just mentioned is of this kind. Another reason a
varia,ble may be rneless is shown in the next grarnmar. In a grammar with
start symbol S arrd productions

5 - i A ,

A - aAlA.

B - b A ,

the variable B is useless and so is the production B - bA. Although B ciln
derive a terminal string, thert: is rro way we can achieve S # nBy.

I

This example illustrates the two reason$ why a variable is useless: either
because it cannot be reached fiom the start symbol or because it canrrot
derive a terminal string. A procedure for removing useless va-riables and
productions is based on reco6pizing these two situations. Before we present
the general case and the corresponding theorem, let us look at another
example.

iinx.d$$frqirbisli*Eliminate useless svmbols
v : {s, A, B,cI and ? :

atrd productions from G * (V,T,S,P), where
{4, b}, with P consisting of

S - a S l A l C ,

A + a t

B -+ aa,

C - aCb.

Figure 6.1

Chopter 6 SlvtplIllcRtloN oF Courpxr-FREE GRAMMARS AND NoRMAr, Fonnrs

First, we identiff the set of variables that carr lead to a terminal r*ring.
Becarrse A -+ a and B -r oG,, the variables A and B belong to this set.
So cloes ,9, becarrse S + A *# a. However, this argument cannot be made
for c, thus iderrtifying it as useless, Removing c and its corresponding
productions, we are led to the grammar Gr with variables yl : {,S' A, B},
terminals T : {a}, and productions

S - aSlA,

A + 0 , ,

B - a a ,

Next we want to eliminate the variables that cannot be reached from

the start variable. For this, we can draw a dependency graph for the vari-

ables. Dependency graphs are a way of visualizing complex relationships

arrd are found in many applications. For context-free grammars' a depen-

dency graph ha-s its vertices labeled with variables, with an edge between

vertices C and D if and ontv if there is a productiotr form

C * rDy.

A dependerrcy graph for Vr is shown in Figure 6.1. A variable is useful

only if there is a path from the vertex labeled s to the vertex labeled with

that variable. In our case, Figgre 6.1 shows that B is useless. Removing it

and the affected productions and terminals, we are led to the fi.nal answer

e : (t ,i, s, F) with fr : {S, A} , i : {o}, and productions

S --+ aSlA,

A --+ a.

@

The formalization of this process

the corresponding theorem.
Ieads to a general construction and

I

L e t G : (V , 7 , 5 , P) b e

equivalent gra*rrrur I :

variatrles or productions.

a context*free grammar.

(t,.fr.s.F) tnut do*,
\ /

Then there exists an

not contain any useless

6.1 Merlrops non TRarqsFonMrNc GBenruens lEF

Proof: The grammar I can be gr,,ncratecl from G by an algoritirur consisting;
of twtr parts. In the fir'st paxt we rxrnstlLrct an intt:r.mediate graqrrrra r G 1 :
(V,T2,5,P1) such that V1 contirirrs only va,riablcs A for whir*r

A 4 . L o € T *

is possible. The steps irr the algoritirm irre;

1. Set V1 t,tt fr.

2. R.epeat the ftrllowing step rrrrtil no rnore variables are arlclecl to v,.
lbr every A e V for which l, has a, prorluction of thc forrn

A - rtnz' . . 'rr,t with all irr in yr U ?,

adrl A to I/1.

3. Ta.k* 1l as all thr: productions irr -P whose syrrrbols are rr,I1 in (yl u ").

ck*r.r'ly this prornclure termi'*tes. It is eq'ally crear that if A e vr,
tht:rr A 4 ru e 7* is a possitrle cleriva,tion v/ith Gr. Thc remaining issue
is wlrether every,4 f 'or which,4 $ rr : ah.'. is acrcled to v1 before the
procedure tclrrninates. Ttr see this, cxlrrsider any such ,4 ancl look at the
partia,l rltlrivation trcc correspondirrg to that dcrivation (Figure 6.2). At
level A, tht:re are only terrnina,ls, so cvery variablc Aa at level A - 1 will bel
aclded to l/1 on the first pa"ss through step 2 of the algorithtr. Any va,riirlile
at level a - 2 will thr+n be added t, v1 on the sex;ond pass through step 2.
The third Lirne throrrgh step 2, all variables at level a * :l will be rr,rldecl,
and so on. The algorithnr cilnnot terminir.ter while therc a.re va,riable.s in the
trcc that are nrt yet in I,l . Hence A will cventually bt: adcled to [.

Irr thn seconcl part of the constructiorr, we get the lina,l answer t fro*
G1. wc draw the va.riable dept:rrdency graph ftrr Gl and from it find all

Figure 6.2
\ , {)

- T.evel r -2

- Level,&-1

- - - - - - - L e v c l , 4

r56

u

r s
f

, r ? + $

1 t
i . f i

{
. t

f"

* : i

{

.Jf7
o

1,tr.

Chopter6 SrN{1'1,lprc.cr,roN OF CoNttlx'trli'ttEE CIRAMMARS nnn Non,lral Fottr,t$

va,riables tha,t c:aunot be rtler,ched frotrt 5'. These artl removed frorn the

va,riable Set, it$ a,re the proth.rctions involving them. Wtl t:an also elirnina,te

tr,ny ternrirurl that d,oes rrot cicclnr in sotrrc rrseful prothrction. The rcsult is
' A t * . f . s . F \ .

t t l eg la r l r r l l i r r u : \ v / ^
Becaust: 6f the colstnrr:tion, G does not contain any trseless syilrtlols or

procluctions. Also, for each tu E L (fJ) wtr have a clerivation

S l t A y l u ; '

$iuce the c:orrstruction of d retains A a,rrr.l all assoclia,ted proclrrc:tions' we

Irave everyttring ueeded ttl rnake the tlt:rivation

S t--6 nAy 11u ru.

The grirrnma. d ir t:orrstructecl frorn G by tlrt: rtlrnoval of prcitlucltious,

sr tha,t F g p.()o.seq*cntly 1,(e) e LG). Putting the two rt:srtlts
^ \ /

togethr:r, we see that G a,rrcl G arc ttqrtivaleut' I

Removing A'Productions

One kincl of llroc]uction tha,t is sornetirrrcs unclesiratrle is otre in which the

right sicle is the ernpty string.

iF fll'ili!,,ic,nr"1f;i?,riilr"rr i1t,,,,

Arry producliorr of a, cotrtext-fi'ee gralrllrlirr of the folrn

A - A

is called ir, .\-production, Auy variir,ble A for which the deriver,tiotr

A + A (ri 3)

is uossible is cralleri nullable.

A. graurrrrilr tnay gt:ritlrate a lauguir'ge not

.\-llrocJuclioris or: nullir,ltlt: vtlriables. Irr suclt
[rt: renroved.

clonta,irring tr, yut have sornt:
cascls, the .\-prorluctious cillr

6.1 Ml:'rHops l.'oR TRAN$FoRMTNC; Gnelrrverr,s 167

S n aStb,

51 -+ a51blA.

This grammir.r genera.tes the A-free language {a,nb" : n, > i}. T}re .\-production
51 --+), ca,n be removed after addirrg new prtiductions obtairred by srrbsti-
tutittg A for 51 wherc it occurs on thc right. Doing this we get the gr:Irrimar

$ ' - aS' rb lab,

5r - a.$rblab'

We can ea"sily show that this n()w gramrrrar genr:rates the samr: language: as
the clrigina,l otre.

Irr rnore grlrreral situations, substitutions for .\-protluctions can ht: rnade
in a, similar, althougtr rnore r:ornplicil,ted, marrner.

I

Let G be arrv r:otttext-fiee gr:r.rnmar with .\ not in L ((;). 'fhen there cxists

an eqrlivalcnt gramrnar I having uo .\-productions.

Proof: We lirst find tire set U1s of all mrlla.ble variables of G, usirrg the
fbllowing strllls.

1. Fbr all productions A --+.\, prrt A into H1y.

2. Repeat l,he following step until no firrther vrrriables ir.re adrlt:d to V,n,.

For all nroductions

fi _- 4142. . . A,,,

where .41, Az,...,An art: in !fu, put B irtto l/r, ' .

Onc:c the stlt V7lr hirs been founcl, we are ready to construct F. 'Io .1,, ro,
we look at all productions in P of the fbrrrr

u l + a D r f f t " , f r m , r r r l 2 1 ,

wherc each nt, (V U ?. For t:ach srrr:h procluction of P, wc put into F tn,nt
procluction ir.s well ar,s all th<lse generated lry repla,cing nullable variables witlr
A in all pousible corrrbina,tions. Fcrl exa,mple, if z1 and r:,i are botlt nullable,

tirere will he oue prorluction in F with fir r()placecl v/ith .\, one irr which ri
is rcplaced with A, and onc iu which both ri and 11 a,re repltr,t:ed with .\.

158 Chopter 6 Slrrrurlc.qltoN r)r' CoNrnx'r'-lr-nEE GRAMMAR,sI AND NoRMAI Fon,vs

Tht:re is onc exception: if all r,; fl,re rnrlla,ble, the prodrrctiotr A -+ .\ is rrot

Put into P.
The argumerrt that this grauunnr d is cqrrivalerrt to G is straiglrtftrrwarcl

atrtl will bo left to the rearlor. I

Firrcl a t:rintext-f'ree grarrrma,r without .\-productions equiverleut to the gratr-
ruilr defitrtld by

S - ABaC,

'1 - BC,

B - b lA ,

C --+ Dl.\,

D * d , .

Fhom thc first stcp of tlrc coustntctiorr in Theorern 6.3, we lirrrl that the
rurllable variables are A, E, C, Therr, folkrwing the second step of the con-
strut;tion, wc get

S - ABaC lEn,Cl AaC lA B al aC lAal E o,la,
A - B l C l B C ,
B - b ,
(' - -+ D ,

D -+ tl,

Removing Unit- Produciions

As we see from '-fheorent
6.2, prrlrfilctious in which both sides irre a single

variable art: at tiurcs uncltlsirahle.

,i$fi'f,initien-'0,,i iiil,fii

Arry production of a, contcxt-free grilmrrrirr of lhc fbrm

A --> B,

where,4, B €V is called a unit-production.

I

i.1 Msrnons noR TRehrsFoRMrNG GRerr,rr\l,rRs 159

To remove unit-productions, we use the substitution rule discussed in
Theorem 6.1. As the construction in the next theorem shows, this carr be
done if we proceed with some care.

Let G : (V,7,5, P) be any context-foee grammar without .\-productions.

Then there exists a context-free grammar e: (t,f ,S,F\ that does not
have any unit-procluctions a"url that is equivalent\to G.

/

Proofr Obviously, any unit-productiorr of the form A -- A can be removed
from the grammar without effect, and we need only consider A -+ B, where
,4 and B are different variablerl. At first sight, it may seem that we carr use
Theorem 6.1 directly with rr : nz = .\ to replace

A - B

witlt

A - u t l a z l " ' 1 a " .

But this will not always work; in the special case

A - B ,

U - 4 ,

the utrit-productions a-re not rentoved. To get arourrd this, we first Iind, for
each ,4, all variables B such that

t 4 n . (6 4)

We can do this by dtawing a dependency graph with an edge (C, D) when-
ever the gtammar has a unit-prodtrction C -+ D; then (6.4) holds whenever
there is a walk between .4 anci B. The new grammur d ir generated by
first putting into F ail non-unit productions of P. Next, for all A and B
satisfying (6.4), we add to P

A - y t la t l " '1a" ,

where B + A1lyzl. . .U* is the set of all rules in F with B on the left. Note
that since B - !r,,lgl | ' . ly, is takerr from F, rrone of the ya can be a single
variable, so that no unit-productions are created by the last step.

To show that the resulting grarnmar is equivalent to the original one we
can follow the same line of reasoning as in Theorenr 6.1. I

Figure 6.3

160 Chopter 6 SturlrnceuoN oF Conrexr-FnnE GRAMMARS AND NoRMAL Fonns

o @[]

---------. -:J

Gxomp l i 6 .6 Remrtve all unit-productions from

S * AtrlB,

B _ Albb,

A --+ alhcl B.

The dependency graph lbr the utrit-productionr is given in Figure 6.3; we
see from it that ,9 + ,4, S + E, B + A, and ,4 4 B. Hence, we add to the
origJinal non-unit prodrrctiotrs

f f + A a ,

A + albc,

f i + b b ,

the new rules

S - a l h c l b h ,

n --+ bb,

B * albc'

to obtain.the equivalent grammar

5 - a lbclbblAa,
A --+ albblbc,

B ---+ albblbc.

Note that the removal of the unit-productions has made ,B and the a*ssoci-
ated productions useless

I

We carr put all tltese results together to show that gramma"rs for context-
free language$ can be made free of useless productions, A-procluctions, and
unit-productions.

Let .L be a context-free language that does not coutain A. Then there exists
a context-free grarnmal that generates .L and that does not have any useless
productions, .\-productiorr$, or unit-productions.

6.1. Mnrsons roR TR,aNsFoRMING Gn.q,rtlra.ns 161

Proof: The proceclures given in Theorems 6.2, 6.3, and 6.4 remove these
kinds of productiorts in trrrn. The only point that needs consideration is
that the removal of one tyJre of production may introduce productions of
another type; for example, the procedure for removing .\-productions can
create new unit-productions. Also, Theorem 6.4 requires that the gram-
mar ha,ve no A-productions. But note that the removal of unit-productions
does rrot create tr-produc:tions (Exercise 15 at the end of this section), and
thc removal of useless productions does not create A-productions or urrit-
productions (Exercise 16 at thr: end of this sectiorr). Therefore, we can
renrove all undesirable productions using the following sequence of steps:

1. Remove A-productions

2. Remove unit-productions

3. Remove u$eless productions

The result will therr have none of these productions, and the theorem is
uroved. I

-

1" Cornplete the proof of Theorem 6.1 by showing that

, In Example 6.1, show a derivation tree for the string ababbbac, using both

the original and the modified grammar.

Show that the two Erammars

implies

and

,5 :+d rlj

D ;+G: tlr.

S + abABlba,

A + o..an,l

B - aAlbh

S + ahAaAlabAbblba,

A + aaa,

are equivalent. ffi

L62 Chopter 6 Slupr,rnce,rtoN oF CoNroxr-FREE GRAMMARS AND NoRMAL FoRMS

4, In Theorem 6.1, why is it necessary to assume that A and B are difierent
variables?

5. Eliminate all useless productions from the grammax

S - aSlAB,

4 - b A ,

B - A A -

What Ianguage does this grammar generate?

6. Eliminate useless productions from

g + a l a A l B l C ,

A * aBlA,

B * A a ,

C - cCD,

D - ddd.

7. Eliminate all .\-productions from

L Remove all unit-productions,
from the grammar

S - AaBlaaB,

A * I ,

B + b6,41.\.

all useless productions, and all A-productions

S - aAlaBB,

A + aaAl,\,

B + bBlbbC,

C - B ,

What language does this grammar generate? ffi

L Eliminate all unit productions from the grammar in Exercise 7.

10. Complete the proof of Theorem 6.3.

11. Complete the proof of Theorem 6.4.

12. Use the construction in Theorem 6.3 to remove A*productions from the gram-
mar in Example 5,4. What language does the resulting grammar generate'l

13 .

6.1 Mer'sons FoR TRANSFoRMTNG GnertlreRs 163

Suppose that G is a context-free grammar for which I € .L (G). Show that if
we apply the construction in Theorem 6,3, we obtain a new grammar d such

rha rz (S) : r (G) - { .U .

Give an example of a situation in which the removal of .\-productions irrtro-
duces previously norrexistent rrrrit-productions. ffi

Let G be a grammar without A-productions, but possibly with somc unit-
productions. Show that the construction of Theorem 6.4 does not then intro-
duce any,\-productions.

Show that if a grammar has no .\-productions and no urrit-produrtions, then
the removal of useless prodrrctions by the construction of Theorem 6.2 does
not introduce any such productions. ffi

Justify the claim made in the proof of Theorem 6.1 that the variable B can
be replaced as soon as it appears.

Suppose that a context-free gramrnar G: (V,T,S,P) has a production of
the form

A + f r y ,

where tr, l/ € (y U ")t. Prove that if this rule is replaccd by

A + B y ,

B + x ,

where "B { V, then the resulting grammar is equivalent to the original one.

19;, Oonsider the procedure suggested irr Theorerrr 6,2 for the removal of useless
'l:pfoductions.

Reverse the order of the two parts, first eliminating va"riables
that cannot be reached frorrt S, therr renroving those that do not yield a
terminal string. Does the new procedure still work correctly? If so, prt;ve it.
If not, give a counterexample.

2O. It is possible to define the tcnn sirnplificatiorr precisely bv introducing the
concept of complexity of a grarlimar. 'Ihis can be done in rrrany ways; one
of them is through the length of all the strings giving the productiorr rules.
For example, wc might use

compt,e.nity (G) : E {1 + lul} .
A + u E P

Show that the rernoval of useless productions always reduces the complexity
in this sense. What can you say about the removal of .\-productions and
unit-productions?

1 4 .

1 5 .

1 6 .

1 7 .

r8,

164 Chopter 6 SrllplrrrcATroN oF C<.rr'r'ruxr-FR,tlp: GRenuaRs nNo Noti[4A.L FoRMs

?1, A contcxt-free gramrrrar G is said to be rrrinimal for a giveu languagc .L if

r:omplexi.t11 (G) < torn7tlerZtlv (d) for arry d gcnetating f,. Show by exam-

plc that the rernoval of useless produt:tions does not necessarily protluce a

minimal gramnrar. ffi

*ZZ, Prove the following resrrlt. Let G : (y,T,S,P) be a context-free grammar.

Divide the set ef productions whose left sides arc soilre given va,riablc (say,

/), into two disjoint subsets

A + A n l l A * r l ' , ' l A * " ,

and

A * , ! ! r laz l . . .1 , ! t , " ,

where fii,;r7i are in (Ill?')-, but A is not a prefix of any gl. Consider the

gramrnar d: (u J{Z},T,s,F), where Z f V and F is obtained try rc-

placing all productit;rrs that have A on the left by

A + y i l 1 1 i Z , z : 1 , 2 , . . . , n 1 . ,

Z + x i l ' t iZ , t . : 1 , ? , . . . , r t , .

r h e n t r (c) : r (d) .

23. Use the result of the preceding exercise to rewrite the grarrrma,r

A + Au, laEcl . \

B - Bblbc

so that it no longer has prtxluctions of the forur A + A:r or IJ * Br,

*24. Prove the following courrterpart of Exercise 22. Lct the set of productiorrs
involving the variahle ,4 on the lcft l-re divided into two disjoint subsets

A + n t A l r , t A l . , , l * " A

and

A + , s t l a z l . . . 1 u . ,

wher'e ,4 is not a suIfix of any :qi. Show that the grarnmar ohtained try
rcplating these productions with

A * ' l t r lZ th , ' i : 7 ,2 , . . . ,n ' t ,

f r ' * r r . l Z n t , i : 1 , 2 , . . . , n '

is etlrivalent to the original grarnmar,

6.2 Two lr,tponrenl Nonna,l Fonus 165

i f f i f f i Two lmportont Normol Forms

Tht:re are nrany kinrls of norrnal forrns we cir.rr estahlish fot coutext-fi'ee
grirrrrrrlars. Sone of these, br:c:ause of their widt: usefhlrress, havtl beetr stud-
itxl extentively. Wc considr:r' lwo of thettr bricfly.

Chomsky Normql Form

One kirxl of nrlrrrral forrn we cir.rr look ftlr is one in whit:ir Lhe mrrnber of
s.ymhols on thc riglrt of a prodrrc:tiotl a,r() strictly liurited. ltr particular, wc
can ask that thc: string rln the right of a productiotr consisL of no trtore tirirtr
two symbols. One instance of tltis is the Chomsky normal form.

uR' funllf�i ,ftftilrltiuw
A contcxt-free grarrlrrlirr is in Chornskv rtorrna,l form if all production$ at'e
of thc form

A _- BC,

OI

A _-+ ill

whcre l, B, Ci are irr I,', a,ptl a is in 7'.

g'- ,45' la,
A - $A Ib

iu iti Chornsky norrnal forrn. fhe gralrllnilr

fi - ASIAAS,
A - S Ala'tt'

is rrotl both proclucticxts 5 - AA5 attcl zt - u,a violate the conrlitions of
Dt:{irtition 6.4,

I

166 Chopfer 6 Stlrpllrtc,q,rroN oF CourFxt-FnEE GRAMMARS AND NoRMAL FoRMS

Any context-free grammar G : (V,T,S,P) with ^ # L(G) has an equiva-

lent grammar e : (?,i, s, F) in Chomsky normal form.

Proof: Because of Theorem 6.5, we can assume without loss of generality
tlrat G has no A-productions and no unit-productions. The construction of
G will be done in two steps.

Step 1: Construct a grammar G1 : (V1 , T, S, .Pl) from G by considering all
productions in P in the form

A + n t r z " ' f r n , (6 I'r)

where each 14 is a symbol either in V or T. If z : I then trr must be a,
terminal since we have no unit-productions. In this case, put the production
into P1. If n > 2, introduce new variables Bo for each a € ?. For each
production of P in the form (6.5) we put into Pt the production

where

A - C r C z . . . C n ,

Ct = rt if z,' is in V,

ancl

Ca: Bo i f ra : s.

For every Bo we also put into Pr the production

Ba --+ a'

This part of the algorithm removes all terminaJs from productions whose
right side has length grea,ter than one, replacing them with newly introduced
variables. At the end of this step we have a grammer G1 all of whose
productions have the form

A - - a , (6 ri)

A --+ CtCz' ' 'C* ,

where Cl € Vr.
It is an ea,sy consequence of Theorem 6.1 that

l ' (G r) : L (G) .

(6 7)

6.? Two lMponrerur'Nonrranr, Fon,Ms 167

Step 2: In the second step, we introduce additional variables to reduce the
length of the right sides of the productions where necessary. First we put
all productions of the form (6.6) as well as all the productiorrs of the form
(6.7) with n:-2 into F. For n j 2, we introduce new variables D1 ,D2,...
and put into P the productions

A --> CtDr,

Dt * CzDz,

:

Dn-z + Cn-tCn..

Obviously, the resulting grammar d ir itr Chomsky normal form. Repeatecl

applicatiorrs of Theorem 6.1 will show that f (Gr) : , (,d), so that\ . / '

This somewhat informal argument can easily be made more precise. We
will leave this to the reader. r

ffi
Sxnttpl+, fi;fi Convert the gramrnar with productions

S -+ ABa,

A -+ aab,

B -+ Ac,

to Chomsky normal form.
As required by the construction of Theorem 6.6, the gralnmar does not

have any tr-production$ or any unit-productions.
In Step 1, we introduce new variables Bo, Ba, B. and use the algorithm

to get

S - ABB,,

A - BoBoBa,

B -+ AB.,

Bo '' a,

B n * b ,

B a + c '

, (") : LG) .

Chopter 6 Srrururlc,q'rroN oF' Colrnxr-Irrtnn GR,,+vrr,tnns AND NoRMAL F onlrs

In thc second step, we irrtroduce additional variables to get tlrc first twrr
producLiorrs into normal forrn and we get the fina,l result

S - ADr ,

Dt - BRo,

A --+ BoD2,

D2 -+ RnB6,
p --+ ABt,

Bu. a Q,

Bt, --+ b,

B c + c '

I

Greibqch Normol Form

Another usefrrl grammatical fotrn is the Greibach normal form. Here
we put restrictions not on the lcngth of the riglrt sides of a prodrrction,
but on the positions in which tcrminals ir,nd variirhles carl appear. Argu-
ments justifying Greibach normal ftrrm are a, Iittle complicated and not very
tra,nspartrnt. Sirrrilarly, constructirrg a grarnmar irr Clreibach normal form
ertlrivalerrt to a given context-free grammar is tedious. We therefore deal
with this rnatter very briefly. Nevertheless, Greibach trormal forrn has marry
theorctical arrd practica,l conseqrrences.

,nelf'l;ri,!,ii1qniy.ffi tN

A txrntext-free grarnmar is sa,id to be in Grcibach rrormal forrn if all pro-
ductions havtl the forrrr

! --+ o,fr,

w h e r c a € . I a n d r € V *

If we compare this with D<:fi,nition 5.4, we $ee that the form A * o,r
is comrtron to both Greiba,ch normal forrn and s-grammar$i but Greibach
normal form does not carry the restriction that the pair (-4, a,) occur at most
once. This additional fret:dom gives Greitra,ch norrnal forur a generality not

lrossessed by s-grammars.

6.2 Two IturoRrnrqr NoRl"ler. FoRrrs 169

If a gramrnar is not in Greibach normal form, we may be able to rewrite
it in this form with sorne of the techniques encrluntered above. Here are two
simple examples.

S + A B ,
A - - aAlbBlb,
B ---' b

is not in Greibach rrormal form. However, using the substitution given by
Theorenr 6.1, we immediately get the equivalent grammar

S + aABlbBBlbB,
A --+ aAlbBlb,
B - b ,

which is in Greibach normal form.
I

Exoilrple 6,10 Convert the grammar

S - abSblaa.

into Greibach normal form.
Here we carl use a device similar to the one introduced in the con-

struction of Chomsky normal form. We introduce new variables ,4 and B
that are essentially synonyms for a and b, respectively. Substituting for the
terminals with their a"ssociated variables leads to the equivalent grammar

S --+ aBSBlaA,

A + d ,

B + b ,

which is in Greibach normal form.
I

In general, tltough, rreither the conversion of a given grammar to Greibach
normal form nor the proof that this can always be done are $imple matter$.
We introduce Greibach normal form here because it will simplify the tech-
nical discussion of an important result in the next chapter. However, from

Chopter 6 SrupllnrcauoN oF Colrruxr-Fnpn Gn-q,uve,ns AND NoRMAl FoRtvrs

a conceptual viewpoirrt, Greil-rach normal form plays no further role in our
discussion, so we only quote the following general result without proof.

For every context-free grammar G with ^ # L (G), there exists an equivalent

Bramrrar d in Greibach normal form.

Provide the details of the proof of Theorem 6.6.

Convert the grammar S + ttSblab into Chomsky normal form.

Ttansform the gramma.r S - aSaAlA, A - abAlb into Chomsky normal
form,

4. Transform the grammar with productions

S * abAB,
A + bABl,tr,
B - BAalAlA,

into Chomsky normal form,

5. Convert the gramma,r

S - ABIaB

A - aabll

B - b b A

into Chomsky normal form. ffi

Let G : (y, ?, S, P) be any context-free grammar without any tr-productions
or unit*productions. Let k be the maximum number of symbols on the right of
any production in P, Show that there is an equivalent grammar in Chomsky
normal form with no more than (k - 1) lPl * lTl production rules.

Draw the dependency graph for the grammar in Exercise 4.

A linear language is one for which there exists a linear grammar (for a def-
inition, see Example 3.13). Let Z be any linea^r language not containing ,\.
Show that there exists a grammax 6 : (V,T,,S, P) all of whose productions
have one of the forrns

A + a B ,

! + B a ,

A - e , ,

where o ET,A,B EV, such that . I , = r (G), m

1 .

,

3 .

, .

L

6 .

6.2 lI'Wo Ir,rpoRrAru.r NoRMAL Fon,prs 171

9, Showthat f r r revervcontex t - f rcegrar r r t ra rG: (V,T ,S,P) there isaneqr r iv -
alent one irr which all pr'64u"tr1on.r have the forrn

or

w l r c re a € X U { I } , A ,B ,C €V .

10, Corrvert tl:re graurnar

A + a,BC,

,,1 * tr,

ffi

S - aSb lbSo la , lb

irrto Greibar:h rrorma,l forrn.

11, Convert the following grarrrrilar into Greibach norrnal form.

S + rt,Sblab.

12, Convert the grarnrnar

g + ab loS laa5

into Greibach norrnal form. W

13. Convert the 6grammar

S + ABblo,,

A + u a A l B ,

B - ItAb

into Greilrach norrrral form.

14. Can every lincar grar[mar be convcrted to a fbrm irr which all productiorrs
Iook l ike A - an,where a e ? and tr € yU {,U?

15. A context-free grammar is said to be in two-standard forur if a,ll production
mles satisfy the following pa,ttern

,l + o,BC,

A - a B ,

A _ + e 1

w h e r ' e A , B , C e U a n d a e ? .

Conver t the grammar G: ({S ,A,B,C} , {n , ,b } ,S ,P) w i t l i P g iven a ,s

S + a,9-4,

A + bABC,

B - b ,

e + aBCt

irrto two-starrdard forrn. ffi

*16,'I'wo-$tandard f<rmr is generall for any context-lrce grarrrmar G with A {
,L(G), there exists an ecluivalenf grammar irr t,wo-sta,rrdard form. Prove this,

Chopter 6 Stltrurlc;a'r'loN oF CON:rEXT-FRljtl GRnr,tuaRS At'ro Non.lvlel, F ORl{s

i iffiffiffitil A Membership Algorithm for Context-
Free Grommqrs*

In Ssrtion 5.2, wt: cla,itned, without any elaboration, that mcmbership and
parsing erlqorithttm f'or cotrtext-fiee grarnmars exist that retpire approxi-

mately ltol'' steps to parse a string trr. We are lr()w in a position to justify

this clrrirn. The algorithm wt: will describe here is t;tr,lled the CYK algorithm,
a,fter its originators J. Cocke, D. II. Vlrnger, arxl T. Kasarni. The algo-

rithrn works only if the grarnrrrar is itr Chomsky rrormal forrn aucl sutr:eeds

by breaking one pr()hlem into a $equell(xl of stnallt:r ones irl the following
wir,y. Assume that we trave a grarnmar G : (V,T', S, P) in Chornsky llorlllill
forrn and a string

' t i l : e r a z . . ' e n ,

We define substrings

w i j : (r i " ' a j t

and sulnets oI U

v i :
{ e E v : A 5 u , , , } .

Clearly, u E lt (G) if and orrly if S e Vr",.
To cornpute Vl.i, r.rbserve thtr,t A €Viif ancl only if G contains a, pro-

drrction A -- ai. Therefortt, Vil call llt+ computed for all I < z < rz by
inspection of u arxl the prtlrluctions tlf the grarrrmar. Ttl r:ontiurrc, notice
tlrnt for j > i,, A derives ruii if a,ncl only if tltere is a, produt:tion A--+ BC,

wi th-B 4r1* a. r rd C 1 ' , r ,1"a1, i forsomefuwi th i< h,h <r . In t r therwords,

v , i j : U { A : A - B C , w i t } r B E H t r , c € V r + r , r } . (6 . S)
L E { r ; , r t l , . , . , j - i I

An instrrrx:tion o[t]rc indices in (ti.8) shows that it catr bc used to t:ompute
rr.ll the F1r. if we prot:ced in tirtl secluetrctl

l . Ctrmpute Vr ,Vzz, . . . ,Vn,

2. Ctimpute Vrz, V2r, ..., tr/r*1,r,

3. CtrmpuLe Vt : t ,V2t , , , , , W,-2, , ,

attd srt ott,

0.3 A MnlrnnnsHlr Ar,colr,rrrtl,r Fon {loFl'r,r.xr-Fnnn ClHe,l,rn.tns L7B

Ultqftnfld;'Il', Dcttlrmine whetlrrrr the string In: (rabbb is irr the langua.gt: generatecJ lw
tlul H-ratnutar

5 - A R ,

A _ BB la ,

R -+ ABlb,

First rxltrl Lhi'rl 'ur1 I ,: .r,i so V11 is thc scl of all vir,riables that irurric:rli-
ately rk:rive a, that i*, l ' lr: {,4}. Sirice ur22: e,, wc irlso havt: yz:: {,4}
at:ci, similarly,

Er : { ,a} ,Vt t : {A} , Vr , : {B} ,V4a == {E} , Yrr : {B}

Now we use (6.8) to get

I4z : {A : ,! --+ B(.i, B E Vtt, O t V22} ,

Since V11 = {A} ancl V22 : {A}, the sct c:onsists of a,ll variables t}iiit occnr
ott Lhe lefl ..ridc of a prorluction whosu righl sicle is A,4. Since tlrt:re ale
nrltre, V12 is crrtllt,y, Next,

V4 : {4., } _-t B(i, B € Vn, (_,' e t/rr} ,

str tlre reclrtircrl righl sirle is AB, tinrl wc have H23: {S',8}, A straiglitft-rr-
ward argrrrnt:lt along tlu:srl Iines thrlu gives

Vn: fr , I / rr : {5, RI ,Vt+: { l } , l /+o : {A} ,
Y r 3 : { 5 , B l , l / z r : { , 4 } , V r r : { 5 , 8 } ,
Vr+ : {A} , V:s : {S, R} ,
V ' n : { 5 , R } ,

so tha t u t e L (G) .
I

Thc CYI(algorithru, as clrrst:r'illccl her:e, dctt:rrrlines rncrnbership for ir,riy
langrra,gc gr:leraterl lr; a grarnrnal iu flhonr,sky lolrng,J frirrn. With sorlc
a,dditiorrs to keep trac:k of how tlrc elertrents of l/1, alc r1r:r.ivecl, it r:arr l_re
qrnvcrted iulo ir, irarsirtg rnetlxltl. Iir see thrr.t the CYK rnemlrershill algo-
ritlrrrr lecluiles ()n,:r sl,e1-rs, ntitic:c Lhat exa,ctly rr, (rz -1. 1) /2 sets of V;.; have
to lltl cotrtl:rtted. Eir,ch invtilvr:s 1,he eva,lrrntiorr of a,t rriost ll, terms irr (ti.$),
so tlrc cla,inrt-xl rt:srrlL li-rilows.

774 Chopter 6 Srrvtt,r,rprcetloN ol Corvrrxr-Fn,Ilri GRAMMARS AND NoRMAI Fonlrs

1 �

2 .

Use tlre CYK algorithm to dcterrrrirte whethcr ihe strings nabb, aabba,, and

obtibb a,re in the language generated by the gtarnmar irr Examplc 6'11'

Usc the CYK algorithm to find a parsing of the strirrg aab, using tlre gratnrrrar

of Examplc 6,11. ffi

Usc the approach crnployed in llxcrcise 2 to show how the CYK mcmbership

algorithm can be trrade itrto a parsing metlxrrl.

IIse the rcsult in Exercise ll to write a cotnputer prograln firr Jrarsing with

any contcxt-free gra.mfllat in Chomsky norural form,

3 .

* * 4 .

Pu s hdown
Automoto

he description of cnntext-free languages by means of context-free
gramrrrars is convenicrrt, as illustrated by the use of BNF in pro-
gramming language dcfinition. The next question is whether there
is a class of automata that can be associated with context-free lan-

gua,ge.s. As we have seern, finite automata cannot recognize all context-fiee
languages. Intuitively, we understand that this is because finite autotrara
have strictly finite rrrernories, whereas the recognitiorr of a context-free lan-
guage may reqrrire storing an unbounded amount of information. For ex-
ample, when scanning a string from the language 7 : {a"b,, I n } 0}, we
mu,st not only check that all a's precede the first b, we rnust also corrrrt the
nrrmber of a's. Sinc:e n is unboundrld, this counting cannot be done with a
finite memory. We want a machinc that can count without limit. But as
we see from other examples, su()h as {wwR}, we need more tharr unlimited
cxrurrting ability: wc rreed the ahility to store and match a sequence of sym-
bols in reverse ortler. This suggests that we might try a stack as a storage
mechanism, allowing unbounded storage that is restricted tci operating likr
a stack. This gives us a (lass of machines called pushdown automata
(pda)'

175

Input file
Figure 7.1

Chopter 7 PusHooww Aurorr,r.tre

In this chapter, we explore the connection between pushdown autornata

and context-free languages. We first show that if we allow pushdown art-

tomata to act nondeterministically, we get a class of automata that accepts

exactly the family of context-free languages, But we will also see that here

there is no longer an equivalence between the deterministic and nondeter*

ministic versions. The class of deterministic pushdowrr automata defines a

new family of languages, the deterministic context-free languages, forming

a proper subset of the context-free languages. Since this is an important

family for the treatment of programming language$, we conclude ttre chap-
ter with a brief introduction to the grammars associated with deterntittistit:

context-free languages.

M Nonde lermin is t i c Pushdown Automoto

A schematic representation of a pu$hdown automaton is given in Figure 7.1.

Each move of the control unit reads a symbol from the input file, while at

the same time changing the contents of the stack through the usual stack

operations. Each move of the control unit is determitred by the current

input symbol as well as by the symbol currently on top of the stack. The

result of the;move is a new state of the control unit and a change in the

top of the stack. In our discussion, we will restrict ourselves to pushdown

automata acting a.s eccepters.

Definit ion of q Pushdown Aufomoton

Formalizing this intuitive notion gives us a precise definition of a pushdown

automaton.

7,1 NowlnrER.MrNrsrIcPrJsurrowruAuroltnrA 177

,irRR.$lr|"q.,l.�.iirqnri,,fil,lll lr

A nondeterministic pushdown accepter (npda) is defineld try the sep-
trrple

M : (Q ,8 , 1 , , t , qo1z1F) |

whcre

Q is a finite set of internal sta,tes of the control unit,
X is the input alphrrbet,
I' is a flnite set of syrnbols ca,llerl the stack alphabet,
d ; Q x (E U {A}) x l' - finite suhscts of Q x f* is thc transilion functirin,
Qo € Q is the initirrl state of the corrtrol unit,
r € | is the stack start symbol,
F e Q is the sct of linal states.

The ulrnplicated formnl appearance of the drlrrrairr and range of d rnerits
a closer o'xamitration. The irrgutnents of d a,re thc current state of the control
unit, tht: current input syrnl-rol, and the currrlrrt symbol on toJ) of the stac.k.
The re:sult is a set of ptlirs (q,z), where q is the next state tlf the control
unit trnd r is a string whiclt is pnt on tcill of the stack irr place of the
singlc syttrbol there before. Note that thc second argument of d may be .\,
irrdicating that a move that does not collsurne an inprrt symbol is possible.
We will call such ir rrlove a .\-tra,nsitirirr. Note also thnt d is defined so that
it needs a, sta,t:k symbol; no m()v() is possible if thrr stack is emptv. Finallv,
the requirernetrt that the rarrge of d be a finitrl subset is ner:essary beca,use
I x f* is atr infinite set ir,rrd therefore ha"r irrfirrite subsets. While an npda
may have several choit:cs for its move$, tiris choice must be restricted to a
firrite set of possibilitics.

________-____'-
Emunrpl+ f - | Suppose the set of trir.rrsition rules of arr npda crrntains

d (, t r , a , b) : { (,1r , cd) , q3, , \ } .

If at any time the control unit is in statc q1, the input svurbol read is a, irnd
the symbol on top of the stack is b; then one of two thirrgs can ha,ppen: (1)
the t:otrtrol unit gJoes irrto state {2 ancl t}re string cd replirces b on top of t}re
stack, or (2) the u)ntlol unit goes irito state qs with the symbol b rcuroved
frotn the top of tht' stack. In our rrltation we &ssurne that the instrrtion of
a string into a, stack is done symbol by symbol, stir,rting at the riglrt end of
the string.

I

178 Chopter 7 PusHnowN AuroMlt'rA

ffi

$xomple 7.2 Consider an npda with

Q : { q o , Q t , Q z , q t } ,
p : { a , b } ,

r : { 0 , 1 } ,
z : 0 ,

r ' : { q r } ,

. . -di / - ,

d (sor.$;o) : {(q', 10), (q3,.\)},
d (q0, . t r ,0) : { (q3, I) } ,
6 (q r , a , 1) : { (q 1 , 1 1)] ,

d (qt , l r , 1) : { (q2, A)} ,

6 (q r ,1 , , 1) : { (q2 , , \) } ,
d (q z , A , 0) : { (q 3 , I) } .

What can we say about the action of this automaton?

First, notice that transitions are not specified for all possible combina-

tions of input and stack symbols. For instance, there is no entry given for

d(qo,b,0). The interpretation of this is the same that we used for nonde-

terministic finite autoutata: an unspecified transition is to the null set arrd

represents qdead configuratiqllfor the npda.
{I--=....'_

The crucial transitions are

6 (h , a , 1) = { (q 1 , 1 1) } ,

which adds a 1 to the stack when an o, is read, and

6 (q r ,b , l) : { (q2 ' . \) } ,

which removes a 1 when a b is encourrtered. These two steps count the

mrmber of a's and match that count against the number of b's. The control

unit is in state (1 until the first b is encountered at which time it goes into

state q2. This assures that no b precedes the last a. After analyzing the

remaining transitions, we see that the npda will end in the final state q3 if

and only if the input string is itt the language

7 , - { a n b " : n > 0 } u { " }

As an analogy with finite automata, we rnight say that the rrpda accepts

the above language. Of course, before making $uch a. claim, we must define

what we mean by an npda accepting a language.
I

and

7. I NoNDETERMrNrsrrc PusHoowru Aurouarn l7S

To simplify the discussion, we introduce a convenient notation for de*
scribing the successive configurations of an npda during the processing of a
string. The relevant factors at any time are the current state of the control
unit, the unread part of the input string, and the current contents of the
stack. Together these completely determine all the possible ways in which
the npda can proceed. The triplet ,n/ld Jfn"J

(5 {r, lc) t,;,r'ol u^-rt L t' '+- j,,t,70/ JTdeF a

where q is the state oJ_tlp_gqntrol uaiL tr.' is the unread part of the input
string, and u is the stack contents (with the leftmost symbol indicating the
top of the stack) is called an instantaneoua description of a pushdown
automaton. A move from one instantaneous description to another will be
denoted by ihe symbol F; thus

(q t , aw ,b !) | (qz , y ,U !)

is possible if and only if

i t (qz,a) € d (q1, a, b) .

Moves involving an arbitrary number of steps will be denoted Uy [. On
occasions rvhere several automata are under consideration we will use Far
to emphasize that the move is made by the particular automaton M.

The Longuoge Accepted by o Pushdown Automolon

lllfim$,tm$�ilnl ril, irtri

Let M: (8,E,f,d,80,a,F) be a nondeterministic pushdown automaton.
The language accepted by M is the set

In words, the language accepted by M is the set of all strings that can put
M into a Iinal state at the end of the string. The final stack content z is
irrelevant to this definition of acceutance.

; , , i 1 , t , i , , t i ; , i ' i i , l i

Ht(dftfpls y,S Construct an npda for the language

L : { * e {a ,b } * : no (w) : nu (ru) } .

As in Example 7.2, the solution to this problem involves counting the num-
ber of a's and b's, which is easily done with a stack. Here we need not even

L (M) :
{ ,

e r . i (q o , w , r) i u @ , 4 , u) , p e F , u e f . } .

Chopter 7 PusHnowu Auronere

w6rry a|out tlte order of the a's atrd b's, We ca1 iusert a counter symbol'

say 0, into lhe stack whenever an a is read, then pop olle counter symbol

from the stack when a, b is fbund. The only difficulty with this is that if

there is a prefix of ur with more b's thiln r?,'it, wtl will not find a, 0 to usr:. But

this is easy to fix; We can ll$e iI negiltivtl cotrntttr symbol, sa,y 1, ftlr t:ourrting

thel b's that a,rc to trc rnirtchtxl irgairrst ats later. Tlte cotttplete solution is

ir,n npdrr, A'[: ({rlo,q.f I , {&,b} , {0, 1, z} , 15, r1o, z, {r1l}), with ri given as

.I (qo, ,tr, z) : {(qt, z)} ,
d (qo, a, z) : { (q11,04)} '

d (rJs, tr, r) : {(q11, 1z)} ,

d (qo, a,0) : { (r t6 ,00)} '

d (qo, b, O) : { (qn, I) } ,

d (qo, a, f) : { (qn, ' \) } '

d (, jn , b, 1) : { (q6, 11)} .

In processing the string baotr, the nprla, mtr,ke$ the move,s

(qs,baab,z) f - (go, aab, ' Iz) F (q0,ab 'a)

l- (qo, b,0z) F (qg, .\, z) F (qr, tr, t)

alrd hcrrt:t: thcl strirrg is ircx:epted.

.� 'W�WMWWiN*t:tlrrstrtrtlti lnrrpclilfi lrtr,cx:tlptirrgt}rtll irrrgrri'r,ge
- (p r , - r \

I, :
\unun

: ur € {ct,, b}-} ,

we use the fact that the syrnbols are retrieved frorn a stack itr the reverse

or<ler of their insertion. Wlren reacling the first part of the string, we push

rxlrrsgr:rrtivr: svrnbols rirr tiru sta,r:k. For thc stx:tlnd pa,rt, we r:ompi.r,re the

current input symbol with Lhe top of lhe stack, cotrtinuitrg as lotrg as the

#,.i;i:i1,1]:f ix,lT*il:,:lT:'"'*ni[::r:]:.-Hii#Jil:ffi ?iil:
''An

apparent clifliculty with this suggcstiorr is th.r,t wtt rltt rrttt know

tfie rniddle of the strirrg, tirirt is, w]rttrc tl cnds ilrrd rirE sttlrts. Brrt the

lolcleterrlinistic rrature of the irutornatr)rr hclllls us with this; thtr npda

correctly guesses where the rrriddle is artd switt:hes stirtes at that ptlirrt. A

solut ion to the problem is g iveu by M : (8,8, I ' ,6 ,qo,2, i ') , where

Q : {,1(t,Qt,4z} ,
y : { a , b } ,

| : { a , b , z } ,
F : {ar l

7.1 NolrnnrERMrNrsrrc PusHlowl Arlrouara 181

The transition firnction can be visualized as having several parts: a set to
push zr orr the stir.r:k,

J"" sh

a set to guess tlre middle of the string, where the npcla switches frorn state
9r1 ttl qt '*--

d (qo , A , a) : { (q t , a) } ,
d (qo, t r , b) : { (qt , b)} ,

a set to uatch zrrR against the contents of the stack,

6 (h , a , 0) : { (q 1 , I) } ,
d (, 1 r , 1 r ,1 ,) : { (q t , I) } ,

and fina,lly

d (qt , A, ,) : { (qz, r) } ,

to recognize a successful match.
The sequence of moves in a,ccepting abba is

(qo, abba, z) t (qo, Itaa, az) | (Qo, ba, baz)
F (q1 ,ba ,buz) l (t 11 ,o . , n2) F (g r ,A , . z) F (q2 , .e) .

The nondeterministic alternative fbr loca,ting the miclclle of the string is
taken at the third move. At that stage, the pcla ha-r the instir,ntaneo's
descriptions (qo,ba,baa) a'rl ha,s two choices fbr its next rnt)ve. c)rre is to
uue d(gs,b,b) = {(qo,bb) i ancl make the move

(q6, bu,rt, baz) | (qo, a, bbaz),

the second is the one used above, namely d(q0,,\,b) : {(qr,b)}. Only the
latter leads to acceptance of the irrput.

I

\
d (so, o, a) : {(so, aa)} ,

/ 6 (qo,b,a) : {((t(r, b(z)} ,

)
d (so, o, b) : {(qs, ab)} ,

I (t (,10,1r, b) : {(qo, bb)} ,

{
d (Q o , a , z) : { (q g , a e) } .

) d (q o , b , z) : { (q o , b r) } ,

Chopter 7 PusHnowt-r Aurol\lArA

1 . Find a pda with fcwer than four states that accepts the same language as the

pda in Exarnple 7.2.

Prove that the Jrda in Exarnple ?.4 rloes not accept any string not in {tutrtF}'
ffi

D,

fD C.,nrt.lrct nptla's that atxrept the followirig regular languages'

(a) L r : L (aaa.b)

(b) I Ir : L(aa,h"aba-)

({ the urrion of trr an<l Lz

(d) Lt - Lz

fD Construct npda's that accept the following languages on X : {4, b, c}'

(a) L = { * * b t * , r z > 0 } W

(b) .L : {tnctu'r : ru e {n,, b}* }

(") f.L : {.a^h*c'+*: n, } 0,- > 0}

(. 1) f : { o " ^ h + * c * : n } Q , m } 1 }

(*) t : {a3b'oc 'o: rz > 0}

(f) r : { a * b * : n l n z / - 3 n } W

(S) r : {u : no (*) : r ru (t ,) + t }

(I t) .L : {ut : no(ut) : t r ,1-1y

(i) {*
'. n,, (to) + nr, (u) : Tr.. (tu)}

(j) .L : { 'u:2no (trr) { n;, 1tr,) < 3n" (ta)}

(k) .L = fw : no (tr,) < na (tr')]

)<rrrstrtrt:t arr nlrda that ac:t:epts tfue language 7 : {anb* : n' } Q,r1 f v,ltt.

Firrrl arr nprla on 5 : {n,, b, c} t}rat accepts t}re language

L :
{zn tcu tz

i t t r t l ' t r t z € { r r , b } * , ru , I * { } '

?, Filtt arr rrpda for'the cotrcatetratiotr of tr(a*) and the language irr Exercise 6.

@ fitta an trpda lbr the language 7 = la'b(ab)" b (ba)" : n > 0].

9. Is it possiblc to lincl a dfa that acccpts the sarne language as the pda

M : (Iqo, qr]1 , {a,,1,} , { t} , qo, {qr }) ,

7-1 NoNnerERMrNIsTrc PusHpownr AurouArR 1BB

with

d (qo , a , z) = { (q r , e) } ,
d (qo, tr , e) : {(So, e)} ,
6 (q r , t t , z) : { (q ' , r) } ,
d (q r , b , ") = { (qo , z) }? f f i

1O. What language is accepted by the pda

M : UrIr, qt i qil qli 4+, qsj , {a, b} , {0, r, a} , qo, {qsl) ,

with

d (qo, b, z) : { (q1, 1z)} ,
6 (q t , b ,1) : { (q ' , r r) } ,
d (qr , o , 1) : { (s . , }) } ,
d (q. r , a , 1) : { (qn, f) } ,
6 (q+, u, z) : {(g+, z) , (gs, z)l ' l

/+\

1., S1,/Wtrat language is accepted try the npda M = ({qo, $,gzl ,{a,b},{o,b,a},
6,Qo, z, {qz}) with transitions

6 (qo ,a , z) : { (Sr , n) , (g2 , . \) } ,
d (q r , b , a) : { (q t , b) } ,

d (q r , b , b) : { (q , , 0) } ,
6 (q r , a , b) : { (S r , A) } f f i

12. What language is accepted by the npda in Example 7.8 if we use F : {qo,q'}?
13. What language is accepted by the npda in Exercise 11 above if we use F :

{q r t ,$,qz)?

14. Find an npda-lvith no n:rore than two internal states that accepts tlre language
tr(aa*ba*). ffi

15. suppose that in Example 7.2 we replace the given vaJue of d (g:1, A,0) with

,5 (sz, tr,0) : {(qn, A)} .

_ What is the language accepted by this new pda?

(rel we can define a restricted npda as one that can increa,$e the length of the
stack by at most one symbol in each move, changing Definition ?.1 so that

d : Q x (X u { I }) x | + ? Q x (r r u f u { r }) .

The irrterpretation of t,his is that the range of d consists of sets of pairs of the
ftrrnr (q6, ab) , (qt, a,), or (Q,, A). Show that for every npda M there exists such
a restrictetl npda fr such that L (M) : L (fr) ffi

184 Chopter 7 PusunowN AuroMArA

dD O" alternative to Definition ?.2 for language acceptance is to require the stack
-

to be empty when the end of the input string is reached. Formally, an npda

M is said to accept the language N (M) by empty stack if

N (M) : { t u . E . , (q o , * , r) i * 1 p ; , r) } ,
L J

where p is any element in Q, Show that this notion is effectively equivalent

to Definition ?,?, in the sense that for any npda M there exists an npda fr

such that L(M) = t (fr), atrd vice versa'

M Pushdown Automoto ond Context-
Free Longuoges

In the examples of the previous section, we saw that pushdown automata

exist for $ome of the familiar context-free languages. This is no accident.

There iS a general relation between context-free languages and nondeter-

ministic pushdown accepters that is established in the next two major re-

sults. We will show that for every context-free language there is an npda

that accepts it, and conversely, that the language accepted by any npda is

context-free.

Pushdown Automolq for Conlext'Free [onguoges

We first show that for every context-free language there is an npda that

accepts it. The underlying idea is to corEtruct arr npda that can, in some

way, cerry out a leftmost derivation of any string in the language' To

simplifii the argument a little, we assume that the language is generated by

a grammar in Greibach normal form.
The pda we are about to construct will represent the derivation by

keeping the va.riables in the right part of the sentential form on its stack,

while the left part, consisting entirely of terminals, is identical with the

input read. We begin by putting the start symbol on the stack. Aft'er

that, to simulate the application of a production A + afrt we must have

the variable A orr top of the stack and the terminal o as the input symbol.

The variable on the stack is rerrroved and replaced by the variable string

r. What d should be to arhieve this is easy to see. Before we present the

general argument, let us look at a simple example.

-1
"1d "* 7{t-tilrtl+-jh

") t)F

.P*gnrnlS.,fir,5| Construct a pda that accepts the language generated by grammar with
productions

5 - oSbblo,.

7.2 PusHoowr-r Aurordara euu CoNrnxr-FRnr LANGuAcEs IBE

We first transform the frammar into Greibach normal fbrm, changing the
productions to

5'-+ a1Ala,

n ---+ bB,

B --+ b.

The corresponding automaton will have three states {go, qr, gz}, with initial
state gs and final state q2. First, the start symbol ,9 is put on the stack by

d (qu, A, ") : {(qr, S")} .

The production 5 --+ aSA will be si*rlate4 tr lbq]p4gby_fg*oViqg g
to* th* tto,"k o.tt.l "o['lo."it g it o.ith-

Similarly, the rule ,5 - a should cause the pda to read an a w.h:ile simply
removing S. Thus, the two prodrrctions are represented in the pda by

d (qt , a , S) : { (sr , 5 ,4) , (q1, A)} .

In an analogous manner, the other productions give

6 (qr ,b ,A) : { (sr , B)} ,
6 (h ,b ,B) : { (q t , f) } .

The appearance of the stack start symbol on top of the stack signals the
completion of the derivation and the pda is put into its final state by

d (gr , A, z) : { (q2, I) } .

The construttion of this example can be adapted to other cases, leading
to a general result.

I

For any context-free language Z, there exists an npda II such that

L : L (M) .

Proof: If tr is a A-free context-free language, there exists a context-free
grammar in Greibach normal forrn for it. Let G : (V,T,S,P) be such a
grarnmar. We then construct an npda which simulates leftmost derivations
in this grarnmar. As suggested, the simulation will be done so that the
unprocessed part of the sentential fornr is in the stack, while the terminal
prefi.x of any sentential form matches the corresponding prefix of the input
string.

Chopter 7 PussoowN Au'roMA'I'A

Spar:ificallg the npda, will be

M : ({ q o , { r , { l } , T , V l { z } , d , r l o , z , { g l }) ,

whetre z I V. Note that the input alphabet oI M is identical with the set

of terrninals of G and that the stack alphabet <ffitains the set of variables

of the grammar.
The transition functiotr will include

d (qo , A , a) : { (q1 ,5a) } , (7 l)

so that after the first move of M, the stack contains the start symbol ,9 of

the derivation. (The stack start symbol a is a marker to allow us to detect

the end of the derivation,) In addition, the set of transition rules is such

that

(rn ,u) € 6 (q1 ,a , A) , (7 .2)

wllenever

A - a u

is in P. This reads itrput a and removes the variable A from the stack,
replacing it with u. In this way it generates tlte transitiorrs that allow the
pda to simulate all derivations. Finally, we trave

d (q r , A , z) : { q t , z) } , (7 3)

to get M into a final state.
To show that M accepts any ru € L(G), consider the partial leftmost

derivation

'**.::::
.";i:o' ;rf A*

If M is to simulate this derivation, then a"fter readirtg ar&z" '4r,, the stack

must contain AtAz' ' ' A^. To take the next step in the derivation, G rnust

have a production

A1 + t tB l , . ' Bp.

But the construction is such that then M has a transition rrile in which

(qr , Br . ' . Er) € d (qr , b , Ar) ,

so that the stack now contains Br ' ' ' BnAz'" An after having r€fld a1a2 ' ' 'anb-

A simple induction a,rgument on the number of steps in the derivatiorr

then shows that if

E + u ,

7.2 Pusnnown Auroua.rA AND Cor-{rnxr-FnEE LANCUAoE$ fgz

then

(c11 ,u t , sa) t (q1 , . \ , z) .

Using (7.1) and (7.3) we have

(qp, ' r r . , , .z) F (gr , w, sz) i (nr , ̂ , a) F (q1, . \ , .e) ,

so t ha t L (C) e L (M) .
To prove that .t (IUI) e LG),let u € L(M).Thern by delinit ion

(qo,ru, z) f k ty , A,u1 .

Brrt thcrc is orrly orle wfly to get fiom qg to tlt and orily one way from q1 to
{1. I'herefore, we must }rirvt:

(q r , * , 5e) i (q1 , A , z) .

Now let us write ut = eje,zil;i. " a* Then the first step irr

(q 7 , a L a z a 1 " . . . a n , S z) i 1 q 1 , , 1 , 2 ; (2 . 4)

must be a, rule of thc forrn (7.2) to get

(qy, qa2a3. , . en,Sa) F (qt , a ,z f l : r . ' . a , ,7, r .42) .

Rr.rt then thc grarnrnar has a rule of the fllrrn S + aturt so tha,t

5 + a1t i ,1 .

Repeating this, writirrg 'LtL: Auz, we have

(e1 ,u ,2 t t ; 1 ' , , a , r ,Au2z) | (q1 , u ,11 . . . e , , , , , u3 I t 2 l) ,

irnplying that, A + u2rn is in the grailrnrar rrncl tha,t,

S # a,1u2'u3'u2.

This mir.kr:s it quite clear a,t any poirrt the slack contents (cxcludirrg z)
are idt:nticirl with the unnra,tcheNl liirrt of the sentential forn, so that (7.4)
implics

5 # a 1 4 2 . ' , a r , .

In conseqrren<:c, L(M) g , (G), completirrg the proof if the larrgrra,gcr cloes
not txrntairr .\.

If A e -L, we add to the constmcted npda the transitiorr

d (qo,) , z) : {k t , z) }

so thnt the empty string is a,lso ac:r:cpted. r

Chopter 7 Pussoowt'r AuroN4ArA

-Jfi
rr.rfu,"il

Exonple 7.6 Consider the grammar

S - a A ,

A+ aABClbB la ,
B - b ,
C - c .

Since the grammar is already irr Greibach normal form, we can use the

constrrrr:tion in the previous theorerll irnrneditltely. In addition to rules

d (qo, t r , s) : { (qr , ,g") }

and

d (q. , t r , a) : { (qr , z) } '

the pda will also have tratrsition rules

d (s r , o , S) : { (s) , A) \ ,
d (q r ,a ,A) : { (q ' , Mg) , (q t , t r) } ,

d (q r , b , A) : { (q t , g) } '
d (q t , b , B) : { (, 1 1 , t r) } ,
6 (q r , " , d) : { (q 1 , A) } .

The sequence of moves mrrde by M in processing aaabc is

(go, q,afl,bc, z) F (qr , aao,bc, S z)

| (q1,aabc,Az)

F (g1,abc, ABCz)

| (q1,bc, BCz)

F (q1, c , Cz)

F (91' ' \ ' z)

F (q 7 , A , a) .

Tltis rxlrresponds to the derivrrtion

S + aA+ aaABC + aaaBC + aaabC 4 ua'ahc.

Irr order to simplify the argurnents, the proof in Theorerr 7.1 ir,ssumed
that the grirmmar was iu Greibach rrorma,l form. It is not necessary to do

this; we carr rrrake a similar and only slightly more complicated constru<:tion

t

7.2 PusrrDowm Aurolrnrn nulr Clt)rurr:xtFn.EE LaNcuacns

from a genelral t:ontext*free gramma,r. For example, for productions of the
f'orm

A --+ Bx,

we remove :,1 frrlrl the stack ancl replace it with Br, but coruume no input
symbol. Frrr procluctions of the form

A + abCr,

we must first rnatch t,he ab in the inprrt agrrinst a similar string in the sta,r:k
anrl then replace A with Cz. We leirvc thc details of the constnx:tiorr arrd
tlrc associated proof as an exerr:isr:.

Coniext-Free Grqmmors for Pushdown Aufomolo
The converse of Thtlclretn 7.1 is also true. The rrlrrstruction involved readily
suggests itsulf: reverse the proce$$ in Theorctr 7.1 so that the grammar
sirnulates the moves of the prJa. This rrreans that the contq:nt of the stack
should be reflected in thc variable part of the sententirr,l ftrrrrr, while the
processed input is the trrrrnirrirl prefix of the sentential ftrrrn. Quite a few
details are needed to mir.kt: this work,

To keep the discussiorr as sirnple as possible, we will assurne that the
npda in question meets the following recluirements:

1. It has a single fina,l sta,te rly that is enterecl if and only if the stack is
cmpty;

2. All transitions rmrst have the form 6(qt,,o,,A) : {c1,c?,...,cr}, whelrc

r:a : (qi, tr) , (7 l it)

r:i : (qi, BC) . . (7 6)

Tha,t is, eaq:h trove either iucrease$ or decrcascs the stack content by n sirrgle
symtxrl.

Tltese restrictions rniry appeer to tre very sev()rc) but they are not.
It can be shown thrrt for any npda there elxii*s an equivalent one ha,ving
properties I rr,nd 2. This equivalence wiL,r expkrrtxl partiallv in fixercises 16
and 17 in Srxrtiorr 7.1. Ilere we need to cxplore it further, hrrt a,gairr we
will Jeave tht: a.rgurirents as an exercisel (st:c Exelcise 1tj at the elnd of this
section). Takirrg tltis as given, we now rxrrrstruct a context-free grarnrrrar
ftrr tlx: lirrrguage accepted by tlxl rrllda.

As statecl, we want the senturrtial forur to represent thc content of the
sttrck. But the configura,titirr of the npda also involves arr irrternal state, and

189

Chopter 7 PusnrrowN AUToMATA

this has to be remembered in tht: sontential form as well. It is hard to see

how this can be done, and thc rxrn$trrrctirtn we give here is a little tricky.

Suppose for the motnent that wc ctr.n find a grammar whose variablt:s

irrrr of the form (qiAqi) and whose prothtt:tions are such that

(q i A q 1) 1 u ,

if and only if the nptla ora-ses A from the stack whilc rtltr.tling u a,nd going

fiom state qi to state 4i.
'oErelsing" here mealls that A atttl its cffttts (i.e.,

a,ll the successive stritrgs bv which it is replaced) are retnoverd from the stack,
trringing the symbol originally bckrw ,4. to the top. If we calr firrtl srrt:h a,
gra,mmar, and if we choose (qorqt) a"r its start symbol, therr

(qozq.1) 3 u,

if and only if the npda nlmoves ,z (creating an empty stat'Jr) while reading
rr and going from (lo to qf. Brrt this is exactly how the rrpdtr, a.ccepts'tu'

Therefore, the lattguagt: genera,ted by the gralrrlrlar will be identica'l to the
Iangua,ge accepted by thc npda.

To construct a grarrllrrirr thnt satisfies these conditiorrs, w€l examine the
cliffererrt types of transitions that c*n trc ma,cle hy the npda. Since (7.5)

involves arr immediate erasure of A, tlrtr grtrmmar will have a cotresporrtling
production

(t1iA(t.i) --+ (t'.

Productionu of type (7,ti) generate thc set of rules

(q iAqn) - -+ a(q1Bq1) (qCqn),

whcrr: 96 nnd g1 ta,ke on all possiblc va,lrres in Q. This is due to thc fir.ct that
to erase A wc {irst replac.e it with BC,', w}rile reading a,Il o' elrd going frorrr

state 91 to qr. Srrbsequently, we go frorn t1i t'tt q1, erasing B, then frorrr q; ttr
gA, erasing C.

In the last step, it may seem that we havc arlrltrd too much' as there

may be solrle stat()it ql that cannot be reaclttxl lrom qi while erasing B.
This is true, but this docs not aff'ect the gratnmar. Tlxr resulting variables

h.i Bqi are useless variirbkrs ilnd do not affect Lhe larrgtra,ge tr,ccepted by the
grarrrrrrar.

Fina.lly, as start variable wt: tirke (qozqt), where qy is thc single final

state of the nuda.

7.2 PussoowN AureMArA aruo Cortrux'r'-FRpe LANcLTAcEs 191

Consider the lpda with transitions

d (qo, * , a) : { (q6, Az)} ,
6 (,k , ,a , ,4) : { (qu, ,4)} ,
6 (qo ,b ,1) : { (q r , A) } ,
d (gr, t r , ") : {(sz, A)}

Usirrg qo 4q initial stato aryl ga qq th* fi the npda satisfies txrndition
1 above, but not 2. To satisfy the latter, we irrtroduce a, new state 43 and
an intermediate step in which we first rcmove the A from thc stack, then
replace it in thc ,r**t *ou*. ilhe new set of traffi

d (qo, a, z) : {(qs, Az)} ,
d (qr , A, z) : { (qs, Ae)} ,
5 (qo, a, .4) : { (q l ,)) } ,
6 (q ,o ,b ,A) : { (S t , A) } ,
d (qr , A, a) = { (q2, I) } .

Thc last three transitions are of the form (7.5) so that they yield the corre-
spotrding productions

(goAqs) - a, (gu,4gr) * lr, (g1ag2) -i .\.

From the first two transitiorrs we get the set of productions

(sgaqo) - a (qsAqg) (spaSo) lo (qo, qt) (Sr",Zo)l

il (qo Asz) (qr, qo) k, (qn Aq=) (qt, qo),

(sozqr) --+ a (qsAqs) (s,raqt) l" (SoAqt) (Sraqr)l
(-r (qoAs.t) krzrlrtt) lo (qoAqr) (qtzqt) ,

(qo "qz) - a {qs Aq1) (qo zqz) lo (qrAr1 r) (qr rqz)l

a (qoAqz) (qzzqz) lo (qoAS,r) (qtrqz) ,
(So"qr) --+ a (q0,4qr))(qo"qr) lo(,toArtr) (qraqr)l

a(qoAsz) (qrrs.r) lo (qnAqr) (sszsc) ,

(q;tzqo) - (s0Aq0) (so"qo) l(qnAqt) (qrzqo)l (qoAqz) (qrrsu) I (qoAq.) (q:aqo) ,
(ss"sr) -. (s0Aso) (so"qr) l(qoAsr) (qraqr)l (qoAqz) (qr",tt) I (soAqr) (qtzqt) ,
(qszqz) + (s0Aq0) (qorqr) l(qoAqt) (qnzsz)l (qrArrr) (,nrqr) | (soAs,]) (qtrqr) ,
(qzzqz) -' (qoAqo) (qorqt) l(qnAst) (sfiqz)l(srArt) ktzzqs) | (qoAqs) (qrrq*) .

Iffi u h: r(:r,r)lfor soqe npda M, then .L is a context-free language'

Chopter 7 PusHpown Autouara

The start variable will be (qorqz).The string aab is accepted by the pda,

with successive configurations

(qq, aah, z) | (qo, ab, Az)

F (q3 ,b , z)

| (qo,h, Az)

F (g 1 , A , z)

F (q2"\' '\) '

The corresponding derivation with G is

(qorqr) =+ a (q6Aq3) (qtrsz)

+ aa(62q2)

+ aa(qsAq1) (qzq21

+ &eb(qrzqz)

* aab.

The steps in the proof of the following theorem will be ea^sier to understand

if you notice the corresponderrce between the successive instantaneous de-

scriptions of the pda and the sentential forms in the derivation. The first gi

in the leftmost variable of every sentential form is the current state of the:
pda, while the sequence of middle symbols is the same as the stack content.

Although the construction yields a rather complicated grammar, it can

be applied to any pda whose transition rules satisfu the given conditions.

This forms the basis for the proof of the general result.
I

Proof: Asslrme that M : (8,X,f,d,S,1,2,{gl}) satisfies conditions 1

and 2 above. We use the suggested construction to get the grammar

G : (V,T,S,P), with ? : E and V consisting of elements of the form

(acq.i). We will show that the grammar so obtained is such that for all

e t , Q i , E Q , A e f , X € l * , u , ? € E * ,

implies that

(qo, r r ,AX) i (t i ,u ,x)

(qiAq1) 3 u,

and vice versa.
The first part is to show that, whenever the npda is such that the

symbol A and its effects can be removed from the stack while readirrg z and

(7 .7)

7.2 PusHoowu Autorrrara .q.ul Conrnxr-F'Rpp L.cr-rcuacps f03

going from state qa to qi, then the variable (StASi) can derive z. This is not
hard to see since the grammar was explicitly constructed to do this. We
only need an induction on the number of moves to make this precise.

For the converse, consider a $ingle step in the derivation such as

(rlrAqx) + a(q1Bq1) (q,Cq*) .

Using the corresponding transition for the npda

(7 8)

we see that the A ca,n be removed from the stack, Bd put on, reading a,
with the control unit going from state qt\o qj.Similarly, if

(qiAqi) + a,

then there must be a corresponding transition

(7,e)

6 (q r , o , A) : { (s i , A) } (7,1r.))

whereby the A can be popped off the stack. We see from this that the
sentential forms derived from (qAqi) define a sequence of possible configu-
rations of the npda by which (7.7) can be achieved.

Notice that (qiAq1) + a(qiBq1)(qfiqn) might be possible for some
(qiBq) (qfiqn) for which there is no corresponding transition of the form
(7.8) or (7.10). But, in that case, at least one of the variables on the right
will be useless. For all sentential forms Ieading to a terminal string, the
argument given holds.

If we now apply the conclusion to

(qo,r ,a) i (q .1, A, A) ,

we $ee that this can be so if and onlv if

(qszqy) 1w .

Consequently L(M) : I(G). I

Show that the pda constructed in Example 7,5 accepts the string aaabbbb
that is in the language generated by the given grammar.

Prove that the pda in Example 7.5 accepts the language 7 : {an+7b2^ : rz Z 0}.

1 .

Chopter 7 PusHoown AuroNrar.c,

/ e.)C"tt*ttrrct an npda that accepts the language generated by the gramma^t

S + asbblaab. W

Construct an rrpda that accepts the language generated by the grammar

^9 - aS,9Slab, ffi

5. Construct an npda corresponding to the Brammar

S + aABBlaAA,

A u aBBla,

B + bBBlA.

Construct art rrpda that will accept the language generated by the gramrnar
G : ({S,A} , to, l r } ,S,P) , wi th product ions S + AAla,A - SAIb.

Show that Theorems 7.1 and 7,2 imply the following. For every npda M, there

exists an npda frwith at urost three states, such that.L (M): l, (i|f) . ffi

Show how the number of states of ff in the above exercise can be reduced to
two.

(E tr"O an npda with two states for the language L: {a'ob*+r: n, > 0}' ffi

L0. Find an npda with two states that arcepts 7: {a*bz* I n I 1}.

11. Show that the npda in Example 7.7 accepts I (aa-b). ffi

12. Show that the grammar in Example ?.7 generates the language L (oa-b).

13. In Example 7.7, show that the variables (+o.Bqn; and (q6agr) are useless'

14. Use the construction in Theorem 7.1 to find an npda for the language Example
7.5, Section 7.1.

\ ff/ nina a context-free grammar that generates the language accepted by the
\ / npda M : ({qo ,Qr } , {a ,b } , {A ,z } ,d , {0 ,s , {q r }) , w i th t rans i t ions

6 (qo, o, e) = {(ge, Aa)} ,

d (so, b, A) = {(qo, AA)} ,

d (so , o , A) = { (q ' , A) } .

Show that for every npda there exists an equivalent one satisfying conditions
L and ? in the preamble to Theorem 7,2.

Give full details of the proof of Theorem 7.2,

Give a construction by which an arbitra"ry context-free grammax can be used
in the proof of Theorem 7.1.

6 .

7.

8.

16 .

L7,

18 .

7.3 Dprnn,vINISTrc Pusunowrq Aurclnrnra, Ar'lrr DptpRL{rNISTrc Corurnx:r-FRHH L.q,Nc;uacns

f f i f f i Deterministic Pushdown Automqto ond

#\1 #,fl

Determinist i r Context-Free Longuoges

A deterministic pushdown accepter (dpda) is a pushdown automatorr
that never ha^r rr, choice in its move. This can be ir.chieved bv a modification
of Definition 7.1.

lffim,finrnqffi"!,ffif,il,il i
A puslrdown automaton M : (Q,I, l, d, qo) zt F) is said to be deterministic
if it is a-n automaton as defineld irr Definition 7.1, subject to the restrictions
ttrat, for every g E Q,e E X U {I} and b € f,

1. d (g, a, b) conttrins at rnost one eleinent,

tust be empty for evcry c € E.

The lirst of these conditions simplv requires that for any givcn input symbol
and any stack top, at most one mov{} carr be made. The second condition is
that when a A-move is possible for some configuration, no inJlut-consuming
alternative is available.

It is interestirrg to note the differt:rrce between this definitiorr and the
corresponding definition of a detcrrrrinistic finite automaton" The do4ra,ig
gf_!h!_Eg+q4g4 funqlio" iu still as in Definition 7.1 rather tharyb E;11
be,caPrtc"we want to {gtain)-transitions. Since the top of the stack playsE
role in determining the ncxt move. the presenCb of .\-transitions does not
automatically imply nondeterminism, AIso, $ornc: transitions of a, clptla may
be to the empty set, that is, undefined, so there may be dead rxrrrfigurations.
This does not affect the definition; the orrly criterion for determirrism is that
at all times at rnost one possible rnove exists.

Dcfinition 7-4

A language ,L is said to be a deterministic context-free language if and
only if there exists a dpda "lb"sn'ch"tlrat t; =l;(MJ.

196 Chopter 7 PusIItowt't Aurtltrlare

Exomple 7.8 The language

1
(J"\ r'',|l

7 : { a " b " : n > 0 }

is a deteruritristic t:orrtcxt-fiee language. I'he ptlir, M : ({qo, Qt,Qz}, {o, lr},

{0, /} ,d,40;ro,{qs}) with
. , . /o,r , , , \ \ ,u

b

, l ' t 6 kto,u,o) : {(sr, 10} ,
r { ; t -1 , t f ;n" l 1"
l i
f \

;-L+ ' l '

. l (q ' , o , t) : { (q 1 . t i) } ,

, l (4 r , b , 1) : { (q r , I) } ,
6 (q r , b , 1) : { (q r , , r) } ,
d (qz, ,tr, o) : {(q,r, i) } ,

accept,s tlrtl givcn lir.ngrta,ge,
is therefore deterrninistic.

It satisfics the conditions of llelirritiorr 7.4 anrl

I

E x o m p l e 7 . 9 Lt:t

Look now elt lixample 7.4. Thc npder, there is ttot dett:rrninistic because

and

d (116, a, a) = {(qe, aa)}

d (qo, , \ , o,) : { (s ' , a)}

violate cotrditiorr 2 of Definition 7,3. This, of course, does rxrt irnplv tha't
the language {trlurR} itsolf is nondetertrtinistir:, since there is tlte possi}rility

of irrr cqrriva,lent dpda. Brrt it is knowu that tlxr lir,ngrtage is indeed rxrt

detrlrrninistic. Fl'otn tiris a,rrtl the next exalrrplc wo see tha,t, in cout,rast ttr

finite irutorrra,ta,, deterministir: irrrrl nondeterrninistit: llrulidowtr automata art:

nol ecluivak:nt. There are context-f'ree la,nguages that ilrc not deterministic.

L 1 = l a " b " ; z l 0)

: n , > 0] .

A,1 obvirlrs moclification of tlrc argrrment that -L1 is a r:ontext-free latrguirgrr

shows that ,L2 is also context-frtx:. The language

and

L = I ' t l) Lz

7.:l DETr.lRMrNrsTrc PuSHDowN Aurorvt.q,la nnp DprnnulNls'l'I(i Coltrnxr-FRnn LAI'rGu.q.c;ns 197

is context-free tu'J well. This will follow from a ge,ncral !+g{:-t}H be prc-

sentecl in the ncxt chaptcr, but ca,n casily be -"d* plultffiHt-THis point.

Lct G1 : (Vr,T,S1,P1) attd G2 : (Vz,T,52,P2) be context-free grarn-

rrrars such that -Lr : L(G) and 1,2 : L(Gil' If we assume that I and

V2 are disioirrt and tha,t S # U U V2, then, cxrrrrlrinitrg the two, grarrlnlar

G : (Yr U Vz U {5} ,7, ,9, P), w}rtrre

P : h U P z U { , 5 - . 9 1 1 5 2 } ,

generates Ll)L2.'Ihis shorrld be fairly clear a,t this point, brrt the details of

the a,rgument will be clefirrrecl until Chapter 8. Accepting this, we sec that'

1, is context,frce. But .L is not a derterministic context-frce langua.gtl' This

seerns rea$onable, sint:c the pdn" has either to match tlrre b or two aga'inst

each a, rrnd so has to rnake ir.rr initial choice whetlter the irrput is in -L1

or in .Lz. There is rro informirtion availa.ble at the };eginning of the strirrg

t_ry which the choice,,ut. b* marle deterministically. Of courstl, this sort of

argumelt is basecl 9rr a partit:ular algorithrn we havtl in mind; it rnay letr.tl us

to the r:tlrrect conitlcture, hrrt cloes not prove anythirrg. Therrl is always tlte

possibility of a completely clifferent a,pproach that avoids nrr itritial crhoice'

but it turns orrt that therc is not, ir.rrd .L is indeed nondetertninistic'
'lb

see tlis we first establisli the folkrwing claim. If .L wcre a dett:rrninistic

rxlrrtext-free langua'ge, then

L : t ' l) { a "h "cn : r z > 0 }

wouldle a c.ontcxt-free language. we show the la'tter try constructitrg a,n

npda M fbr tr, given a, tlPda M for L.

The icfura behincl the constnrction is to add to the control rtttit of M a

sirrrilar part irr whiclt tratrsitions c:aused bv the iuput symbol b are replacxxl

with similrrr ones fttr input c. This new part of the control utrit mar,y be

enterecl rrfter M has reacl atb"'. sint:tl the second part rtlsponds to c'iu

the stlrrre wav as the flrst part cloes to b"', the llrocess thir,t recognizes Q,'"bZ"

now also accepts (trrbrrcn. Figure 7.2 describes the construction graphically;

rr formal argurnent ftrllows.
Let M : (8, X, f , d, 40, z, F) with

Q : t q o ' Q t , ' . . , Q n I -

Then consider with

8 : a u {ao, ar, ...,8,,} ,
F ' : P u { f i ' e e E F l t ,

attd fr constructed frorn d by irrcluding

f r : (d ,E , r ,duF, .z ,F)

F(0r , , A, .s) : { (f ly , s) } ,

Chopter 7 PusHnowru AtJ'rouara

Figure 7.!

Addition

Control unit of,44

i . I

f
It :r{ q

r+ ' ' s l

C)

for all ql e 4 s_ € Il, and

8 (ir ,r ,s) : {(fr , u)} ,

for all

6 (qo ,b , s) : { (q i , u) } ,

et EQ,s € 1,ru € l*. l 'or M to accept anb" wE must have

(qo , anbn , r) i * (go , A , r) ,

with q4 € F. Because M is cleterministic, it must a,lso be true that

(eo , a "b rn , ,) t * (q i , h " , u) ,

so that for it to accept unbz" we nrust further have

(qr ,bn , r l f * , (q j , A, t l r) ,

for some qj E F. But then, by r:onstruction

(ti,c",r) im (fr, tr, zr; ,
, , i - :so that M wille,ccept a,nb"cn. It re,mains to be shown that no strings ottrer

than those irr .L are accepted by M; this is considerecl in several exercises
at the end of this secbion. The conclusion is that L : t (fr), .o that i

is context-free. But we will show in the next chapter (Uxirnpte 8.1) that
i is not context-free. Therefore, our assumption that L is a deterministic
ctlntext-free language must be false.

I

Z.B DnrnnvrNrsTlc Pussoowu AurouRrn .q.No DnTTRMINISTIC CoNr:sxt-FnEE LANGUAGES 199

I .

,

3 .

4 .

D .

6 .

Show that 7: {a*bz": rz > 0} is a deterministic context-free language,

Show that 7 : {6nlt't" : rn I n* 2} is deterrninistic.

Is the languag. 7 : {a"bn : n } 1} U {b} deterministic?

Is the languag. 7 : {a*b : n > 1} U {a} in Exarnple 7.2 deterministic? ffi

Show that the pushdown automaton in Example 7,3 is not deterministic, but

that the language in the example is nevertheless determirristic,

For the Ianguage -L irr Exercise 1, show that.L* is a deterministic context-free

language.

Give reasons why one might conjecture that the following language is not

deterministic.

L :
{a , ,b , , , c r ,

8 . I s the language 7 : {anh* in :n7 or n : m}2} de termin is t i c?

i n = r n o . * : k)

G. * the language {ucwT : w E {a,b}- } deterministic? ffi

1O. while the language in Exercise I is deterrninistic, the closely related language

7 : {wwR : w E {a,b}- } is known to be nondeterministic, Give a,rguments

that rnake thi.B statement plausible'

fi-J. Srro* that .L : {u e {a, b}.
Ianguage. ffi

n,,(u) f n6 (ur)) is a deterrninistic context-free

Show that -[4- itt E*u*ple 7.9 does not accept anb ck fot k I n.

Show that fif i., E***ple 7.9 does not accept any string not in .L (a"b-c-)'

Show that fr} in E***ple 7.9 does not accept a"bznch with fr > 0, Show alstr

that it does not accept a"b*ca unless 'trl: n or m:2n.

show that every regular language is a deterministic context-free language.

ffi
"-\(ro.l stto* that if .Lr is deterministic context-free and lz is regular, then the
*

Iu.rg.,*g" LtJ Lz is deterministic context-free. ffi

irz/ show that under the conditions of Exercise 16, .Lr f-l -Ls is a deterministic
'J context-free language.

ri) ci-r" an example of a deterministic context-free language whose reverse is not
V deterministic.

1 2 .

13 .

14.

Chopter 7 PusrruowN Aurou.ue

f f i f f i Grommors for Deterministic Context-Free
Longuoges*

The importarr(:c of deterministit: <:ontext-free larrgrrages lies in thc fir.ct that
they catt be parsed efficiently. We can see this intuitively by viewing the
pushdown autorrraton as a parsing device. Since there is no backtracking
involved, we can easily write a computer progralrr frrr it, and we rrray expect
thtrt it will work t:fliciently. Sittce there may be .\-transitions involved, we
cannot immediatcly claim that this will yield a linear-time parser, but it

J.ruts us on lhe right track nevertheless. To purrrue this, let us see what
grarnmars might be srritable for the description of deterministic context-
frec languages, Herc we enter a topic important irr the study of contpilers,
but sorrrtlwhat peripheral to our interests. We will provide only a brief
introduction to some irrrportant results, ref'erring the reader to books ort
r:ompilers for a more thorouglt trea,tment.

Supposr: we are parsing top-down, attempting to find the leftmost deriva-
tion of a particrrla,r sentence. For the sake of discussion, we use the approach
illustrated in Figure 7.3. We scan the input ru from lefl to right, while de-
veloping a senterrtiir,l fbrm whose terminal prefix matches the prefix of ur up
to thc currently scanne.d synrbol. To proceed in matehing consecutive uym-
boftl, we would likc to know exactly which produr:tion rule is to be applied
at each step. This would avoid backtracking and give us an efficient parser.
The question then is wltether there are grilmmars that allow us to do this.
For a general r:ontext-free grammar, this is not the case, but if the form of
the grammar is restricted, we can achieve our goal.

As first casc, ta,ke the s-grammars introdtrtnd in Definition 5.4. From
the discussion thcre, it is clear that at every stage in the parsing we know
exactly which protlrrction has to be applied. Suppose that to : rul?{rz and
tlnt we have developed the sentential form tulAu. To get the next symbol
of thc sentential forrn matched against the next symhol in u, we simply
look at the leftmost symbol of ur2, sfl,$ a. If there is no rule ,4 * ay in the
grammar, the string ru does not belong to the language. If there is such a
rule, the parsing can proceed. But in this case there is only one surh rule,
so thcre is no choice to be made.

t t1

d 1

d 2 d 3
|

o o . . . r ,

I
t t . a 1 | 4 . . ." *+*

Input ro

Sentential form

Figure 7.3

Matched part Yet to be matched

7.4 Gnelru,q,Rs FoR DorenMlr.u$uc Cor-rrext-Fnnn L,q,rucuacns 201

Although s-grammar$ are useful, thcy are too restrictive to capture all
aspects of the syntax of programming languages. Wc tieed to generalize the
idea so that it becomes ntore powerfirl without losirrg its essential property
for parsing. One type of grammar is called a,n LL grammar. In an .L-L
gramrrlax we still have the property that we carr, by looking at a limited
part of the input (consisting of the scannod symbol plus a finite number
of symbols following it), predict exactly which production rule must be
used. The term LL is standard usage irr books on c:ompilers; the first .t
stands for the fact that the input is scarrned from left to right; the second
tr indicates that leftmost derivations are constructed. Every s-grarnmar is
an LL grammar, but the concept is rrrore general.

Exomplo 7.10 The grammar

S --+ oSblab

is not an s-grarnma,r, but it is an LL gralnmar. In order to determine which
production is to be applied, we Iook at two consecutive symbols of the input
string. If the first is an a, and the second a b, we mu$t apply the production
S - ab. Otherwise, the rule S --+ aSb must be used.

I

We say that a grirmlrra,r is an -L,L (ft) grammar if we can uniquely identifu
the r:orrect production, given the currently scanned symbol and a "look-

ahe.:ad" of the next ft - I syrnbols. The above is an oxarnple of an LL (2)
grarrrmar.

Exornpla 7.1,1 The grammar

S -, ,9,9 laSbl ab

generates the positive closure of the language in Example 7.10. As remarked
in Example 5.4, this is the language of properly nested parerrthesis struc-
tures. The grarnma,r is rrot an LL (k) grammar for any h.

To see why this is so, Iook at the derivation of strings of length greater
than two. To start, we have available two possible productions 5 -r ,S,9
and S --+ aSb. The scanned symbol does rrot tell us which is the right
one. Suppose we n()w use a look-ahead and consider the first two symbols,
finding tlnt they arc aa. Does this allow us to make the right decision? The
&nrJwer is still no, since what we have seen could be a prefix of a number of
strings, including both aabb or ao,bbab. In the fi.rst ca*se, we must start with
S - aSb, while in the secorrd it is necessary to use 5 * 55. The grammar
is thereforc not an LL(z) grammar. In a similar fashion, we can see that

Chopter 7 Pusnnowr*l AuroN,IalA

no matter how many look-ahead symbols we have, there are always some
situations that cannot be resolved.

This observation about the grammar does not imply that thc language

is not deterministic or that no ,L-L grammar for it exists. We can find an
.L,L grammar for the language if we alalyze the reason for the failure of the
original grammar. The difliculty lies in the fact that we c&nnot predict how

many repetitions of the trasic pattern a"b' there are until we get to tltc end
of the string, yet the gralnmar requires an immediate decision. Rewriting

the gramrrrar avoids this dilliculty. The grammar

g - a$b^91.\

is an L,L-grarrtrnar nearly equivtrlent to the original grammar.
To see this, consider the leftmost derivation of ru : aba6. Then

S + aSbS + ab.9 + q,baSbS + a,hq,bS + abab.

We see that we never have any choice. When the input uymbol examined is
r:r, we must u$e S - aSbS, when the syrnbol is b or if we are at the end of

the string, we must use S --+ A.
But the problern is not yet completely nolved because the new grammar

can generate the empty strirrg. We fix this by introducirrg a new start vari-
able 50 and a production to en$ure that some nonempty string is generated.

The final result

5'6 - aSbS

S - aSb,SlA

is then arr .L^L-grammar equivaletrt to the original grammar.
f

While this itrfcrrmal description of trtr grammars is adequate for under-
standing simple exarnples, we need a more precise definition if any rigorous

results are to be develoned. We corrclude our discrrssion with such a defini-
tion.

IliMl

Let G : (V,7, S, P) be a context-free grammar. If for every pair of left-most
derivations

S l wtAr t 41i l1 ! !1n1 1w1'*2,

S l wtAxz 1trt1y2r2 l wrtts,

witlr zr1,?t)z,'u)B € 7*, the equality of the ft leftmost symbols of ur2 and tl3
implies lJt -* Uzt then G is said to be an LL(h) grammar. (If lu.'21 or lur3l is
less than fr, then h is replaced by the smaller of these.)

7.4 GRAMMARS l,'oR Dnrnnlrrt-rrsuc CON.I'EXT-FREE LANcuAcES 203

The definitiorr rnakes precise what has already becn irrdicated. If at nrry
sta'ge in thr: leftrnost derivatiorr (w1Ar) we know the next h symbols of the
input, the next step in the cleriva,tion is uniquely determined (as expressed
bY gr : l/z).

The topir: of .L-L gramma,rs is an importa,nt t)rre it the study of courpil-
ers. A nrrrntrcr of progranuning larrguages can bu defined by LL griilrrfilars,
and rnany rrrrrrpilers have het:n written using .L.L pilrsers. But -L-L granrmars
are not srrflicietrtly genertr,l to deal with &ll dertt:rrninistic contcxt-free lan-
guages. Ctlrrsequently, therc is itrterest in other, rrrore genera,l drltcrrninistic
grammirrs. Particula,rlv irnportant a,re ther so-called -LR grir,rnrnars, wlrich
also allow efficiernt parsing, trut can bc viewed as constructing the derivn"tiorr
tree fiorn the bottom up. There is a great dur,l of material orr this subject
that can bt: found in books orr compilers (e.g., Hunter 1981) or trooks specif-
ically devott:d to parsing mt:thods for fbrmal larrguages (such ns Aho and
Ullman 1972).

Show ttrat the strcond gramffrar in Exa,mple 7.11 is an Z/: grailrnr&r and that
it is equivalent to the original gramrrra"r.

Sirow that the gramrnar frrr -L : lw : n* (r) : rrr, (trr)) given in Examplc 1 .1 3
is not arr tr.L gramrnar. ffi

li'irrd ari 1,.L gramnrar f<rr the language in Exercise 2,

Construct an -L-L graurnar for the languagc L (a*hu.) t-t .L (abbb"). ffi

Show that arry LL gramrrrar is unambiguorrs.

Show that if G is an /,L (k) grarnuar, then I (G) is a dcterministic contcxt-
free languagc.

Show that a dctcrnrinistic contcxt-free larrguage is never irrherently amhiguous.

Let fJ be a corrtext-frcc granrrrar in Grcibach rrorrual form. Describc an
algorithm whi<;h, Ibr any given ft, tletermines whether or not G is an Z.[(A)

Srammar.

Give.L.L gramrnar$ for the lbllowing larrguages, assumirrg 5: {a,b,c}.

(a) Z : { a t t l 1 r r t , , r t t " r : n Z 0 , m , } 0 } W

(b), : {a,"
tzl t*7'n+"n : n, 70,rrr, } 0}

(") f I : { a ' " t n + 2 r n ' : r r , } f l , t r z > 1 }

(d) Z, = {u : n,,, (u) < n6 (ur)}

(e) f , : { tu : n,," (w) + nu (ut) t ' n. (u)l

1 .

2 .

3 .

4.

i) ,

6 .

ffi
L

9 .

Proper t ies o f
Context -Free
L o n g u q g e s

he family of cotrtext-free Ianguages occupies a central position in

a hierarclty of formal languages. On the one hand, (:orrtext-free

languages include important but restricted language farnilies such
as regular and deterntinistic context-fiee languages. On the other

hand, there are broader language families of which context-frce larrguages

are a special case. To study the relationship between langtage families

and to exhibit their similarities arrd differences, we inveutigate characteris-

tic properties of the various fatrilies. As in Chapter 4, wc look at closure

urrder a variety of operatiorts, algorithms for determirring properties of mem-

bers of the family, and structrrral results such as pumpirrg letnmas' These
all provide us with a mear$ of understanding relations between the differ-
ent families as well ir,s for classifying specifit: languages iu an appropriate

category.

205

Chopter 8 Pnopnnuns oF CoNTlJxr-Fnnn LeNcuacns

f f iM Two Pumping Lemmos

The pumping lemtna girrcn itt lThe,oEm ?37is an effectivc tool for showing
that n art: not Similar pumpitrg lrtmmas are knowu

we will discuss twtl strt:tr resrrlts, one for

cgntext-free languages irr gonertr,l, the other for a restrir:ted type of context-

free language.

A Pumping Lemmo for Conlexl'Free [onguoges

Let .L be an infinite r:ontext-fiee language. Then there exists some positive

integer rn such that atty ut F L with lrul > ?n calr be clccotrposed as

with

(8 . 1)

(8 .2)

(8 3)

/R d . I

fbr all i : 0, 1,2, This is known a-s the pumpirrg lemma for context-free

languages.

Proof: Consider the language L - {,\}, ard assurne that we h*ve for it rr

grarnmar G without utrit-productions. or A-productions. lJince the Iength

of thc string on the right sidc of any production is bounded, say by k, the

Iengtlr of tltc clerivation of any'ur € tr must be at least lwl lh- Therefbre,

since -L is infinite, there exist artritrarily long derivatiorrs and corresponding

derivation trecs of arbitrary height.
Consider ttow sut'h a high derivation tre.c a,nd some sufficienbly long path

from the root to a lca,f. Since the lrumber of va,ria,hles in G is finite, thcrtr

rmrst be some va,Iiable that repeats on this pathr as shtrwn sclrematically irr

Figure 8.1. Correspotrdittg to the derivation tree irr Figrrre 8.1, we have the

derivation

S l uAz l uuAgz A'u,unrtrz,

wlrert.' r,r,, u I t I A I and z art: tr.ll strings of termitrals. Flom the above we see

t l rat A 3 uAy and A 5," , * . , a l l the st r ings u 'u i . 'g iz , r l :0 , 1,2, . , . , cat t

be gerrera,ted by the graInIIIaI arrcl tlre therefore in -L. Frrrthermorer in the

er,nd

sur:h that

l rv l > 1,

; ;'uu"x: ' ! 'z E L1

8,1 Two PuuPtl lc LetuN,Ias

derivations A I uAy and A 4 ,r, *e calr assuilte that no variable repeats
(otherwise, we just use the repeatitrg variable as A). Therefcrre, the lengths
of the strings u, fi, and y depend orrly on the productions of the granrmar

anrl carr be bounded independently of ur so that (8.2) holds. Finally, since
there are no unit productions and no.\ productions, u and y cannot both
be ernpty strings, giving (8.3).

This completes the argument that (8,1) to (8.a) hold. I

This pumping lemtra is useful in showing that ar, larrguage does not
belong to the family of context-free languages. Its application is typical of
pumping lemrpas irr generall they are used negatively to show that a given

Ianguage does not belong to some family. As irr Theorem 4.8, the correct
argument can be visualized as a game against an]Urlellig€@!. But

now the rulos make it a little more difficrrlt for us. For regular languages,
the substring-zE-\hose length is bounded by rn starts at the left end of
zu. Therefore*tliEiubstring gr that can be pumped is within rn syrrrbols of
the beginning of ur. For context-free language$, we otily have a bound on

luryl. The substring u that precedes ura carr be arbitrarily long. This gives

additional freedom to the adver$ary, rnaking arguments involving Theorem

8.1 a little more complicated.

Show that the language

is not context-free.

207

Figure 8.1

Derivation trec lbr

a long string.

+
\ A)

X

/ \

[, : { u , n b n c n : r z > 0 }

Once the adversary lrqs choserr rn,,we.pick jl: ttli"efq3id! which is

in tr. The adversary now has-EETffil-cltoices. If he choosel urq to contain

only a,'s, then the pumped string will obviously not be in ,L. If he chooses

4 slriqg rnntaining a,n equal number of a's and b's, then the pumped string

[[[fJ*ith k #;.,ot L* generated, and again we have generaterl a string

not i1 .L. In fact, the only way the adversary could stop us froilI wirrrring is

to pick ufra so that u3r has the same number of a's, bts, and cts. But this is

not possible because of rrstriction (8.?). Therefore, -L is not conte4!-free.

If we try the sarne argutrrerrt on the language 7 - {a"b"}, we fail, as we

, | .r r q rr
must, since the language is context-free. If we pick any string in tr, such as

L r { a E I u i : e , " ' b " ' , t headve rsa ryca t rp i ck r , : t t r k andg r -bA ,Now,nomat te rw} ra t

. -D c-.t- L :,!rt,r ;rH,H"l-;-:T""Tl:'�i:-,ffiT:i lffiJlil,':,,';-*#il1-iJ lHi-*:-
,

* Y - ,
- l T * . , - u m p i n g l e m m a . T h a t t r i s

),g,,,,' ,".'di
r' /

i''--r* lir'lr+r context-free must conre from some other argurnent, such as the con$truction

Chopter I PRopnnrtns on Conrnxr-FREE Lancuacns

of a context-free granrrrra,r.
The argument also justifies a claim made in Example 7'9 and allows us

to close a gap in that examPle. Tlq

L: {a"b ' } | {a^bz^} | {anb"cn}

is not ctrntext-free. The string artlbrnctrl
not.

is irr Z, but the pumped result is

T

irixUd$lle,raig�iConsider the language

L -

Although this language appears to be very similar to the context-free lan-

guage of Example 5.1, it is not context-free.
Consider the string

a*lfna*b*,

There are many ways in which the adversary can now pick uzg, but for all

of them we have a winning countermove. For example, for the choice in

Figure 8.2, we call use i : 0 to get a string of the form

akY a*b*,h < rn or i < m,

in .L. For other choices by the adversary similar arguments

We conclude that ,L is not context-free'

{ww : tu :glt]

which is rrot
can be made.

8,1 Two Pulrerrvc Lnrvruns 209

Figure 8.2

a . . . a b . . . h a . . . a b . . . h

F_i_]___+
i l v f r ! E

, - -
n u l

{ a " t : n > 0 } ' /
l _p n_s t

is not context-free,
In Example 4.11 we showed that this language rg11g!_tgg!g:. However,

for a language over an alphahet with a single symbol, t[eEEfrttle cliffer-
ence between Theorem S.l a,nd the prrmping lemtra for regular languages.
In either case, the strings to bt' 1'r'rped corrsist entirely of ots, and what-
ever new string can he gcncrated by Theorern 8.1 can also be generated by
Theorem 4.8. Therafore, we can use essentially the same arguments as in
Example 4.11 to show that .L is not context-free.

r

r'eilr rt-r

c. t

t
fr,#sthplq S,,4 Show that the language

, I

,,,1* .\
r --*.lo*

'1
t

<J
-

' t r ra
r^ bb

,
l r r r c r o a o 6 a 5 l f .

is not context-free.
Given rn in Theorem 8.1, wc pick as our strirrgitr,r"'6n,) The adversary

now has several choices. The only one that requiris mffh thought is tho

,on=q
q4ovrn_ill Figur* S.?-..$q!11g11!jry will yield glr€w-striue;v/ith

lg + \i - I)kr a'sJand W + U -I)hz b's.lIf the adversary takes k, I 0,
E;FO@TIffi i:0-.-Sinre--r

(* - hr) 'g (* - 1) '

= n 7 , 2 - 2 m * r

< rrf - lq,

the result is not in tr. If the opponerrt picks A1 : 0, frz I 0 or h * 0,
hz : 0, then again with i : 0, the purnped string is not in ,L. We can
conclude fiom this that .L is rrot a context-free language.

I

210 Chopter I PRopeRrtrs or- Corutnxl'-FREE LRwcu.+cps

n]-- j_----E-
d . . . d . . . a . . . a h ' . ' h . " b . . , b

#
u i l l r l z

luuyzl 1n-t',

lual> r,

Figure 8.3

A Pumping Lemmo for Lineqr longuoges

We previously made a distinction between linear and qog}llrj3rg4text-freg
grammaxs. We now mafte a similar distinction between languages.

IIM

A context-free language .L is said to be linear if there exists a linear context-

free grammar G such that .L : L(G).

. ,--1, C'l t l ,. ' 'r i . ' , r -)),,.*
Clearly, every linear language is context-free, but we have not yet es-

tablished whethet or not the converse is true-

I r? > 0) is a linear language' A linear Brarnmar
for it is given in Example 1.10. The grarnmar given in Example 1.12 for the
language L : {.; no (tu) : nr, (tr)} is not linear, so the second language is
not necessarilY linear'

_ I

Of course, just because a specific gramma,r is not linear does not imply

that the language generated by it is not linea,r. If we want to prove that a

language is not linear, we mu$t show that there exists no equivalent linear

grammar. We approach this in the usual wa5 establishing structural prop-

erties for linear languages, then showing that some context-free languages

do not have a required propertY.

Let -L be an infinite linear language. Then there exists some positive integer

?n, such that any w €. L) with lurl ! m can be decomposed as w:uafrllz

with

(8 5)

(8 6)

8.1 Two Purr.rprr{c Lnlrues ZLt

such that

uu'ny'z € L, (,$ 7)

for a l l z : 0 , 1, 2.
Note that the conclusions of this theorem differ from those of rheorem

8.1, since (8.2) is replaced by (8 s). This implies that trie strings u and 3r
to be pumped must now be located within rn synrbols of the leff and right
ends of ru, respectively. The middlc strirrg z can be of arbitrary length.

Proof: our reasoning follows the proof of rheorem g.l. since the language
is linear, there exists soure linear grammar G for it. To use the argumerrt
in Theorern 8.1, we also need to claim that G contains nei urrit-productions
arld no .\-productions. An examination of the proofs of Theorem 6.8 and
Theorern 6.4 wilt show that removing A-productions ancl unit-productions
does not destroy the linearity of the gra,mmar. we ca.rr therefore assurre
that G has the required property.

consider now the derivation tree as shown in Figure g.l. Because the
grammar is linear, variables can appear only on the path from s to the
first A, on the path from the first A to the second one, and on the path
from the second .4 to sorre leaf of the tree. Since there are only a finite
number of va"riablers on the path frorn 5 to the first -4, and sirrce each of
these gerrerates a finite number of terminals, u a'd z rnust be bounded. By
a similar argurnent, u attd y are bounded, so (g.b) follows.

The rest of the argument is as in Thcorern 8.1. I

that the langua6Je is linrrar and apply Theorem

,uJ : arnbzrrl(f,ttr,

llH$$$si$.Niiil rhu ru,.g,,us*

is not linear.
To show this, assume

8.2 to the string

Inequality (8.7) shows that in this cas. thc strirrgs ut Dt at a must a,ll consist
entirely of a's. If we pump this str'ing, we get orrt,lk62nzont+t, with either
h > 1 or I) t, a result that is not in tr. This contracliction of Theorern g.Z
proves that the languager is rrot linear.

I

F
2r2 Chopter I Pnt)pr:nrrr:s oR Cot't:rsxr-FRen LeNcuecns

This exatnple answers the general qtrestion ra,iscd on thtt relation be-

tweel the f"tr,milies of context-free and linear languages' Tlttl farnilv of lineflr

Iangrrelges is a, proper subset of the family of context-free larrguagtrs.

1. Use reasonirrg similar to that in Exarnple 4.1I to give a complete proof that

the language in Examplc 8.3 is not cotrtext-Iree.

@Stto* that the langrrage L : {a* I rz is a prime trutnber} is not t:orrtext-free.

3, Show that -L : {trr.utrttt : w E {a,b}- } is not a cotrtext-fi'ee larrguage W

4. Show that .L : {ur e {tl, b, c}" r n2" (*) + "3 (*) : til| (to)} is not context-frcc,

5. Is the language 7 -
{anb* : n * 2*} corrtext-free?

6. Show that the language I:
{o" '

, " } 0} is not coutext-free'

q (3) Show that the following languagcs on X = {a, b, c} u,re not context-free.

(a) I : {a* l l ; " < . i ' } m

(b) I : { a l h i : " > (j - 1) ' }

(c) L : { a n b i c h : k : j n \

(d) / , : { a ' o b i c h : k > n , f > i }

(e) L : {a ; "h i ck : n I j ,n ! h S . i }

(f) .L : {ru : n,,, (tu) < nu (tu) < n.. (tr)} (S)

- (e) f -
{w: no(w) lrr ' t , ('u,) : n" ('u')}

(h) Z, : {u € {4, b,t :}* : n,, .(zr) * nr (tu) : 2n" (tu)} '

,/ ,{\
-)

!dr) Deternrinc whether ol not the following languagcs are cotrtext-free

(a) Z , : {a ' f "uuHa ' t ' : n , } 0 ,u e {a 'b } - }

(h) L : , { a " ' b i a ^ H : ? r } 0 , i l 0 i W

(c) 1, : {a' l t i r t ib" : tr . > 0, j > 0}

(t t) L : {a"H akht I n + i t- k + I}

(c,) L = {anbi ahlsl, r , a- k, J < I}

(f) r : { u " ' b " t ! , , " < j }

g. I1 Theprenr 8.I, find a bound for rrz in tertns of the properties of the grammar

^ , G .'{

m nctcrmi*e whetrrer .r *.t t6e followi.g language is cnntext-free.

[, = {. ,w1ttn2 i ,u]r1,t tz e {4, b}- ,wt I wzl f f i

8.2 CLosuRe PRoreRrlns ewo Dncrsrol Ar,conrrHMs FoR Cournxr-Fnpn LaNcuecns 213

b drb Sfro* that the language 7 : {a'ob"a"ob'* ; n 2 0,m > 0} is context-free but
V not linear.

q
QH

Show that the following language is not lirrear.

t , : { w : n * (w) > n u (.) } W

13. Show tha t the language L : {w € {a ,b ,c } * : r ro (w)+na(*) : r r " (u ,) } i s
context-free, but not linear.

\ D (4 . Oeterminewhetherorno t the language 7= {a"b t : i 1 ,n<2 i - 1 } i s l i r rear .
'

15. Determine whether or not the language in Example 5.1? is linear. ffi

16. In Theorem 8.2, find a bound on m in tenns of the properties of the glarrrrrrar
G.

17, Justify the claim made in Theorem 8.2 that for any linear langrrage (not
rxrntaining A) there exists a lirtear grarrtrna,r without }-productiorrs arrd unit-
productions.

L8, Consider the set of all strings af h, wherc a and b are positive decimal integers
such that u I b. The set of strings therr represerrts all possible tlecirnal
fractions. Determine whctircr or not this is a context-frec languagc.

* 19, Show that the complement of the language in Exercise 6 is not context-free.

\t @ t* the following language context-free?

L: {o""' : rz and m, are prime numbers} W

Closure P roper t i es ond Dec is ion A lgo r i t hms
for Confext -Free Longuoger

In Chapter 4 we looked at closure under certain operations and algorithms
to decide on the properties of the farnily of regular languages. On the whole,
the questions raised there had easy arrswers. When we a,sk the same ques-
tions about context-free la,nguages, we encounter more difficulties. First,
closure properties that hold fbr regular,r lalnguilges do not always hold fbr
context-free larrguages. When they do, the arguments needed to prove them
are often quite cornplicated. Seconcl, many intuitively simple and important
questions about srntext-f'ree larrgrrages c:artrrot trtt arrswered. This statement
rrray seerrr at first surprising and will need to be elaborated as we proceed.
In this section, we provide only a sample of some of the most important
results.

Closure of Context-Free longuoges

The familv of context-fiere la,ngrrages is closed und(lr union, ctltrcaterratiorr,
arrd star-closure,

2L4 Chopter 8 Pnornnuss ol' CoNrexr-FRen LANcuAGEs

Proof: Let trr and -L2 be two context-free languages generated by the
context- f ' ree grammrrnJ Gr : (Vr ,?r ,Sr ,P1) and Gz: (Vz,Tz,S2,P2), re-
spcctivcly. Wt: c:arr a^$$urne without loss of generality that the sets V1 and
Vz <rre disioint.

Cotsider rrow the larrguage I (Gr), gerrerated by the grammar

Gr : (H u V2 U {S.} , r, u 72,,93, P3) ,

wlrere S'3 is ir variirtrlc rrot in V U Vz. The productions of Gs are all the
prochrt:ti{rrrrt of G1 a,rrcl G2, together with an alternative starting production
that allows us tr) us(l orro or the other grammars. More precisely,

P: t : Pr U Pz U {5r * 5r l5z} .

Obviously, 63 is a context-free grammar, so that L (Gz) is a context-free
languagc. But it is ca^sy to see that

L (G s) : L r u L z . (8 , 8)

Suppose for instance that u € trr. Then

S : t + S r 4 r u

is ir possiblc derivation in grammar G:J. A similar argument can be made
for u € -L2. AIso, 1f w e L (G3) therr either

53 + ^91 (8.9)

or

5h + 5'z (8.I0)

rmrst trr: the first step of the derivation. Suppose (8.9) is used. Since senten-
tial ftrrrns durivcd fiom Sr have variables in I{, ancl V1 and V2 are disjoint,
the derivation

S r S r u

can involve productions in P1 only. Hence trr must be in -L1. Alternatively,
if (8.10) is used first, then tu must be in.L2 and it follows that .L (G3) is the
rrnion of L1 a,nd 1,2.

Nr:xt, rxlnsider

. , G+ : (Yr u Yz u {50} , i l ' , u ' I '2 ,Sa,Pa).

Here a,gain Sa is a new variable and

P+: Pt U Pz U {5i - SrSz} .

8.2 ClosunE PRopERTTES AND DucrsroNAlcoRrrHlrs FoR CoNTEXT-Fn.en LANGUAcES 215

Then

L (G +) : L (G r) L (G r)

follows easily.
Finally, consider I (Gs) with

Gs : (VL U {Ss} ,7.1,55, P5) ,

where 5'5 is a new variable and

Ps: Pt U {S5 - 5155l.U.

Then

I (Gs) : L (Gt) * .

Thus we have shown that the farnily of context-free languages is closed
under union, concatenation, and star-closure. r

The family of context-free languages is not closed under intersection and
complementation.

Proof: Corrsider the two languages

L1 : { anb "cn ' : nZ 0 , rn } 0 }

and

L2 : {a "b *c * i n , } 0 , r n > 0 } .

There are several ways one can show that .L1 and "t2 are context-fiee. For
instance, a grammar for -L1 is

S * Sr,5'2,

5r --i a5rblA,

5z --+ c5zlA'

Alternativelg we note that tr1 is the concatenation of two context-free lan-
guages, so it is context-free by Theorem 8.3. But

L1 - t L2 : { unbncn : n } 0 } ,

which we have already shown not to be context-free. Thus, the family of
context-free languages is not closcd under intcrsection.

Chopler I PnornRuns on Cowrnxr-l'Ree LnxcuRcps

The second part of the theorem follows from Theorem 8.3 and the set

identitv

::=..:
L 1 t 1 L 2 : L t U L z .

If the family of context-free languages were closed under complementation,

then the right side of the above expression would be a context-free language

for any context-free L1 and L2. But this contradicts what we have just

Shown, that the intersection of two context-free languages is not necessar-

ily context-free. Consequently, the family of context-free languages is not

closed under complementation. r

While the intersection of two context-ftee Ianguages may produce a

Ianguage that is not context-free, the closure property holds if one of the

languages is regular.

Let .L1 be a context-fiee language and tr2 be a regula,r language' Then

L1 tt L2 is context-free.

Proof: Let M1 = (8, X,I, dr, q0, s, .F"l) be an npda which accepts -Lr and

Mz: (P,E,dz,po,Fz) be a dfa that accepts.L2' We construct a push-

down automaton ffi : (0,8,f,t, qo,r,F) which simulates the parallel

action of M1 and M2: whenever a symbol is read from the input string, -ffi

simultaneously executes the moves of M1 and M2. To this end we let

and define d such that

e : e x p ,
0o : (go'po),
*
t ' : I \ x E z t

((q r ,p r) , r) e 6 ((qa ,pr) , o , , b) ,

(gn, r) e d1 (qa, a, b) ,

if and only if

and

6z (p i , a) : p t .

In this, we also require that if a : tr, then py : p7. In other words, the

states of M are labeled with pairs (U,pi), representing the respective states

8.2 Closunn PRoRnnrlns ,q,FID Dnctslol AlconrrHMs FoR Colrrexr-FREE LANGUAGES 217

in which Mr and M2 (:arr be after reading a certain inprrt string. It is a
straiglrtforward inductiorr argument to show that

((qt"Pt ') ' u ' " z) i ; ((q ' ,P") ,n) ,

dtlr q, € .Fr and p" € Fz if and only if

(qo ,w , ") i - , (g , , z) ,

nd

d* (Po, w) : p".

Therefore, a string is acceptecl Uv fr if and only if it is accepted by Mr and
M2, that is, if i t is in tr (Mr)) L (Mr) : Ltfi Lz. I

-

The property addressed by this theorem is called closure under regular
intersection. Because of the result of the theorem, we say that the family
of context-free languages is closed under regular intersection. This closure
property is sometime$ useful for simplifying arguments in connection with
speciflc languages.

Exomplo 8.7 Show that the language

t r - l a " h " r z) 0 , n l I 0 0 j

is (:tlntr:xt-free.
It is possible to prove this claim by constructing a pda or a context-free

granrrnar for the langrrage, but the process is tedious. We can get a muclr
treater argument with Theorem 8.5.

Let

Lt : {a loobloo} .

Then, because trr is finite, it is regular. Also, it is easy to see that,

7 , : { a " b n : n > 0 } 1 1 2 1 .

Therefore, by the closure of regular languages under complementation and
the closure of context-free languages under regular intersection, the desired
result fbllows.

I

Chopter I PnornRTrns on Corcrnxr-FREE L,q,rucuRcns

W[*Blii$l'tt,�\N show rhat the languase

L :
{* € {cl, b, c}* : no (*) : n, (tr) : t , , (",)}

is not context-free.
The pumping lemma can be used for this, but agaiu we can get a tnuclt

shorter argurnerrt urting closure under regular intorsection. Suppose that .L

were context-free. Then

Lf t L(a,*b*c*) : fa 'b"c ' : rz l 0]

would also be context-free. But we alreadv know that this is not so.

conclude that tr is not context-free.

Closure properties of langrtages play an important rolc in the theory
of fclrrnal languages and many more clt$ure properties for context-ftas lan-
guages can be established. Some additional results are explored in the
exercises at the end of this section.

Some Decidqble Properties of Context-Free Longuoges

By putting together Theorems 5.2 and 6.6, we have already established the

existence of a rnembership algorithm for context-free languages' This is of

course an essertial feature of any language family useful in practice' Other

simple properties of corrtext-fiee languages can also be determined. For the
purpose of this discussion, we a$$ume that the Ianguage is described by its
grarllma,r.

Giverr a context-free grammar 6: (V,T,^9,P), there exists an algotithm
for deciding whether or not .L (G) is empty.

Proofr For simplicity, a^$sume that.\ # L(G).Slight changes have to be

made in the argumerrt if this is not so. We use the algorithm for removing
useless symbols and productions. If '5 is found to be useless, then tr (G) is
ernpty; if not, then ,L (G) contains at least one element. I

Given a context-free grammar 5: (VrTr^S,P)' there exists an algorithm
fbr determining whether or not I (G) is infinite.

Proof: We assume that G contains no .\-productions, no unit-productions,
and no useless symbols. Suppose the grammar has a repeating variable in
the sense that there exists some A e V fbr which there is a derivation

Wtr

I

A l rAs ,

8.2 Cl,osuRril Pnopnnrrns eNr Dncrsror,i AlcoRt't'HMS FoR, (,'oltrnxr-FnnE La,NcuncF:s zfg

Since (J i$ ir,$srrrned to have no A-productions ir.rrtl tto unit-productions, r
and .t7 cilnnot bc sitttultatreously emptv. Sintxl A is tteither nullable nor ir,
rrscless svmbol. we have

and

S l u A u S u t

A 1 z ,

where, u, ?, and a trre irt 7'*. But then

S 1u,Au 3 ux' ' 'Ay"u 3 ur"zynu

is possible for all n,, so thrr.t I (fJ) is infinite.
If no varia,ble r:an cver repeat, then the length of irny derivation is

boundecl by lI/1, In that t:itsc, .L (G) is finite,
I'hus, to get a,n tllgoritltrn for detertniuing wlxrtlrcr I (G) is finite, we

rreed only to cletermine whclthcr the gramtnar ha,s stturt: rcpeating varia'bles.
I'his can be done sirnply by drawing a depenrlerrc:v graph for the va,ritlblos
in sucir a way tha,t therc is att edge (A, R) whenever thcre is a corresponding
production

A --+ :nB,!t.

'I'hen any varia,trle that is rrt' Lhe base of a, cycle is ir repeatiug one. Corr$e
quently, the gra,mmir.r hirs ir repeating va,riahlcr if rrrrd otily if the clepelncltlncy
graph ha,s a, cyt:lo.

Since we now have an algorithm fbr rlu:itlittg whether tt, grilrnrnitr ltas

a repeating va,rierblc, wc have an algorithm frrr rlctertnining whetlrcr tlr ttot

I (C) is infirritc. I

-

Sornewhat surprisitrgly, other sirllllt: properLies of context-f'rtlc languages
rrr(: rrot so easily clealt with. As itr I'heoretn 4.7, wtl rniglrt look for a,n a,lgtr
ritlrrrr to deternrine whcthcr two context-free grilrrrrnars genera,te the sarntl

Iarrguage, But it trrrrrs rnrt that there is rrcl suc:tr rr.lgorilhn. For the mtlrntllrt,

we do uot have the ttx:hrrical tnachiner:v firr ltrtlllerly clefinirrg tiro rnt:arritrg

of "there is no ir,lgoritlrtn," but its intrritivt: rncatrilg is clea,r. This is an

important poirrt to which we will retrrrn lirter.

Is thc conrplernent of the languagc in llxamJrle 8.8 contcxt-free? ffi

Consider the language .L1 in 'lheorem B.4. Show that this larrguage is litrcar

1 .

220 Chopter I Pnopnnuns ol CoultLxr-!'nnn LANGUAGES

3. Show that the family of t:ontext-free languages is closerl under homornor-
phism.

4' Show that the family of linear lartgrrages is closed under hornorrrorphism.

5. Slxrw that the family of context-free languages is closecl under reversal. ffi

6. Which of the languagc faurilies we have discussed are not closed under rever-
sal?

7. Show that the farnily of context-free languages is not closed untler difierence
in gerteral, brrt is closed under regular difference, that is, if .Lr is rrrntext*free
and .Ls is regula,r, then /,r - .Lz is context-free.

I' Show that the farnily of deterministic context-free languages is closed urrder
regular difference.

9. Show that the family of litreat languages is closed under union, but not closcd
unrler concatenation. ffi

1O. Show that the family of linear larrgrrages is not closed under intersection,

11. Show that the family of deterministic contcxt-free larrguages is not closed
utrtler union and intersectiorr.

12. Cive an example of a cotrtext-free language whose complernent is not context-
free.

*13. Show that if .Lr is lirrear and 1,2 is regular, therr .L1.L2 is a linear language.
W

14. Show that the family of urtarrrbiguons context-free languages is not closed
under urrion.

15' Show that the farnily of unarnbigrrous contcxt-free languages is not closecl
under interset:tion. ffi

16, Let .L be a rleterministic context-free language and defirre a new languagc
L1 : lw : aw € L,a € X], .[s it necessarily true that .Lr is a tleterrninistic
corrtext-free language'l

17 , Showthat the la r rguage 7 : {anb" : n } 0 ,n i s no t a mu l t ip le o f 5 } iscontex t -
free.

18. Slxrw that the following language is context-free.

7 : {tu e {4, b}- : n." ('u) : rr,t (ur),tu does not cttrrtain a substring aab}

19' Is the farnily of deterministic corrtext-free languages closed under homornor-
phisrn'i

20. Givc the cletails of the inductive argurnent in Thcorcm 8.5.

21. Give an algorithrn which, for any giverr trntext-free grarnmar G, r:arr deter-
mine whethcr or not A e I (G). {S

22. show that therc cxists an algorithm to dctermine whether the language gerr-
crated by some context-free gratrrrnar contains any words of length less than
some givetr llumtrer rr.

23. Let -Lr be a context-free language arrd .L.: be regular, Show that there exists
an algorithm to deterrrrine whether or not .Lr arrd .L2 have a cornrnon elerrrent.

Tur ing
Moc h i nes

n the foregoing discussion, we have encountered $Qme fundamental

ideas, in particular the concepts of regular and context-free lan-
guages and their association with finite autontata and pushdown

accepters. Our study has revealed that the regular languages form

a proper subset of the context-free languages, and therefore, that push-

down automa,ta are more powerful than finite automata. We also saw that

context-free languages, while firndamental to tha study of progranmfng

languages, a,re limited in scope' This was made clear in the last chapter,

where our results showecl that some simple languages, such as {atb"c"t} and

{**}, are not context-frtle. This prompts rrs to look beyond context-free

Ianguages and investigJate how one might define new Ianguage families that

inclrrde these examples. To do so, we return to the SEeneral picture of an

automaton. If we compare flnite arrtornata with pushdown automata, we

see that the nature of the temporary storage creates the difference between

them. If there is no storage, we have a finite automaton; if the storage is

a stack, we have the more powerful pushdown automaton. Extrapolating

from thiS observation, we can expect to disCover even m()re powerful lan-

guage families if we give the automaton more flexible storage. For example,

22r

222 Chopter I Tunlnc MACHTNES

what wtlrrld happen if, irr the general scheme of Figure 1.3, we rrsrxl two
stacks, thrne stacks, a queu(], or $orne other storage device? Does each utor-
age device tlcfine a new kind of ir,rrtomaton and tlrrough it a new langrrirge
family? Tlis approach raises a lirrge number of qucstions, rnost of whit:h
turn out to bc rrrrinteresting. It is more instructivcl to ask a more arntri-
tirlrs question and rxlnsider how far the concept of arr arrtomaton can btr
ptrshed. what carr we $ay about the rnost powerful of arrtomata and thc
limits of computatiorr? This leads to the funda,mental corrr:r:pt of a Turing
machine and, in turn, to a precise elefinition of the idca of a nrechanical or
algoritlunir: computation.

We bcgin our study with a fbrmal defirrition of a, Ttrring rnar:hine, thel
develop sorne feeling fbr whtrt is involved by tloing some simplc programs.
Next wc errgrre that, whilu the mechanisrn of a, T[ring rrrachine is quite
rudimentary, the concept is tlroad enough to c:over very complcx processes.
The discussibn r:rrlminates in the Turing thesis, which maintains thirt any
urmputational llrocess, such as those carried out by present-day cornprrters,
t:eln be done on a T\rring machine.

The Stondord Tur ing Moch ine

Although we carr cnvision a variety of automata with complex and sophis-
ticaterd storage deviuru, a, Thring rrrachine's storage is actually quite sirnple.
It cart lle visualized as a single, one-dirrrensional array of cells, each of which
can holtl tr single syrnbol. This array extcnds indefinitely in both directiorrs
and is thercfirre capable tlf holdirrg an urilirnited amourrt of infbrmation.
The infornmtion can be read irrrd changed irr any order. we will ca,lJ such
a storage device a tape hecause it is analogous to the magnetic t,apes used
in actual curnputers.

Definition of q Turing Mochine
A Trrring rnat:hine is an automaton whose ternporary storage is a tape. rhis
telpe is divided into cells, eac:h of which is caJrrrble of holding one symbol.
Associated with the tape is a read-write head tha,t can traval right or left
orr the tape and tha,t ca,n read arxl write a single symhol on each nrove. To
deviate slightly frorn the general schcme of chaptcr 1, the autornatorr that
we use as a Thring machirre will have neither an input filc nor any special
output rnu:hanism. whatcver input and output is necessarv will be done orr
the machirrc's tape. we will see later that this modificatiorr of our general
model in sec;tion 1.2 is of little r:onsequence. we could retairr the input file
arrd a specilic outprrt mechanisrn without affecting any of the corx:lusions we
artl rrbout to draw, but we leave them out becausrl the resulting automaton
is a little easier to rkrscribe.

Figurc 9.1

9.1 THn Srer"rrrARlr TuR,Inc MacntNn 223

A dirrgrani giving an intrritivtr visualization of a T\rrirrg rnachiue is shown
irr Figure 9.1. I)efinition 9.1 rnakes the notion prccise'

A T\rrirrg tnachine M is derfirrtxl by

M : (Q,X, f , (t , q6, i l , F) ,

where

Q is the set of intcrnal states,
X is the input nlphabet,
I is a finite set of symbols called the tape alphabet,
d is the transition function,
! e f is a special symbol called the blank,
qo E I is the initial stntc,
F C Q is the set of firral states.

In the rlclinition of a Ttuing rnachine, we assume that E ! f * {n}, that

is, that the input alphabet is a, srrtrset of the tape alphabct, not including the

blank. Blanks are ruled out a,r irrput for reasons that will become apparelrt

shortly. The transition funt:tiorr d is defined as

d : Q x f - Q x f x { , 1 , . R } .

Irr gerreral, d is a pa,rtiirl futrction on Q x f; its interpretatiott gives the

prirrciple by which a, Thritrg tnachine opcrates. The arguments of d are

the current state of the control unit and the current tape symbol being

read. The result is a new stattl of tlte control unit, a new tape sYmbol,

Reed-write head

Figure [|.2

The situation

(a) before the move

and (b) after the

In()ve.

Chopter 9 TunIuc MACIIINE$

flnternal state 7o f
Internal smte fI

I

l ' l ' l ' l l ' l ' F l -

which replaces the old orre, and a move symbol, L rtr R- The move syurbttl

indicates whether the read-write head moves left or right one cell after the

new symbol ha^s been written ott the tape.

r,lll;f

ii*tnele +,1 Figrrre 9.2 shows the situation before and after ttNr move caused by tlx:

.i (qo, o) : (91, rJ, It) .

We can think tlf a Thring machilre as a rather simple computer. It

has a processing unit, which has a finite llrelnorYr and in its tape, it has

a secondary storage of rrnlimited capacity. Tlrg instructiols that sut:h a

c6mputer ca,n cs,rry ttut ttre very limited: it can $ense a symbol on its tape

and use the result to decide what to do next' Tltc onlv actions the machine

can perform are to rewrite the current symbol, to ctrange the state of thc

control, and to move the read-writc head. This small instflrction set may

seem inadequate lor doing complicated things, but this is not so. T\rring

machines are quite powerfirl in principle. Tlte transition function d defines

how this computer acts, and wc often call it the ttprogram" of the machine.

As always, the automaton stai-t$ in the given initial state with sorne

informatiorr on the tape. It then gotls through a sequence of steps controlled

by the transition lunction d. During this process, the conterrts of any cell on

the tape may be cxamined and changecl many times' Eventuallv, the whole

process may ternrinate, which we achieve in a Tlrring machine bv putting

it into a halt state. A Ttrring maclfne is said to halt whenever it reaches

a configuration for which d is not defiiled; this is possible because d is a

partiat function. In fact, we will assume that rro transitions are defined for

any final state, so the T[rring machine will ha]t whenever it enters a final

state.
I

(b)

9.1 Tnn Sr.q,r.tnRRo TunInG MlcnIbrn 226

Figurc 9..3

A seqrrerrr:e of

moves.

h't(HtilFld f -t Consider the Tirring machine delined by

Q : {qo,qr} ,

5 : { a , b } ,

f : { a , b , t r } ,
r : { q r } '

ano

d (qo, o) : (qo, b, ft) ,

d (qo, b) : (go, b, ft) ,

d (qo, !) : (sr, tr, tr) .

If this T\rring machine is started in state qs with the symbol a under the

read-write head, tlte applicable transition rule is d (go, o) : (go, b' ft)' There-

fore the rea,rl-write head will replace the a with a b, then move right on the

tape. The machine will remairr in state q0. Any subsequent a will also be re-

placed with a b, but b's will not be modified. s4ren the machine errcounters

the first blank, it v/ill move left one cell, then halt in final state q1'

Figure 9.3 shows several stages of the process for a simple initial con-

figuration.
I

. H,fi,ffin#Ili.Hi$ " Take Q, E, I as defined in the previous example, but let F be empty. Define

d b v

d (qo, o) - (q1, a, E) ,

d (qo, b) - (q1,b, R) ,

d (qo, n) : (qr, E, ft) ,

tI (qr, a) : (qo,a, L) ,

d (s r , b) : (qo ,b ,L) ,

d (sr, i l) : (qs, n,.L) .

TuRrNcChopter 9Chopter 9 Tunrr,rc Macmbru$

To see what happens here, we cirn trace a typical ctr,se. Suppose that the
tape initially corrtains c,b..,, with the read-write head on the a. The machine
then reads the a, brrt does not change it. Its next strrte is {1 and the read-
write head moves right, so thai it is now over the b. This symbol is also
rt:ird and Ieft unchanged. The machine goes back ittto state {q and t}tc read-
write head moves left. We are rlow track exactly in tlre original state, trnd
the sequence of moves stilrts again. It is dear from this that the maclfrrc,
whatever the initial information on its tape, will run forevet, with the read-
write head moving alternately right then left, but making no rnodifications
to the tape. This is an instalxjc of a Ttrring rlachine that does rrot halt. As
an analogy with programmirtg tcrminology, we say tha,t the T\rring machine
is in an infinite loop.

I

Since omr can make several different definitions of a Tirring machine, it
is worthwhile to nummarize thc main features of our model, vrhich we will
call a standard T\ring machine;

1. The T\rring machine hils a tape that is unbounded in both directions,
allowing any number of left and rigltt moves.

2. The Turirrg machine is detcrministic in thc sense that d defines at most
one move for ea,ch configuration.

3. 'fhere is no special irrput file. We a"ssume that at the initial time the
tape has some specified r:ontent. Some of this rnay be considered input.
Similarly, there is no special output device. Whenever tlte machine
halts, some or all of the contents of the tape may be viewed as output.

These corrvnntions were cltosen primarily for the convenience of subse*
qrrent discussiorr. In Chapter 10, we will look at other version$ of Ttrring
nratrhines and discrtss their relation to our standard model.

To exhibit the configurations of a Ttrring machine, we uso the idea of
an irutantaneous description. Any configuration is completely determined
by the crrrrent state of the control unit, the conterrts of the tape, and the
positiorr tlf the read-writc head. We will use the notation in which

frtIrz

a t f l z ' ' ' ak - rq0 ,ho ,k+1 ' ' ' o " '

is the instantaneou$ description of a machine in sta,te q with the tape de-
pictetl in Figure 9.4. The symbols et,...tiln show the tape contents, while
q defines the state of the corrtrol rrnit. This convention is chosen so that

or

9.1 TnE Srlrun.qRn Tuntuc MncHttqn

Figure 9.4

the positiorr of the read-write head is over the ccll contaitting thc sytnbol

immediately followirrg q.
I'he instantnrrcous description givcs otily a finite amtlrrrt of informatitlrr

to the right a,nrl lt:ft of the read-writc head. The unspet:ified part of the ttrpe

is assumed to <xlrrtain all bla,nks; rxlrrrrally such blanks are irreleva'nt ir,ntl

are not shown elxplicitly in the irrstiurtaneous descriptiotr. If the positiorr

of blanks is rc:levant to the clisr:rrssion, however, the blank syrubol rtray

appear in the irrstantaneous desr:ription. For examplc, the insta'nttrrrtxrus

description qE.ru indicates that the read-write herr,tl is on the cell to the

immecliate krft of the first symbol of to and that this cell coutains a blank,

$fisrhpls S,il The picrtrrrc:s drawn in Figrrrc: 9.3 correspond to the sequence of instanta-

neous dt:scriptions Qoaa, hqya, bbqsl, bqlb-
A move fron one conliguration to a,nothtrr will tre denoted by F. Thus,

I I

d (s1 , r:) : (q2, e, R) ,

then the rnove

abqlctl I abe.q2d,

is ntacle whenever the internal sta,ttl is q1, the tape t:orrtains abcd, arxl the

reacl-write head is on tlte c. The symtrol F has the u$rral neaning of irrr

arbitrary nutnber of mtles. Subscripts, such as F14, are used iu argumtlnts

to rlistinguish betweort several ma'crhirrcs.
I

l l . i - r , l l f i i : i - l -

.Et{frrSl' 9;,$ The action of thc T[ring machinc irr Figure 9.3 can be representul by

rl11{r0.1bq(raI bbqptr F bqlb

227

qo i l i l l bqLb,

T

Chopter 9Chopter 9 Tunltrtc MncHrlrns

For frrrther discussion, it is convenient
vations jrrst macle in a forrna,l way,

to summarize the: vir,rious obser-

Let M : (8, X,l, d, Qo, n, F) be a 'fhrirrg ma,chine. Tlrtlrr ir.ny string a1 . . .

a,k-Lqruht&t1+t.- .ant with n,; g I and h € Q, is ir,n instantalttx)lliJ descriptiott
of M. A move

{ 11 ' " f i ,A , - r q IAhAh+ l

is possible if and only if

d (,1r , or) : (qz,b, H) .

A move

A1 " ' t l , 1 r - 1Q10 � r i 0 . t t + t " ' t Ln | &1 " ' qTuk - rbAp ' r 1 " ' A ,

is possible if ancl only if

d (qr, *n) = (qz, b, t r) ,

M is sa,ici to halt sta,rting fronr sornc initia,l configura,tion rfli:x2 iI

i t : ,rQiIz I t l tqiauz

firr any qj arr(l a, fbr which 6(qi,o) is unrlcfined. The sequc:rrr:e of couligtr-
ra,tions leaclirrg to a halt statc will be called a computation.

Iixample 0.lJ shorvs the possibility that a T\rring machitre will never hall,
proceecling in an crrdless loop I'rrlm which it, carrnot escape. This situatior
plays a, firnclarnentirl role in the dist:ussion of 'I\rrirrg ma,chines, so w() u$e a,
special notation for it. We will reprt:sent it by

x:lqf,? F co,

indicating tha,t, starting frorn the initial l:ontiguratior :t,1qfr!1the tnar:hirrel
never halts.

9.1 THn Sr^r'lDnn,l TuRIlrcj MacnIt-ln 229

Turing Mochines os Lqnguoge AccePters

Ttrring machintls can be vitrwed as accepttlrs in the fblklwing sense. A string

tu is written orr the ta,pe, with bla,nks fillirrg out ther urtused portions. The

rnachine is started in the irritial state q1 with the retr.tl-write head positioned

on the leftrrtost symhol of tu. If, after a sequellce of tnovels, the Ttrring

rnachine entets a fina,l state atld halts, tlten tl is ctlrrsidered to be accepted.

Let M : (Q, t , f ,d ,qo,E,F) be a, T\ r r i t rg machir rc

accepted by M is

Then thc language

(*
L (M): i z,' € X+ ; qptt., I n1qyn2 for sorne qy

t
t r - F , t t 1 , r , € f .) '

'l'his rlerfirrition irrdir:ates Lha,t thr: irrput ,ru is written on the tape with

blalks on eitfier sicle. The reason for excluding trlanks fiom t]re iuput rrow

becomes qlcar: it assuros us that a,ll the itrput is rcstricted to a well-defined

region of thc tape, bra.cketecl by hlanks ou the riglrt and left. Without this

convention, the rna,chirre could not lirnit the relgion in which it must look for

the inprrt; rro matter how ma,ny hlrrtrks it str,w, it coukl ntlver be strrtr that

thelrt: was not sorntl nonbla,nk irrput somcwltere else orr the ta,pt:.

Defirrition 9.3 tells us what tnust happetr when ut e l'(M)' It savs

rrotfiing abqrrt t]re outcorrre for any ot]rer iuput. W]reu u is trol itr L(M),

6rre of two thirrgs ca,n happen: the rrrachine can halt in a norilitral sta,tcr or

it can errter an infinite loop a,ntl trever ha,lt. Any string for whit:h M does

not halt is by clefinitiott trot in 1, (M)'

,.f,ffit*,fitg6l,Sr,$;#,:,i Fbr E : {0, 1}, design a T[ring rnar:hine that accepts tht: lauguage dcnoted

by the regular exPressiou 00*.
This is a,n easy exercise irr Turing rnin:hiile prograrrttrting. starting nt

the lcft end of ther i1put, wr: reacl each syrnbol anrl tlheck thnt it is a 0. If it

is, we contimre by movirrg right. If we reaclr a blank withtlut eucorrntering

alything hrrt 0, we terrrrinate anrl irccept the string. If the input txrntains

a i any*fiere, t|e strirrg is not irr r (0i].), arrcl we halt itt a tronlirral state.

Io keep track of thc r:omputtrtiotr, t,wo interrral sta'tes Q: {qo'{t} and one:

final stirtc F: {qr} are sufticicrrt. As trir,nsition functiotr we carr take

d (s , r ,0) : (q0 ,0 , I t) ,
d (qo, tr) : (q1, n, fi) .

230 Chopter g Trrurrc MACHTNEs

As long irs a 0 appears rrnder the re^d-write head, the head will move to ther
right. If at a,ny time a 1 is read, the rnachine will halt in the nonlinal state
q()' $ince d (,nr, 1) is undefined. Note thirt the 'rhrirrg

ma,chine aJso halts in
a Iina,l state if utarted in stnte {s on a blank. we could interllret this as
ilt:ceptance of A, but for ttxlhnical rea^s()ns the ernpty string is not includecl
irr Definition 9.3.

T

The recogrrition of morr: complicated languages is more difficult. since
illrring mac]rincs have a primitive instrrrr:tion set, t]re computations that we
carl pregram ea"sily in a higlxlr level lailguaEle ere oftr.:n cumbersome on a
Turing machine. still, it is possible, and thc concept is ea^sy to understand,
as the next exarnrrlcu illustratc.

For E : {a, b}, design a Thring machine that ar:r:eprs

7 : { a , r h " : n } 1 } .

Intuitively, we solve the problern in the following fashion. starting at the
Ieftmost a, we check it off by replacing it with some symhol, say z. We
then Iet tlxl read-writc head travcl right to fincl the leftrnost b, which in
turrr is checked off by replacing it with another symbol, say y. After that,
we go left again to the leftrnost a, replrr,ce it with a,n r, then move to thc
leftmost b and replrrce it with .r7, and so on. T}avelirrg back and forth this
way' we ma,tch each .r, with a correspondirrg b. If after some time no c,'s or
b's remain, thc:n the strirrg must be irr .L.

working orrt the cletails, we arrive a,t a conrplete solution for which

Q : { q o , q t 1 q z 1 q B t q 4 } 1

F : { q n } '
g : { a , b } ,

| : {a , b, . r : , y , E} .

The tra,nsitions can be broken into several parts. The set

, i (qo, a) : (qt , r , R) ,
d (gr, a) : (qr, a, ft) ,
d (qr , y) : (gr , u , f t) ,
d (q r , b) : (q z , y , L) ,

rerplaces tlrc leftmost a with an lr, then causcrJ the read-write heatl to travel
right to the first b, rcpla,cing it with a y. when the y is written, the machine
crrters a state qz, indicating that an a has beru successfully paired with a b.

Exorrrple q.i

9.1 Tsn SrannaRn TuntNc MaoHItIp 231

The next set of transitions reverses the direction utttil an z is encoun-
tered, repositions thqt read-write head over the leftmost a, and returns con-
trol to the initial state.

d (sz, g) : (qz,a, L) ,

d (qz, a) : (qz,a, L) ,

6 (qz,n) : (qo, r , E) .

We are now back in thc initial state q0, ready to dcal with the next c, and b.
After one pass tlrrough this part of the computation, the machine will

have carried out the paftial computation

qoe,a, " . r tbb. . . b i *qoo. ' . ayh " ' b ,

so that a single a has been mtr.tclted with a single b. After two passes' we
will have completed the partial cornputation

qoao , ' ' ' ahh ' ' ' t i * *qs " ' (rAY " ' b ,

and so on, indicating that the matching process is being carried out properly.

When the ir4lut is a string a'b', the rewriting continues this way, stop
ping only when there are no more o'$ to be erased. When looking for the

Ieftmost a, the read-write head travels left with the machine in state q2.

When an r is encountered, the direction is reversed to get the a' But now,

instead of finding an a it will find a 37. To termirrate, a final check is made to

see if all a's and b's have been replaced (to detect input where an a follows
a b). This can be done by

6 (qo ,a) = (Q : t , a ,R) ,

5 (qz,a) : (q: t ,a , R) ,

d (Sr, !) : (ga, tr, E) .

If we input a string not in the language, the computation will halt in

a nonfinal state. For examplc, if we give the machine a string a'b*, wittr
rL 7 ffit the machine will trventually encounter a blank in state q1 . It will

halt because no transition is specified for this case. Other input not in the

language will also lead to a nonfinal halting state (see Exercise 3 at the end

of this section).
The particular input aabb gives the following successive instantaneous

descriptions

araabbl rqlabbl raqlbbl nq2ayb

ts q2raybl rqsaybl nrtnyb

I myqlbl rnq2yy l ng2ryy

I r:xqoyu I rryqy I myqsJ

I rnyyZqal.

282 Chopter 9 Tunrr'rc; MACHrFres

At this point the T\rring machine halts in a final state, uo the string aabb is
accepted.

You are urged to traccl this program with several more strirrgs in -L, a"s
well a-r with some not in -L.

I

i Design a T\rrirrg macrhine that accepts

7 , : { a " b n c n : n > 1 } .

The ideas userl to Exrr,mple 9.7 are easily carrierl over to this case. We matclr
each a, b, and c by replacing them in order lty r, u, a, respectively. At the
end, we check that all original symbols have been rewritten. Although
conceptua,lly a simple exterrsion of the previous exarnple, writing the actual
progralrr is tedious. We leave it as a somewhat lengthy, but straightforward
exercise. Notice that even though {o"bn} is a txrntext-free language and

{anb"c"} is not, t}tey r:an he accepted by I'uring rnachines with very similar
structufes-

I

Otte ctlnt:hrsion we can draw frorn this example is that a Thring machine
can recognize sorrre langrrages that are not contrlxt-free, a first indication
th.r,t Tirring machines are rn()re powerful than pushdown arrtomata.

Turing Mochines os Tronsducers
We have had little reason so far to study transducersl in language theory,
accepters are quite adequate. But its we will shortly see, T\rring machines
ate tttlt only interesting as language accepters, they provide us with a simple
abstract model for digital comlrrrter$ in general. Since the primary purpose
of a conrputrlr is to transform input into orrtput, it acts as a transducer. If
we want to rnodel comprrters using T\rring rrrachines, we have to look at this
er,spect more closely.

The inprrt for a computation will be all the nonblank symbols on the
tape at the initial time. At the conclusiorr of the computation, the output
will be whatever is then on the tape. Thus, we can view a Tirring machine
tra,nsducer M as arr implementation of a furrction / defined by

provided that

f r = f (w) ,

Qyw I L.r Qyfr,

for sornc finrr,l state q7.

!|l THn SrAFtrrA,Ito TunINc M,tcsItqn

inn.�1,$.i'l$�fimmir.Pli l,

A function / with clomain D is uaid to be Turing-computable or just

computable if there exists some Ttuirrg tnachine M : (Q,t, f , d, qo, E, F)

such that

Q o w l u W f @ t) , e y e F ,

for all z.' € l).

As we will shortly claim, all the common mitthematical firrrctions, no

matter how cofirplicated, are T\rring-computable. We sta,rt tty looking at

some simple operations, such as addition and arithmetic comparison.

lur (r) l : z.

we rnust also cler:ide how r and 3r are placed orr the tape irritially and

how their sum is to appear at thc end of the ctlrttputation. We will assume

that ro (r) and tu (37) are on the tape in unary rrotation' separated by a

single 0, with the read-write head on the leftmost symbol of trr (z). After

the computation, ru (r + U) will be on the tape followed by a single 0, and

the reacl-write head will be positioned at the left end of the result. we

thcrefore want to design a Ttrring machine for performing the compltation

qour (r) 0t, (s) i qp (*+ s) 0,

where q1 is a final state. constructing a prograrn for this is relatively simple'

All we need to rlo is to move the separating 0 to the right end of u (g), so

that the addition amounts to nothing more than the coalescing of the two

233

Given two pgsitive integers l' and y, design a T\rri1g machirre that computes

n l A .
we first have to choclse some convention for represerrting positive inte-

gers. For sirnplicity, we will use unary notatiol in which aly positivc irrteger

" i, ,*pr"."nted by ur (r) e {1}+, srrch that

234 Chopter 9 'Itltrrruc MncnrNns

strirrgs. To achieve this, we construct M : (Q,X, l, d, qs, E, F), with

Q : { so , q t , qz tqJ)q4 } ,

F : { qn } ,
,l (s,j, 1) : (qo, 1, ft) ,
, i (,?0, 0) : (qr, 1, ft) ,
d (S r , 1) : (r 1 r , 1 , R) ,

d (qr , t r) : (qz,Z, L) ,
,5 (qz, 1) : k t t ,0 , L) ,
d (qr , 1) : (r l l , 1 , [) ,
d (Ss, tr) : (s+, tr, ft) ,

Note that in moving the 0 right we temporrrrily create an extra l, a fact
that is remembered by putting the machirrc into state q1. The transition
d (qr, 1) : (r1:1,0, iB) is needed to remove this at the end of the r:omputation.
This can be seen from the sequen(re of instantaneous descriptions for adding
1 1 1 t o 1 1 ;

qn111011 F 1q611011 l * 1 l qs1011 F 111q0011

F 111 lq1 11 F 11111q11 F 11111191 t r

F 11111q21 F 1111q310

i qs t r l 11110 F qa111110 ,

utrary notation, although cumbersorrrc for practical computations, is very
convenierrt f'or programrrring T\rring machines. The resulting programs ara
much shorter and simpler than if we had used another representation, such
as binary or decinnl.

I

Adding numbers is one of the furrdamental operations of any comprrter,
one that plays a part in the synthesis of more complicatecl instructions.
other basic operations are copying strings and simple comparisons. These
can also be done easily on a Ttuing machirre.

Exotnple fl"10 Design a Thring ma,chine that copies strings of I's. More preciselv, find a
machine that perftlrms the corrrputation

tyl ' .., i q.1ww,

for any ?u e {1}*

1 .

a.

3.

9.1 THn Sremoann TuRrr'rc Mrc;Hrrue 235

To solve the problem, we irnplemcnt thc fblklwirtg itttuitive process:

Rtllllaclc: c:very 1 lry an r.

Firrd thc riglrtrnost r and replace it with l.

Tlavel to l,he right end of the current nonblank regiorr arrd create a 1
there,

4. R,c1lr:irt Stcps 2 and 3 until there are no more tr's.

A T\rrirrg rnachine version of this is

d (qu, l) = ({0, r, I l) ,

d (so, n) : (gr, ! , r) ,
. l (q r , z) : (q 2 , 1 , f t) ,

,5 (Sr, 1) : (gz, 1, ft) ,

d (Sz, n) : (r1r , 1 , t r) ,
,) (Sr , 1) : (q1, 1, t r) ,

, l (,1r, tr) : (q3, D, ft) ,

where q3 is the only final stirtc. Tlfs trtay be a little hard to see a,t Iirst,
so let us tra,ce the pr()grailr with Lhe sirnple string 11. Tlrc c:orrrputation
perfbrmeld in this case is

qsll F rrgeI F tru(en I rqln

F r l g2n F rq111 F q1 r l 1

F 1q211 F 11s21 F 111q2tr

F 1 1 9 i 1 1 F l q 1 1 1 -

F s1 1111 F q1 t r1111 F q31111 .

I,et r a,rrd .r7 trt: two positive integers represented in utrary notation, Clorr-
struct a TLrring urachine tha,t will halt irr ar, Iirral state q, if r j 91, ir.nd that
will lralt in a nonlinal sta,te qn iI n { g. More specilically, the mat:hint: is to
perform the computation

ryprr' (z)0, (E) t qrut (r) 0, (y) , if n Z A,
+

qn,rr (r)0, (E) | q.w (r) Oru (y) , if r < A.

T

236 Chopter 9 Tunrug MecnrNns

To solve this problem, we carr rrrre the idea, in Example 9.7 with sott.e
minor rnodiflcations. Insteacl of rnatr:hing tz's and b's, we match each l on
the left of the dividing 0 with tlrr: I on the right. At the end of the matching,
we will have on the taoe eithc:r

t y r - . . l l l n n . . . r n

r n . . . m] m . . . 2 1 l t r .

deperrdirrg orr whether u > E or A > fi. In thc first case, when we attempt to
match arrotlrr:r 1, we encounter the blank rrt the right of the working space.
Ihis can bc usecl a,s a, signal to enter the state gr. Irr the second case, we
still find a 1 on the right when all I's on the lcft her,ve heerr replaced. We
use this to get into thc other state qr,,. The cornplt:tc progra,m fbr this is
straightforward and is left as arr exercisc.

Tltis t:xample ma,kes the irnporlant point tha.t a, Thring machine carr bt:
progralrurlc(l to tra,ke decisions based otr aritlrrntltic cnmparisons. This kind
of simplc dtxlision is comrnon in the rrrachirxr langua,ge of computers, whrlrc
alternate instrut:tion strea,ms are entered, deprlrrdirrg on the outcome of an
arithmetic operation.

t

** L, Write a Turirrg rnachine simulator in sorne higher-level programming larr-
grrage. Such a simulator should accept as input the tlescription of any Ttrring
tttacltirre, together with a,n inititl,l corrfiguration, and shoulcl produce ar^s outprrt
thc result of the rrrmprrtatiorr.

?. Design a Turing rnachirre with no morc than three states that acccpts the
language L(a(a-l b)-). Assrrrne that X: {a,b}. Is i t possi}r le to do this
with a twogta,te machine'l ffi

3, Deterrrrirre wha,t the 'I.\rring rnachitre irt Example 9.7 does when preserrted
witlr the inputs aba arcJ. aaabbbb,

4. Is thcrc any input for which the Thring trachirre irr Example 9.7 goes into at
irrfinite loop?

9.I THr,i S'rAlrr^,nrr TuRrr.rc MaclHrlrn 237

5. What language is accepted by the rnachine M : ({qo,qt,qz,qt},{.r ,b},

{a , , b , ! } , d , Qo, l , {qs}) w i th

ii (qo, a) : (qr , a, ,t) ,

d (r70, b) : (q2,b, R) ,

d (qr , b) : (sr, b, I l) ,

, i (Sr, n) : (gs, E, f t) ,

, i (qz, b) : (sr, b,,C) ,

, i (qz, a) : (qs, a, R) .

6. What happens it Exarnple !1.I0 if the string u conta,ins any syrnbol other
than 1?

7, Construct l\ring machines that will accept the fbllowing lirnguages txr {o, b}.

(*) r :Z (oba -b) f f i

(b) f : {rr., : lrrrl is even} ffi

(") , : { tu : l to l is a rnul t ip le of 3}

(. 1) f I : { e | ' 6 " ' ' n } I , n f m , }

(e) / , : {u : n," (u) : n6 (ta)}

(f) I , : {anb""s"+ 'n; n } 0, r r r , > 1}

(g) f l l l l : {a ' " I) " tL"b" : r r . }0}

(h) I : { f l i t b z n : n > I }

For each problerrr, write out d irr rrrrnplete detail, then check your answers by
tracing several test exarrrples.

8. Design a T\rring machine that a,ccepts the ianguage

L : { t n t r . t : r u e { a , b } + } .

L Construct a Ttrring uachinc to compute t,ire lunction

. / (r) : , * ,

where ur € {0 , 1 }+ .

10. Design a Turing machinc that fincls thc micldle of a string of cvcn lcngth.
Sper: i f ical ly, i f ru : e,tez...e,*e,u;_t.. .oz', , with o1 € X, the ' I \ l r ing machine
slrorr l t l prorlrrc:e f i :ataz...a^cetu+t.. .e,zrr j where c g f -X. {f f i

11. Design 'I\rring machines to corlpute the following functions for ;ir and 3r pos-
itive irrtegers represerrtetl irr rrnary.

(a) / (u) : 3 a

(u) / (t, 'a) : x -'!, 'r > a
- - 0 , x < A

238 Chopier 9 Tunnrc MAcHTNEs

f (n , u) : 2 n - l 3 a

f (") : E, if t is evert
r-t l

rddr r f f 1 $ (

/ (t) : r m o d 5

/(*) : Lfrl, where LfJ denotes
cqual to f.

the largest integer less tltarr or

(")

(d)

(e)

(f)

t2. Design a T\rring machine with f : {0, 1, n} that, when startcd on any cell
containing a blank or a 1, will halt if and only if its tape has a (l sornewhere
on it. ffi

Write out a complcte solution for Example 9,8.

Give the sequence of instantaneous descriptions that the Turirrg rnachirre
in Example 9.10 goes through when presented with the it4lut 111. What
happens when this machine is started with 1lt) on its tape?

Give convincing arguments that the T\rring mar:hirre irr Exarnple 9.10 does in
fact carry out the indicated t:ornptrtatiorr.

Cornplete all the details irt Exatnple 9.11.

Supposc that in Exarnple 9.9 we had decided to represent r and gr in birrary.
Write a T[rrirrg rnac]rirre progranr fbr doing the indicated cornputation in this
representation,

Sketch how Exarnple 9.9 trlrltl be solvetl if r and g/ were represented iu deci-
rnal.

You may have noticed that all the examples in this scction had only one final
state, Is it generally true that for any Thring rnachine, there exists another
one with only one final state that acccpts the same language? ffi

Definition 9.? excludes the empty string frorn arry language ac:cepted by a
Ttrrirrg rrrachine. Modify the definition so that languages that contain A mav
be accepted.

f f i Combining Tur ing Mochines for
Compl icoted Tosks

We have shown explicitly how some important operations fbund in all com-
puters can be done otr a Thrirrg rna,chine. Since, in digital complrters, strt:h
primitive operations rrre the brriklirrg blot:ks for mclrc c:orrtplcx irrstructions,
lct us seer how thcstr basit: opura,tiorrs carr also bc put together on a Thring
machine. To demonstrate how'I\rring machines can be cornbined, we follow
a practice common in prograrnming. We start with a high-level description,
then refine it successively r.rntil the program is in the a,ctua,l la,nguage with
which we are working. We can describe T\rring ma,chines $evcral wirys irt ir,
high level; block diagrams or pserrdocode are the two alpproir.r:hr.'s wc will ust:

13 .

L4,

1"6.

17.

1 5 .

18.

19 .

20.

Figure 9.5

9.2 Cor"lerNlr'rc TURIr'tc MacnrNns pon, Corr,rpl,IcArnn Tasxs 239

J'@,t)

rnost frt:qrrently in subsequent discussions. In a block diagram, we encap-
sule computatiorrs in boxes whose function is described, but whose interior
details are not slrown. By using such boxes, we implicitly claim thai they
r:nn actually be constructed. As a first example, we cornbine the machines
in Exarnples 9.9 and 9.11.

Design a Turing machirre that cxrmputes the function

f (n , y) : n t ' ! t i f n l t ! ,
- 0, If n < 31.

For the sake of discussiorr, asrrume that r and E are positive integers in
unary representation. The value zero will be represented by 0, with the rest
of the tapc blank.

The cornputation of / (r, gr) can be visualized at a high level hy means of
the diagrarn in Figure 9.5. The diagram shows that we first use a comparing
nrachirre, like that in Exa,mple 9.11, to determine whether or not r> y. If
so, the cornparer sernds rr, start signal to the adder, which therr computes
n*y. If not, arr erasirrg program is started that changes every 1 to a blank.

In subsequent discussion$, we will often use such high-level, black-
diagram representations of Thrirrg rnachines. It is certainly quicker and
clearer than the corresponding extensive set of d's. Before we accept this
high-level view, wc muut justiSr it. What, for example is meant by saying
that the conrparer serrds a start signal to the adder? There is nothing irr
Definition 9.1 that offers that possibilitv. Nevertheless, it can be done in a
straightforward way.

The program for the cornparer d is written a; suggested in Example
9.11, using a Ttrring machine having states irrdexed with C. For the adder,
we u$e the idea in Example 9.9, with states indexed with ,4. For the eraser
E, we corr$tnrct a Ttrring machine having states indexed with E. The
computations to be done by C are

qa;,gur (r) \ut (y) I nop*(r)Oru (s) , if r'P a,

+
qc,ow (r) 0, (E) | qa,ow (z)Oto (g), if x < s.

arrd

240 Chopter 9 Tun,rwc MAcHrNos

If we take {,1,0 and qp,g as t}re initial states of ,4 and E, respectively, we
see that C starts eithcr A or .8.

The computations performed by the adder will bt:

t t .s ,ow (.n)Oru (g) i qo,yru(r * u)0,

and that of the erraser E will be

qn,otu (n)0, (y) i qr , ro.

The result is a single Thring machine that comhines tlrc actiotr of C, A, and
E a^s indicated in Figure 9.5.

T

Anotlrt:r useful, highJevel view of T[uing1 rnac]rirres is otre itrvolving pseu-

docode. In computer programming, pseudocode is a way of outlining a com-
putation usirrg descriptive phrases whose meaning we claim to understand.
While this description is not usahle on the cornputer, we assume that we
can translate it into the appropriate language when needed. One simple
kind of pseudocode is exentplified by the idea of a macroinstmction, which
is a single-statement shorthand for a sequence ()f lov/er level statements.
We first defi.ne the macroinstnrction in terms of tlte lower level language.
We then use the macroinstructiorr irr a progralrr with the assumption tha,t
the relevant low-level code is substituted for each occurrence of the ma,t:rtr
instruction. This idea is very useful irr Ttrring machine programming.

Consider the macroinstruction

i/ a then Qi else q*,

with the following interpretation. If the Thring maclflle reads an a, then
regardless of its current state, it is to go into state {i without changing the
tir,pc content or moving the read-write head. If tha syrnbol read is not an
a, the machine is to go into state 96 without changitrg anything.

To implement this macroinstnrction requires several relatively obviorrs
steps of a 'f\ring machine.

6 (q t , a) : (q i o ,a ,R) f o r a l l q t€Q,

d(qr ,b) : (qf tg,b, f t) for a l l qa € Q and a l l b€ f - to] ,
d (gio, c) : (qi,c, L) for all c € f,

d (qon, c) : (qp,c, L) for all c e l.

Thc states qio and {6s are new states, introduced to take care of complica-
tions arising from the fact that in a standard T\rrirrg machine the read-write

9,2 Corr.rerlrrNc Tunrr'rc MAcrrrNrils FoR CoMpllcAruu T.q.sxs 241

head changes position in each rnove. Irr the ma,croinstruction, we want to
change the state, but leave Lhe read-writt: hcir,d where it is. We let the head
mrrve right, but put the machine into a stirtc (Ii1 $ qko. Tliis indicates that
a lefb move mrrst be ma,de before entering the drlsirul statc qi or q4.

I

Goirrg a stt:p firrthtlr, we (:an replace macroinstructions with sutrprtr
grarIIS. Norrnillly, rr, milcroinstruction is replaced by actual corlc a,t ctr,ch
occurrerrcci wlrcreiul er, subprogram is a single piece of code that is irrvokcxl
repcirtt:dly whenever needed. Subprograms are fundarnerrtal to high-lcvcl
prograrrrrning languages, but they can also be used with TLrring rnac:hirr:s.
To rnake this plrrusible, let rrs outline briefly how a 'I\rring rnachine carr bc
used as a subprograrrr that t:arr bt: irrvoked repeatedly by another Thring
machine. Ihis requires a new featurc: ther ability to store infornration on
tlrt: r:a,lling program's configuration so the configuratiorr carr br: rtx:rcilterd
on returtr frorn tlN,' subprogram. For example, say rnachine A in state q,;
invokes rrtircltint: B. Wlxlrr B is finished, we would like to resurne prograrrr
A itt sta"te q,;, with the read-write head (which may have rnoved during B's
operatiorr) irr its originrrl pla,ce. At other times, A may call B frorn state

{i, itt w}tich c:itsc c:rlrrtrol shor.rld return to this state. To solve the control
transfer problern, w(l rmurt be ir.ble to pa,ss inforrnation from A to B ancl vice
versa, be able to r(l(:r{lntc A'u cxrnfiguration when it recovers control from
B, aucl to assure that the tetttporarily suspcndcd comprrtations of ,4 are not
afftx:ted by the execrrtion of /1. To solve this, we carr divide the tape irrto
several regiotrs as showrr in Figurtl 9.6.

Before A calls B, it writes the irrfrrrurirtion needed by B (e.g., ,4's current
state, the argunents for B) on thc: tirpr: in some regicln 7. .rl then pa*sses
control to B by making a trarrsitiorr to the start sta,te of B. After transfer,
B will use 7 to find its input. The workspaur ftrr B is seprlrtlte fiom 7 and
from the workspace for A, so no irrterfertlrr(lc (jirn or:<:rrr. When B is linished,
it will return relevant results to region T, where A will expect to firxl it.
Irr this wiry, the two programs can interact in the required fashion. Note
that this is very sittrilar to what actuirlly htr,ppens in a rerr,l rxrmputer when
a subprograrn is called.

Figtue 9.6
Region separator

Workspace forr{ Workspace for,B

Figure 9,7

Chopter 9 Tururuc MnctIIwns

We can now program T\uirtg rrrachines in pseudocode, provided that we

know (in theory at least) how to translate this pseudocode into 8,n actual

Ttrring machine program.

Design a Ttrring machine that multiplies two positive integers irr unary no-

tation.
A rrrultiplication machine can be constructed bv combining the ideas

we encourttered in adding and copying. Let u,'J a$rJlrrne that the initial and

final tape contetrts are to be a,s indicated in Figure 9.7. The process of mul-

tiplicatiorr can then be visualized as a repeated copying of the rnultiplicand
g for each 1 in the multiplier r, whereby the string g is added the appro-

priate number of times to the partiallv cornputed product' The following
pseudocode shows the main steps of tlte process.

1. Repeat the following steps until r corrtairrs tto more I's.

Find a 1 in r and replace it with atrother symbol a.

Replace the leftmost 0 by 0y.

2. Replace all a's with I's.

Although this pseudocode is sketchy, the idea is simple enough that

there should be no doubt that it can be dorre.
I

In spite of the descriptive nature of these examples' it is not too far-

fetched to conjecture that Ttrring machines, while rather primitive in prin-

ciple, can be combined irr rnatry ways to make them quite powerful. Our

examples were not general a"rrd detailed enough for us to claim that we

have proved anything, brrt it should be plausible at this point that Tirring

machines can do some quite complicated things.

v

1. Write out the complete solution to Example 9.14.

2 .

3 .

9.2 CortelNlr.rc Tunnrc Mecumns FoR, CoMplrcArun Tasxs Z4B

Establish a conventiorr for representing positive an{ legative integers in unary
rrotation. with your conventiorr, rrketch the construction of a subtracter for
t:omputing a - 3y,

using adders, sutrtracters, comparers, copiers, or rnultipliers, draw block di-
agrams for Thring nrarhines that computc the functions

(a) / (") : n (n a 1) , f f i
(b) / (n) : r ' 1 ' ,

(c) / (r z) : 2 " ,

(d) / (n) : , 1 1 ,

(e) / (n) : p ' ! ,

for all positive integers z.

use a bhck diagram to sketch the implementation of a function / defined for
all w1, w2, 'rrrr g {1}+ by

f (wr ,wz ,ws) : i . ,

where i is such that ltui j = ma-x(lturl,luzf , fu3l) if no two tu have the sarrre
length, and i :0 othcrwise.

5- Provide a "high-level" rlescription for T\rring rnachines that ar:cept the for-
Iowing la'guages orr {a, b}. For each problern, define a set .f appropriate
macroinstructions that you feel are reasonably easy to implement, Therr use
them for the solution,

(u) Z: {,ruturt}

(b) t : { * r . , t w r # w z : l u r l : l , r r r r l }

(c) The complement of the language in part (a) ffi

(d) , : {u "bn ' : m, : n? , r , > 1 }

(e) f : {an : n. is a prime nurrrtrer}

6, suggest a method frrr represerrting rational numbers on a Ttrring rrrar:hine,
then sketch a method for addirrg and subtracting such numbcrs.

7, Sketch the constructiotr of a Ttrrirrg machine that can pcrform the adclition
antl multiplication of positivc intcgers x ard g given in the rrsual decimal
notation.

8. Give an implementation of the macroinstruction

searchright (.a, qt,, qi),

which indicates that the rnachine is to sea.r'r:h its tape to the right of the
current position for the first occurrcnce of the syrnbol a. If an a is encountered
befrrre a blank, the machine is to go into state ql, otherwise it is to go into
state 4i. W

4.

244 Chopter 9 TunIwc MAcHINEs

Use the macroinstruction in the previous exercise to design a Ttrring rnacltirte

on E: {a,b} that a,ccepts the language L(ab-ab"a).

Use the rlacroinstructiotr searchright irr Exercise I to creatc a Thring machine

program that replaces the syrrrbol immediatcly to the left of the leftrrxrst a by

a blank. If the irrput cofltains no a, repla,ce the rightmost rrorrblaflk syrnbol

b y a b .

1flffiffitr Turing's Thesis
Thc prtrcxling discussiou not only shown how a T\rrirrg rnachitre can be con-

stnrr:ted from sinrpler parts, but also illrrutrat()s a llegative aspect of working

with such low-level a,utoma,ta. whikr it takes very little imaginatiott or in-

genr.rity to tra,nslattt a block diagram or pseudocode into the t:orrtlsporrdirtg

Tlrring rnachirre program, actually doing it is timtl t:orr$urnirrg, error prone'

irntl irdds Iittle to our understa,nding. Tht: irrstnrction set of a Turing ma-

<:hirrt: is so restrictecl that any argument, soltrtitlrr, or proof for a nontrivial

probletn is quite tedious.
Wt: rrow face a dilenuna: we want to t:la,im thilt T\rrirrg lllacllines can

pcrfrrrrrt ttot only the sirnple operations fbr which wc have provided explicit

prograllls, but nrore complex procert$es ils wtlll, clescribable by block dia-

grarrls or pseudocode. To defilrrd such claitns against challenge, we sholld

show the releva,nt progrirm$ cxplicitly. But doing so is unpleasant and diu-

tracting, a,rrcl ouglrt to be avoided if possible. Somehow, we would like to firrd

a way of carrying out a reasonably rigorous rlist:rrssiorr of T\rring machines

without havilg to write lengthv, low-ltlvtll code. There is unfortutlately no

completely satisfactqry way qf gt:ttirrg out of the predicament; the best we

can do is to rea,ch a rea,sona,bkl t:tlrnprotnise' To see how we might achieve

such a comprclmise, wo ttrrrr to a sornewhat, philosophical issue'

We can rlrirw sornrl sirnple conclusions from the examples in the prtrvitlrs

section. Ttrc first is that 'furing macllines appeal to be more pqwtrrful thir,n

pusltclowtr aul,o[tata (for a, ,:omment on this, stlt: Ext:rcise 2 at the etrd of

this section). In Example 9.8, wt: skctchcd the construction of a T[ring ma-

t:hinc fbr a larrguage which is uot coutext-free ancl for which, r:orrscqucrrtly,

lro puslrdown au[omaton exists. Iixamples 9.9, 9.10, ailtl 9.11 s]row thal

Tlrrilg machines can do sorne simple arithmetic optlrittittns, perform string

rrarripulations, attcl tnake sotne simple compilrisons. Thc discussion also il-

Iustrates how prirnitive opera,tionu cilrr lxl t:orntrirred to solve nore cotnplex

problems, how sever.r,I T\rring rnttclltirtes can lre cotnposed, and how olle pro-

gram can act a,s a, subprogrrur filr arxlthrlr. Since very complex operations

ca,n he brrilt this wiry, w(.'rliglrt srrspect that a'ftrring tnachine begins to

ilpproar:h ir, tyllir:irl t:ornputcr itr power.

Suppose we were to make tlle conjecture that, in some $enst:, T\rriug

nachitres are equal itr power lo a typical digital computer? Htlw trtiulrl wtl

10.

9.3 TuRrNc's Tnnsrs 245

def'end or refute such a hypotlxrsis'l To def'end it, we could take a seqrrerrcc 6f
increasingly more diflicult problerns arrd show how they are solvecl by sorne
Tlrring machine. we might also takc the ma,chine language instruction set
of a specrific computer and design a Tlrring machine that can perform all
the instrr.rctions in the set. This would rrndoubtedly tax our patience, but
it ought to be possible in prirrciplc if orrr hypothesis is correct, Still, while
(lvery ,5llcce.$s irr this directiott would strcngthcn our convictjon of the truth
rlf tIrc hypothesis, it would not lead to a proof. Tlxr dirlir:rrlty lies in the fact
thir,t we don't know exactly what is meant by "a typictr,l cligita,l cornputer"
arrrl tha,t we have no lneans for rnaking a precistl rlcfirrition.

we crrrr *lsr approa.r:h the problem from the other side. wrr r'ight try
lo find sorne proctxhrru filr which we ca,n write a computer prograrrr, but frrr
which we can show thirt rxr T\rrirrg ma,chine can exist. If this were possible,
we would hirvt: ir lrtr,sis f'rrr rejecting the hypothesis. But rlo one has yct lrr:crr
able to prorluctl a r:ountt,rrexa,mple; the fact that all such tries have beerr
utrsuccessful rnust btt takttn as circunrstantial evidence that it cannot be
done. Every irrrlic;ation is tha,t Ttrring machines are in principle as powerfirl
a"s arry corrrputer,

Arguments of this type lul A. M. Ttrring and others in the mid-lg30's to
the celebrated coqiecture called the T\rring thesis. This hypoihetis states
tha,t any cornputation lhat can be carricrl orrt lly nxrchanical mea,n$ can be
perfbrtrr:d by some T\rring rna,chine,

Thin iu rr. sweeping sta,tement, so it is important to keep in rnirrrl what
Thrirrg's thesis is. It is not something that can be proved. Tb do so, we would
hrrvr: trl define precisely the term ,,mechanical rneans." This would requirc
sorne clthcr irllstrar:t model tr,nd leave us no further aheacl than before. Ihe'rhring thesis is rrrorc protrxrrly vierwed a,s a, definition of what constitutes a
mechanical cornputirtiorr: ir cxlrnllrtatiorr is mechanical if and only if it can
be performed by sorne Turirrg rnachirrc.

If ue take this attitude attd regat'd the T Lrlirrg thcsis sitrply as ir dclini-
tiotr, we raise the clucstiorr as tti whcther this definition is sufficiently broad.
Is it far-reaching enough to covcr' cvcrythirrg wr) now do (a,nd r:onceivablv
tright do in the future) with computers? An unequivocill "yes" is rxrt pos-
sible, but the evidence in its firvor is vr:ry strrlrrg. Some rlrgrrments for
a,ccepting the Ttrring thesis as the definition of a rnechanical comDrrtation'

Arrythi'g tha.t r:,,n be done or any existing digital computer can also
be dotre by a T\rrirrg rnir:hirrt:.

lrTo orre,'ha,s yet been a,ble to suggest a problern, solvable by what we
irrtuitivtly rxrnsidcr ar.n a,lgorithm, for which a Thring rnachine program
canrtot llr: writtcrr.

Alternative moclels have beel proposed for nrechanical ctrrnputation,
brrt none of them are tnor:e powerful than the T\rring rnachine model,

1 .

2.

3.

246 Chopter 9 Turrtuc; MacHhrns

Tlx,rse irrguulellts ale circurnstantial, and Thring's thesis ctr.nnot trtl

provrxl by therrr. Irr spite of its plausibility, Thring's thesis is still itn alJ-

srrmptiorr. But viewitrg Turing's tllesis simply a"s an arbitrary defirritigrr

rlis$gs an impottant poinL. In solne sense) Tbring's thesis pla,ys tlrt) rltrrrrt:

role in cxrrnputer science as do the basis laws of physics and chemistry.

Classical physics, for example, is based largelv on Newton'$ Ia'ws of r'cttitttr'

Although we call them laws, they do not htr,ve krgical n(xx)ltitity; rather, tltey

are plausible models tha,t explain mur:h of tlrt: physical world. We accept

them because the conclusions we dra,w fiom thcrn irgrtlc with our experietrce

ancl our ohserva,tions. Slch litws t:arrrrot be proved to be true, although they

can possihly bc invalidatecl. If an exPerimellta,l result contradicts a conclu-

sion based qn thc laws, we might begin to question their validity. On the

other hancl, repea,terl fir,ihrrc to invalidate a Iaw stretrgthens our confideuce

in it. This is the sitrra,tirlrr fclr TUringts thesis, so we have some reason for

c:onsiclcrirrg it a basic law of computer scieuce, The conclusions we draw

f'rom it agrt:e with wltat we ktrow alrout real computers' and so far' all

irtttrrrrpts to invalidate it have failed. There is always the possibility that

sorrreorre will come up with a,nother definition that will accotrnt fttr somtl

subtle situations not covered by T\rrirrg rnitchirrcs lnt wlfch still fall within

the range of our intuitivc notiorr of rrrechatrical cotrtputatiotr. Itr such atr

eventu6lity, sorne Of t)trr $trllsctlttent discussions would have to be modifled

signifir:ir,ntly. Howc)vcr, thc likelihood of this happenilg seems to be very

srnnll.
Hirvirrg accepted T\rritrg's thesis, we are in a positiou to give a precise

rlcfirritirlrr of art algorithttt.

lM"

Arr algorithm for a function f : D --+ ft is a Ttrring machine M, which given

as input any d € D on its tape, eventually halts with the correct answer

/ (d) e .R on its tape. Specifically, we can require thtr,t

qodl nr ,U I (,1) ,q1 e F,

frlr all rJ € D.

Iclentifying an algorithm with a, Ttring ma,chine progrirm tilIows us ttr

prove rigOrously sUch claims as "there exists a,n algorithm ." or "thcr(l

is rro algorithm. ." However, t0 trurrstrtt<:t tlxlllit:itly irrr algoritlrrrr for

even relativelV simple problems is el vcrv lcrrgthy urrdertakirtg, To avoid

Sur:h unpletr,str,rrt prosprx:t$, wr: t:ilrr irllltc:itl to T\rrirrgts tltesis atrd clain that

ir,rrythirrg w() (titrr tl6 orr arrv txrrnputer carr also be dotre otr a Tirring tnachine,

9,3 Turumc's Tunsrs

Conseqrrtlntly, we could substitute ttPascal program" for ,,Ttring machinet'
in Defirdti'rr 9.5. This would ease the burderr of cxhibiting a,lgorithms con-
siderably. Actrrtr,lly, a,s we have already done, we will go t)ne step further
and accept vurtrirl descriptions or block diagrams as algorithms on the a"s-
sumptiotr that we could write a T[rring machine prograrrr frrr them if we were
challenged to do so. This greatly simplifies the discussion, but it obviously
Ieaves us open to criticisrn. While "Pir,st;rr.l program" is well defined, ,,clear

verbal description" is not, and we are irr rlrrnger of claiming the existence
of nonexistent algorithms. But this da,nger is more than offset by the fact
that we can keep the discussion simple arrd intuitively clear, and that we
can give cclnclise descriptions for sorne rather c{lmplex processes. The reader
who hirs any doubt of the validity of these clirims can dispel them by writing
a suihrble program in some prograurrrrirrg l;rnguage.

** 1' Conrrider the set of trar:hine langua,ge instructions for a corrrputer of your
choice. Skctch how the various instnrr:tions in this set could be carried out
by a Ttrring machine.

2. In the above discussion, we stated at one point that Tlrring machines appear
to he more powerful than pushdown autorrrata. Since the tape of a Turing
rnachine can always be made to bchave like a stack, it woukl seem that we
can actually clairn that a Tlrring machine is more powetful. What irnlrortant
factor is not takerr into account in this argurnent'l W

** 3. There are a number of enjoyable articles on Turirrg machines in the popular
Iiterature. A good orre is a paper in Sci,entifi,c American, May 1984, by J.
E, Hopcroft, titled t(T\rring Machines." This paper talks about the irleas we
have introduced here and also gives some of the historical context in which
the work of Turing and others was done. Get a copy of this article and read
it, then write a brief review of it.

Tur ing
Other Models o f

Moc h ines

ur definition of a standard Tirring rnachine is not the only possible
one; there are alternative definitions that could serve equally well.
The conclusions we can draw about the power of a lfuring machine
are largJely independent of the specific structure chosen for it. In

this chapl,er we look at several variations, showing that the standarcl T_rring
machine is equivalent, in a sense we will define, to other, more complicated
models.

If wc a<:r:erpt Tirring's thcsis, we exper:t that cromplicating the standard
Thring rnachine try giving it a morc txrrnplex storage device will not have
any cffrtct on the power of the automaton. Any computation that can be
perforrrred orr surlh a n{}w arrarrgement vrill still fhll under the category
of a rnechanical corrrputation arrd, therefore, can be dorre by a sta,ndard
model. It is nevertheless instructive to study rrrore complex models, if for
no other teasoll than that arr explicit derrrorrstratiorr of the expected result
will demonstrate the power of the T\rring machine and thereby increase
our confidence in Ttrring's thesis. Many variations on the basic model of
Derfinition 9.1 are possible. For example? we can consider T\rring machines
with more than one tape or with tapes that extend in several dimensions.

249

250 Chopter l0 O'rsun Molnls or Turut'rc MecHtlrns

We will c:ortsider variants that will be useful in srtbscqucrrt discussious.

we also look at nondeterministir: T\rrirrg rnachiiles and show that they

are no more powerf|rl tharr dclterrlilistic ones. This is unexpected, since

T\rring's thesis covrlru only rnechanical computatious and does not tlddress

the clever guessing implicit in nondctt:rrnirrisrrt. Atrother issue that is not

irnmediately resolved by Ttrring's thesis is tha,t of one uachine executing

different programs a,t different tirnt:u. This leads to the idea of a "repro-

grarnmable" or "universal" T\tring rnilt:hirre.

Finally, in prepa,ration firr lrrtcr cltapters' we look at linear bounded

automata,. These ar,re T\rring rnacltirres tltat have atr infinite tape, but that

can rnake use of the tape only in a restricted way.

ffiffiffi Minor Voriotions orl the Turing
Mochine Theme

We first consider some relatively mirxlr {:}rilnge:s irr Defitrition 9.1 and inves-

tigate whether these changes make a,ny dilltrrttntr: irr the general cotrcept.

Whenever we chlnge a dtrfinition, we irrtroduce a trew type of autotnata and

raise the qgestion wlrt:thcr thcse new automata are in any real sense different

frorn those we have alreacly encounterecl. Wlrat do we mean bY ir.n tlsst:ntiir.l

clifference betweetr one cla,ss of automa,tir, tr,nd alntlthcr'l Although there rnay

be clear differences in their clefinitions, these difference$ maY rrot have atry

interestiug consequences. We have seen tln exampltl Of this in tlte case of

cleterministic and nondeterministic Iinite arrtornata. These have quite dif-

ferent definitions, but they a,re elqrrivakrrrt irr the serrse that they both are

iclentifled exactly with the fa,mily of rcgular larrguages. Extrapolating from

this, we carr defirre equivaletrce or nonecluivalence for cla-sses of automata in

gerleral.

Equivolence of Closses of Aulomoto

Whenever we define equivalence for two automata or classes Of atrtornata,

we must carefully state what is to be nnderstood by this equivalcrrcc. For

the rest of this chapter, we follovr the precedence established for nfa's ald

dfa's and define equivalence with respect to the ability to at)rxrpt larrguages.

ilM

Two automata are equivalent if they accept the same language. Corrsider

two cla,sses of automata C1 and dr. If f'trr everv tttrtomatort M1 in C1 there

10.1 Mn'ron. VARTATTONS oN .r.Hr,t TuRrrqc Mec;Hluo THnlrn

is an autorrraton M2 in C2 srrch that

25L

L (Mt) : L (Artz) ,

we say that Cz is at lur^st as powerful as C1. If the converse also holds anrl
fbr every M2 in C2 tlrcre is arr M in (J1 such that -L (Mr) : L (Mr), wc siry
that C1 and Cz are equivalerrt.

There are ma,ny ways to establish thc equivalence of automata. The
r:onstruction of Theorem 2.2 does this for clfir,'s alnd nfa's. For demonstrating
ttrc equivalence in connection with T[rrirrgts machines, we often use the
inrportant ter:hnique of simulation.

Let M btl an rrrrtomir,ton. We sav that another autorrraton -ffi r:a,n sim-
ulate a corrrputrr.tion of M, if ffi .un mimic the computatiorr of M irr the
following rrrarutlr. Lt+t ico, d1 , ... he the sequence of instantarreous dr:scrip-
tions of the comprrtatiorr of M, tha,t is

d,0 | Aadl

Therr M siurula,tes this computation if it carries out a r:orrrllutir,tion analo-
gous to that of M,

wlxrre d0,d1,... &r€ instantaneous descriptiorrs, srr{;}r t}rir,t err,ch qf them is
associa,ted with a unique configuratiorr of M. Irr otht:r wrlrd$, if we know
the cotnputatiorr r;a,rried orrt hy M, we ca,n determine from it exactly wlnt
computations ,\,4 woukl havr: done, given the corresponding starting config-
ura,tion.

Note that t,he simulatiorr of ir singk: move rJi ts *d,,+, of M may involve

scvt:ral move$ or ff. the intermecliate configurations in 4 io 4*r rnay not
corresporrd to arry r:onfigurrrtiong! M, but tltis does not affect anything if we
can tell whitlh configuraltions of M a,re releva,nt. As long as we can deterrnine
from the cornputatiorr of ,fr what M w.rrlrl have clo-ne, the simulation is
proper. If M can sirnulate erely cotrprrtation of M, we say that rt ,o,
sirnrrlate M. rt should be clear that if M can sirnulate M. thcrr uratters
catr bc arrarrgrld so tha.t M ancl fr a,ccept the same language, ancl the two
automata arc rx|rivirlent. To demonstrate the equivalence of two classes of
autotnata, we show that frlr t:vury mar:hine in one cla,ss, there is a machine
iu the second class capirtllc: of sirnrilatirrg it.

Turing Mqchines with q Stoy-Option
Itr our clcfirrition of er, sta,ndard rhring machine, the read-write heacl rnust
tnove either to thc riglrt or to tlrc lefl. Sometimes it is convenient to provide

262 Chopier l0 O'r'ntn Montls oF TURING Macntnns

a third option, to have the read-write hcad stay itr place after rewriting the

cell content. Thus, we ca,n define a Tiuing rrtachitre with stay-option by

replacing ci in De{initittn 9.1 by

d : Q x f - 8 x f x { t r , , R , 5 }

with the interpretation that 5 signilies rlo IIIoveIIIeItt of the read-write head.

This option does not extcrxl the power of the automaton.

The class of Ttrring rnachines with stay-option is eqqivtrlent to the class of

standard I\rring rnachines.

Prooft Since a Ttrring machine with stay-option is <:ltlarly iln extension of

the standard model, it is obvious that arry starrtlard T\rring machine can be

simulated hy one with a stay-ttptiorr.
To show thtt txtrrverse,Iet M : (8,X,f,d,{o,n,F) be a Tlrringtna-

chine with stay-option to be sirmrlated by a statrdard Ttrring machine M :
/ /^ ^ \
{O, f , f , d, fio, tr, F). For each rntlvc of M, t}te simulating machine M does
\ - ' /
the following. If the move of M does not irrvolve the stay-option, the sim-

llating machine perfbrms one nl()vc, esscntially identical to the move to be

simulated. If S is involvtxl in tlter rnove of M, lhen M will make two moves:

the first rewrites the syrnbol artd rttoves the read-write heacl right; the sec-

orrtl rrroves the read-write head left, Ieaving the tape t:ontents urtaltc:rcd.

The sinulating machine can be constructed by M hv defining li as fcrllows:

For ea,ch transition

d (qr , a) : (q j ,h , L or R) ,

E (A;, ,) = (Qj ,b,tr or rt) .

6 (q r ,u) : (q i , b , S) ,

into E the corresponding transitions

we put into f

Frrr cach S-transitiotr

tve put

a,nd

E(a; ,o) : (i j , ,b ,R) ,

F , ^
0 ((.1.,, , cJ : \Qi , c, r,) ,

f b r a l l c e l .
It is reastlnallly otrvious that every cornputaLion of M llas a correspond-

ing computation of M, so that M can simr.rlate M, t

Figure 10.1

10,1 MrNoR V.tRIarIoNs oN THt TLIRING MncHIun THntrae 25S

b

t

Track 1
Track 2

Tiack 3

Simulation is a standard techniqut: for showing the equivalence of au-

tomata, artd the forma,lism wt: have described makes it possible, as shown in

thc above theorem, to talk about the proces$ precisely and prove thetlrtlrns
about equivalenr:c. In our suhsequernt discussiolr, we use tht: rrotiotr of sitnu-

latiol freqrrently, but we generally mahe tto attempt to dcscribe everything

in a rigortltrs and detailed wtr,y. Complete simulatiorrs with'I\ring ma,chirttls

are often crrrlllersonte, To avttid this, we keep ortr disc:rrssiou descriptive,

rather thtr,n irr theorem-proof forrn. The simulations artt givetr only iu brotld

outlirre, bgt it should not he trirld to see how they r;a.rr be made rigorous.

The reader will find it instnrctive to sketch each simulatiotr in some highcr

level la,rrguage or in pserrdtltrrtle,
Befrtrcl irrtroducing other rntldels, we make one rcrrtark otr the sttr,nda,rd

Ttrrirrg rnachine. It is implicit in Definition 9.1 that each ta,pe svrlbol can

be a compositc of characters rtltlrt:r than just a singlt: tlrre. This can be

macle morc explicit by drnwirrg att expanded versiort of Figr.rre 9.1 (Figure

10.1), in whic:h tlte tape symbols are triplets fiom sorrte simpler alphabet.
In thc picture, we hervt: divided each cell of the tape into threN: parts,

calltxl tracks, each crontainitrg otte memhtlr of the triplet. Ba.sed on this

visualization, such an arrtomaton is sometirrres called a T[rring tttachine with

multiple tracks, hrrt such a view in no way extends Definitiott 9.1, sitrce

all we need to do is rnake I au a'lphir'bt:t irr which ea,ch uynrbol is composed

of several parts.
Howcvcr, otlter 'fhring machitre urodels involvc a change of defirrition, so

ther txluivaletrce with thc stattdard machint: ltas to be demonstrated. I{ere

wc look at two srrctr trtodels. which are sometime$ us(xl as the standartl

defilition. Some variarrts tha,t a,re klss cottttnotr are explclred in the exerc:iscs

at the end of this section.

Turing Mqchines with Semi'lnfinite Tope

Many authors do not consider thtr rnodel in Figlre 9.1 as standa,rd, hrrt use

o11e with a ta,pc that is unbortndtxl only in one dircctiotr, We can visualize

this a,s a tapc that has a left bourtdary (Figure 10.2). t'his Tlrring nrachine

is otherwist: identical to otrr statrdarcl nrodel, cxcept that no left move is

permitttxl when the retrrl-write head is at thc boundary.
It is ttot difficult to see that this restriction does not affect the power

of tlrtl tnachine, To sirrtulale a sta,ndir.rtl Thring machirrc M by a machirre

fr with a semi-infinitr: tape, we ufJe tht: arrangenrent showtr in Figrrre 10.3.

254 Chopter l0 Otnnn Monnls or TuHrNc Macnrruns

Treck 1 for risht nart of-
standard tepe"
Tiack 2 for left part of
stefldfid tape

The simulating rnrr,chine M has a tape with two tracks. On the upper
onli, we keep the irrfrlrmation to the right of some refercrrr:e point on M's
ttrpe. The refererrcc point could be, for example, the position of the read-
write head at the start of the computation. The lower trirc:k conta,ins the
left part of M's tape in r{}verse order. M is programrned so that it will use
information on the upper track only a,s long as M's read-write head is to the
right of the refererrr:e point, and work on the lower track as M moves into thc
left part of its tape. The distinction carr be made by partitioning the state
set of M into two parts, say Qu and Q;: the flrst to be usr,'d when workirrg
otr tho upper track, tlrc second to be usud on the lower one. special end
markers ff a,re put on thc left boundary of the tape to facilitrrte switching
frorn one trrlck to the othcr. For example, a$$rrme that the rntr.chine to be
simulated arrd the simulatirrg machine are irr the respective corrfigrrrations
shown in Figure 10.4 and that the move lo be simrrla,ted is gerrcrated bv

d (q r , a) : (q j , c , L) .

The simulatirrg machine will first rnove via tlic transition

E(A,@,r ,)) : (f r , (c ,b) ,L) ,

wlrere fi € Qu. Bcca,use fi belongs to Qu, only irrfrrrmation in the rrpper
trat:k is considered at this point. Now, the simulatirrg machine sees (ff, ff)

Figure 10.?

Figure 10.3

Figure 10.4
(a) Mat:hine to
bc simulaterJ.
(b) Simulating

machinc.

f'ercnce point

/ ' '

Re

)q ,
{

h a

(a)

)0 t
,l

10,1 Mrr.lon V.qn.Inuolts oN THtl TURIr'rc MnclHttrs Tsplrp

in state ti e Qu. It rrcxt uses & transitiorr

t (t , , (# ,#)) : (F i , (# ,#) ,R) ,

with fr € Q1, putting it into the conliguration shown irr Figure 10.5. Now
the rnachine is in a state from Q; tr,nd will work on the lower track. F\rrtlter
details of the simulatiori are straightforward'

The Off-Line Turing Mqchine

The genera,I tlefinition of an arrtomaton in Chir,pter I containcd an input

file as wcll as temporary storage. In Definition 9.1 we disr:arded the input

file fbr reasons of simplicity, claiming that this tnade no difference to the

T\rring machinc concept. We now expand on this claim.
If wc put the iuput fitc back into the picture, we get what is known as

an off-line Thring machine. Itt such a machine, each move is governed

by the intt:rilal state, what is currently re:ad from the inprrt file, and what

is seen try the read-writc head. A schematic representation of a'n off-line

machirrg is shown in Figrrre 10.6. A forrrral definition of an off-line Ttuing

machirre is easily made, but we will ltrave this as an exercise. What we

Read-onlv input file

255

Figure 10.5

Setltretce ol

conligurations

in simulating

d (s r , a) :

(q i , c , L) .

Figure 10.6

256 Chopter l0 Ornnn MoDFlr,s or..TuRnrc MACTTTNES

want to do briefly is to indicate why the cla-ss of off-line Thrirrg machines is
equivalent to the cla^ss of standard machirrert.

First, the behavior of any standard T\rring machine can bc simulated by
some off-line model. All that needs to be rlone by the simulating machine
is to copy the input from thc input file to the tape. Then it carr proceed in
the same v/ay as the standarrl machine.

The simulation of an off-line rnachine M by a starrclarcl machine fr
requircs a lengthier description. A standard machine can sirnulate the com-
putation of an off-line machirre try using the four-track arrangement slnwn
in Figure 10.7. In that picture, the tape contents shown represent the spe-
cific configuration of Figure 10.6. Each of the frrrrr tracks of M plays a
specific role in the simulatiorr. The first track has the input, the second
marks the position at which tho input is read, tlNr third represents the ta,pe
of M, and the fourth shows the position of M,s rc:rrd-write head.

The simulation of ea,ch move of M requires a number of moves of _ffi.
Starting from some starrderrd position, say tha le.ft end, and with the relevant
informatiorr rnarked by special end markers, M scarches track 2 to lor:a,te
the position at which the input file of M is read. The syrnhol found in the
cgrresponding cell on track 1 is remernbered by puttirrg the control unit of
M i'to a state chosen for this purposo. Next, track 4 is searched for the
position of the read-writc head of M. With the remembered input and the
symbol on track !. we rrow know that M is to do. This irforrnation is again
remembered by M with arr tlppropriate internal state. Next, all four tracks
of M's tgqe are modified to reflect the move of M. Firrally, the read-write
head of M returns to the standard position for the simulation of the next
move.

Figure 10.7

1. Give a formal definition of a Ttrring rrrachine with a semi-infinite tape, Then

s.

10,1 MINoR VlRhrIoNs oN THE TuRINc M.q'cHII-In THurae 257

prove that the class of T\rring machines with semi-infinite tape is equivalent

to the class of standard Turing machines.

Give a formal definition of arr off-line Ttrring machine.

Give convincing argunrerrts that any language arcepted by an off-line T\rring

machine is d,lso accepted by some standard machine,

Consider a Ttrring machine that, on any particular mover cart either change

the tape symbol or move the read-write head, but not both.

(a) Give a formal definition of such a machine'

(b) Show that the cla^ss of such machines is equivalent to the clags of

standartl T\rring machines. ffi

Consider a model of a Ttrring machine in which earh move permits the read-

write hearl to travel more than one cell to the left or right, the distance and

direction of travel being one of the arguments of d. Give a precise definition

of such an automaton and sketch a simrrlation of it by a standa,rd T\rring

machine.

A nonerasing Tirring machine irr orre that cannot change a nonblank symbol

to a blank. This can be achieved by the restriction that if

6 (qr,a) = (qj, E, L or R) ,

then a must be !. Show that no generality is lost by making such a restriction.

ffi
Consider a Ttrring machine that cannot write blarrks; that is, for all d (gn, o) =

(qi,b,L or R), b must be in f - {tr}. Show how such a machine can simulate

a standard Thring machine.

Suppose we make the requirement that a Ttrring marhine can halt only in

a final state, that is, we ask that d (q, a) be defined for all pairs (g' a) with

a € | and q t' F. Does this restrict the power of the Turing nrachine?

Suppose we make the restriction that a Tlrring machine must always write a

symbol different from the one it reads, that is, if

d (Sr, a) : (qi ,b, tr or R) ,

then a and b must be different. Does this limitation reduce the power of the

automaton? ffi

Consider a version of the standa,rd Ttrring machine in which transitions can

depend not only on the cell directly under the read-write head, but also on

the cells to the immediate right and left. Make a formal definition of such a

machine, then sketch its simulation by a standard T\rring machine.

Consider a T\rring machine with a different decision process in which transi-

tions a,re made if the current tape svmbol is not one of a specified set. For

examule

4 .

, .

i } .

6 .

10.

9 .

1 t .

6 (q t , {a , b }) : (f i , c , ,R)

258 Chopter | 0 Orrrnn Mor)ELS or,' TuRrr.rc Mecruruns

will allow the indicated movc if the currerrt tape symbol is neither a nor [r.

Forrrralize this conccpt and show that thisr modification is equivalent to a
standard Turing rnachine. ffi

M Tur ing Mochines wi th More
Complex Storoge

The storagc device of a standard Thrirrg mrrchine is so simple that one might
think it possible to gain power by using more complicated storage clevices.
But this is not the ca$(] rL$ we now illustrate with two examples,

Multitope Turing Mqchines
A multitape Thring machine is a T\rring rrrar:hine with several tapes, each
with its own irrrlependently controlled read-write head (Figure 10.8).

The formal delinition of a multitape T\rring machine goes beyond Def-
inition 9.1, since it reqrrires a modified transition function. Typically, we
define an rz-tape rrrachine by M : (Q,E,I, d, g0, n, F), where Q, E,l, gs, F
a,re as in Definition 0.1, brrt where

d : Q x I - " - Q x l u x I L , R I "

specifies what lnppens on all the tapes. For example, If n : 2, with a
r:urrent configuration $hown in Figure 10.8, then

d (qn, * , e) : (qr , r ,y , L , R)

is interpreted as follows. The transition rule carr be applied only if the
rnachirrc is in state Qs and the first read-write head sees arr a and the second
a,n e. l'he synrt-rol on the first tape will then be replaced with an r and
its read-write head will move to the left. At the same time. the svmbol on

Figure 10.8

Tapc 2

Figure 10.9

10,2 Tunrt'tc; M.q.cHIuns wIrH MoRl; Corr,tplnx Sronacn 259

Tapc I Tape 2

the sccond tape is rewrittt+n as'g and the read-writc head moves right' The

control unit then chtr,nges its state to 91 and the machine goes irrto the new

conliguration shown in Figure 10.9.
To show the equivalence between mrrltitape and sta,ndartl Ttring ma-

chines, we arguc tltat any given multitelpe Thring machintl M cau be simrt-

lated hy a statrdard Ttrring trachine M and, converscly, that any standartl
T\uing rnachine can he simulated by a multitap() orle. The second part of

this clirirrr treeds no elabclrtrtion, since we can alwa.ys elect to run a, multitape

machirrc with only one of its tapes doing useful work' 'Ihe simula,tiorr of a

mriltitrrpe machine by one with a single tape is a little more complicated,

but corrceptually stra,iglrtftrrward.
Cotrsider, for example, the two-tape macldlle in the conliguratiotr de-

picted in Figlre 10.10. The simulatirrg single-tape machirre will have f'ogr

Figure 10.10

o.

tr b t v f

7

a lr t) E "f h

260 Chopier l0 Otrnn Moonls oF TLrRrNc Mncnrr-rps

Figure 10.11

trat:ks (Figr.rre 10.11). The fir:st track rcpresents the corrtcrrts of ta,pe 1 of
M. The nonblank part of the second track hrrs a,ll zeros, exctlrt firr a, single
1 tnarkirrg the position of M's read-write iread. Tfa,cks 3 and 4 play a sim-
ilar role for tirptr 2;f M. Figure 10.11 makes it clcirr that, for the relevirnt
txrnfigurations of M (that is, the ones that have the indic:ated form), there
rs a, unique corrtli;ponding configrrrirtion of M.

The represerrtir,tion of a multitrrllc rnachine by a sirrgkl-ta,pe rnachine is
similar to that ust:d in the sitttulation of a,n off-line rnachine. The actual
steps in the simulatiorr irre a,lso much the same, the only difference being that
thcrtl ilre more tapes to rxlnsicler. 'fhe outlinn given for the simulation of off-
line tnachines cat:ries over ttl this case with rrrirrrlr modifications and suggests
a, proceclure try wirich the transition function f "f fr can be constmr:tecJ
fiom the transitirtn ftnction 6 of M. While it is rrot difficult to nrake the
corrstnrction precise, it takes a lot of writing. Certainly, thu computations
of M given the appeara,rrr:e of being lengthy and elaborattl, llrt this has no
beallng on the cottclusion. Wratever can trt: done of M can also be done
on M,

It is irnporta,nt to keep irr rnind the followirrg point. When we c;laim that

l,lH-Jil"'m,il'1il;*"'"IJ"ilili,il#T:,il'Hl"'iJTi'":-oT",ili-,:
rnachines, pa,rticularly, what la,nguages can be a,ccepted,

txqm,p[* ilCI,l' Consider tlte ltrngua,ge {a"'b"}. In Example g.7, we clescribecl a laborious

;1Tli:iJ'il1'#'JH.lHf, :1fl :illi,l";,H'-:;':i1?l,.,lJJi'5#ff:'i:J,'$
thir,t a,n initial strirrg e,t'bttt is writtun on tape I at tlx,, beginning of tlrc
cornlltta,tiou, We tlrcn read all t,lte nts, copying Lherrr rlrrto tape 2. Wherr
we rcat:h the end of tht: a,'s, we match tlrt: b's on tape 1 against the copied a's
ou Lapc 2. This way, wc c:ir.n deternine wlxlther there are arr cqrral number
of a's and b's without rcpeated back-anrl-forth movement of the read-write
head.

t

10.2 Turr,Ilrc MecHtut:s wIrH MoRn Colvtplnx SroRlGu

Remember that the various models of Thring ma,t:hines are considered

equivalerrt only with respect to their ability to do things, not witlt respect

to eilsc of progra,mmirrg or auy othtlr efficiency mcasure we rnight consider.

Wc will return to this importtrrrt point in Chnpter 14.

Multidimensionol Turing Mochines

A multidirrtensiona,l T\rrittg machine is otre in which the tape ca,rr be viewed

as extcrrditrg infiniterly itr tnore tharr one dimensiotr, A ditlgrart1 of a, twtr

dimensiotnl Turing rnachine is shown in Figure 10'12.

T[e formal rJe:firrition of a, two-dimensional Ttrring machitre involvt:s a

transition function tI of the fbrm

,) : Q x f - I x I ' x { .L , R,U,D},

where [/ anrl D specify rnuvement of t]rc read-writs]read up tr,nd down,

rcspectively.
To simqlate this machitte on a stanrlrrrd't\rring machine, we (iaII use the

two-tra,ck moclel depictcd in Figure 10.13. First, wc associa,te orr ordering

or acldrnss with the r:clls of the twtrditneusiona.l tape. This t:atr Lre done irr

a lumher of ways, fbr example, in the two-dimt:rrsioual ftr,shion indica,ttxl

in Figurc 10.12. Thc two-tra,ck tape of the silrulating rnirchiue will use

clne track to stortl cell conttlnts and the other one to kcep the a^rsociated

a,dclress. In thc scheme of Figure 10.12, the configrrration in whictr cell

(1,2) contains a, ancl cell (10, -3) contains b is shown iil F'igure 10'13' Note

orrcl cornplica,tiorr: the cell a,tlrlress can invcllve arbitrnrily large intcgers, so

the address track caunot trse a fixed-sizc field to sttlre addresstls. Instead,

we must rrstt a variable field-size a,rrrlrrgetnettt, using some spt:c:ial symbols

to delimit the fields, tr,s showu itt thc picture'

Lelt us assume that, at tlre sta,rt of the simulation of eat:h rrrove, the rcad-

write heaci of thrl two-clirnensional ma,chintl M and ttre read-writcl head of

the simrrlatirrg ma,chinc -ffi ut* u]{tw. oll corre$poncling cells. To simrrlate

a move. the simulating tlachine M first comprrtgs the address of the tnll to

Two-dimensiond
address scheme

261

Figure 10.12

262 Chopter l0 Outtlrr MoDELS or, 'I'uRrr*rc Mecrrrr{r:s

Figure 10.It

which M is to rnove. using the two-dirr*,'nuional addrcss scheme, trriu is a
sitnple computation. once tlrc trddress is computed, M Iinds the cell with
this a.ddress orr tra.ck 2 and then changes the cell corrtents to account for
tll rnove of M. Aga,in, given M, there is a stra,ightforwirrd construction fbr
44 .

; , t r :

The purpose of much of ortr discussiorr of Ttrring rna,chines is to lend cre-
dence to

'rhrirrg's
thesis by showing how seemingly rrrrlre complex situations

cirn be sirnulated on a starrda,rd T\rrirrg machine. unfbrtunately, detailed
sirnuler.tions are v()ry tedious irnd conceptually uninterr:sting. In the exer-
cises trelow, describe the sirnrrlrrtions in just enough depth to show that the
details can be worked out.

1. A multihea,<l Trrring machirre can be visualized as a T\rring machirre with a
single ta,pe and a single control 'nit but with multiple, irrdependent rearJ-
write heads, Give a formal definition of a rrlrltihead T\rring machine, and
the[show how suc:h a machine t:an bc simulated with a standard Ttrring
machine. ffi

2. Give a formal dcfinitiorr of a multihearl-multitape Turing rnachine. 'Ihen sh6w
how such a r'achine ca' be simulated by a standartl r[rring rnachine.

3' Give a forrnal definition of a T\rring rnachine with a si'gle tape but multiple
control units, cach with a sing;le read-write heatl. show how srrch a machine
can bc sirrrulated wit,h a multitape rrrar:hine.

* 4. A queue automaton is an a,utomatorr in which the temporary storage is
-, a clueue. Assume that sur:h a machifle is an on-li[e machine, that is, it has

rro input file, with the strirrg to be pror:essed placed in thc queue prior to
the start of the cornputation. Give a formal definition of such an autorrraton.
then investigate its power in relation to Ttrring machines. ffi

* 5' Sho* that for every il\rring tnat:hine there exists an equivalent standartl Ttrr-
ing uachirre with no rnore than six states,

'lot"R*.iu.,. the number of rcquirecl states in Exercise b as far as you can (Hint:
the smallest possible nurnber is ihree).

* 7' A c.rrnter is tr stack with an alpha,bet of exactly two symbols, a stack start
symbol and a courrter symbol. Only the counter symbol t:an be put on the
stack or removed frorrr it. A counter automaton is a deterrrrinistic autorrra-
ton with orre or more counters as storage. Show that any T[rring machine carr
be simulated using a counter autornaton with four counters.

I O. 3 NONDETER,MINISTIC IIURIIIIC MNCHII,.IES

g. show that everv cornputatiorr that can be done by a standard T\rring machine

can be done by a multitape machine with a stay-option and at most two states.

ffi
9. Write out a detailecl prograrn for the computation in Example 10.1.

Nondetermin is t i c Tur ing Moch ines

While Thring's thcsis makes it plausible that the specific tape structure is

immaterial to the power 9f the T\rring machine, the sa,me cannot be said of

nondeterminism. Since nortdeterminism involves an element of choice and

so has a nonmechanistic flavor, an appeal tg T[ring's thesis is inappropriate.

We must look at the effect of noildeterminisrn itt more dertail if we wa,nt to

argue that notrdeterminism adds nothing to the power of a Turing machine'

Again we resort to simrrlation, showing that nondetermirristic behavior can

be handled deterministit:ally.

A nondetermirtistic Thring rnachine is an lrrtomaton as given by Definition

9.1, except that d is now a. function

d : Q x f - + 2 Q x r x t r ' f i } .

As a,lways when nondetcrminism is involved, the range of d is a set of possible

transitions, atry of wlfch can be chosen by the machine.

*fimrttplC lq;il If a Thring ma.c"hirre has transitions specilied 6y

, l (qo, a) : { (qr , b, R) , (q2, c, L)}

it is nondeterministic. The rloves

263

and

qouaal bq$,&

qa1znal qzlcaa

are both possible.
I

264 Chopter l0 O.ruun Moonls or. ' ' IuRrr-rc MACtrrNEts

since it is not clear what role nontlcterminism plays i'computing func-
tion$, nondeterninistic a,utomata are usually viewerl as accepters. A non-
detcrministic 'rhrirrg machine is sairl to accept u if there is any possibre
sequence of moves such that

t111,ut i qq..r2,

wiih q7 € F. A nondeterrninistic machin{} may have move$ available that
Iead to a nonfinal $ta,te or to an infinite loop. But, as always with nonde-
tcrminism, these aJternatives are irrelevant; all wc ir,re interested in is the
existerrce of some sequence of moves lcading to acceptance.

To show that a nondeternrirristic Ttrring machine is no more powerful
than a deterministic one, we need to provide a dcterministic equivalent for
tht: nondeterrninisrn. We have already alluded to one. Nondetermirrism can
be vicwed as a deterministic backtrrrcking algorithm, and a deterrninistic
rrrar:hine can simulate a nondeterministic one as long as it can handle the
bookkecping involved irr the backtrackirrg. To see hovr this can be done
simply, let us mrnsider an altcrnative view of nondeterminisrn, one which is
ustlfirl in rnany arguments: a norrdrlterministic rnachine can be seen a$ one
that has the ability to replicate itself whenever neces$ary. when more than
orre rnove is possible, the machine prt)duces as marry replicas as needed and
givcs eaclt replica the task of carrying out one of the alternatives.

This view of rrondeterminisrn rnav seern partit:ularly nonmechanistic.
unlirnited replication is certainly not within the llower of present-day com-
puters. Nevertheless, the process carr be simulated by a deterministic Thring
machirre. Consider a Thring rnachine with a two-dimensional tape (Figrrre
10.14). Each pair of horizontal tracks represents one machirrc; the top track
conta,ining the rrrachine's tape, the hottom one for indicatirrg its internal
state and the position of thc read-write hczrd. whenever a new machine is
to be created, two new tracks are rrtarted with the appropriate information.
Figure 10.15 represents the initial r:onfiguration of the machine in Example
10.2 and its succ:e.$sor configurrr.tions. The simrilating machine searches aJl
active tracksl they are bracketed with special rna,rkers and so can always be
found. It then carries out the irrdicated moves, activating new machines as
needed. Quite a few dctails have to tre resolved befcrre we can claim to have
a, reasonable outline of the simulation, but we will leave this to the reader.

Tape contents

Internal state and position ofhead
Tipe contents

Internal state and position ofhead

Figure 10.14

Figure 10,11'r

Sirmrlation of a

rrorrtletenninistic

fitove.

10.3 NoNDETERMINIsTIc TunInc Mncutt ' lps 265

Based on this simulation, our conclusion is that for every nondeterministic:
Thring machine there exists an equivalent deterministic one. Because of its

irnportance, we state this formally.

The class of determirristic
'I\rring machines and the class of nondetermirristic

'I\rring machincs are equivalent.

Proof; Use the: corrstruction suggested atrove to show that anY nondeter-

ministic Ttrring rnachine can be simulated by a deterministic one. r

I . Discuss in detail the simrrlation of a nondeterministic Ttrring machine by a

deterministic one. Irrdicate explicitly how new machines are created, Itow

artive machines are identified, and how machines that halt are remove<l frorn

further consideration.

Show how a two-dimerrsional nondeterministic T\rring machine can be sirrru-

Iated bv a deterrnirristic machine.

3. Writc a progranr for a trondeterministic T\rrirg machine that a,ccepts the

Ianguage

7 = { w w : u e { a , b } + } .

Contrast this with a deterministic solution. W

4. Outline how one would write a program for a nondeterministic Tltring ma-

chine to arcept the langrrage

- (" ' a . b l + I .
L :

\ r U ' u t - " u : t r . t € { , . .)

5, Write a simple pl'ogram for a nondeterministic Ttrring machine that accepts

the language

7 :
{ * * * "a

i ' r1a1u e {a , b }+ , l " l } lg l }

How would you solve this problenr deterministically?

2 .

266 Chopter l0 OrHnn Monnls oF TrrHrNC.t MAcHTNES

* 7 .

Desigtr a rrorrdeterministic Turing rnat:hirre that accepts the language

L: {a" : rr is rrot a prime uumber} . ffi

A two-stack autornaton is a nondeterministic puslxlown arrtomaton with two
indepcndent stacks. T<r clefine such an autornaton, we modify Dcfinition 7.1
so that

d : Q x (tU{A}) x l ' x f * f i r r i te suhsets o f Q x l - x f . .

A movc dcpends orr the tops of the two stacks arrtl results in new values being
pushed on these two stacks. Slrow that the class of two-star:k automata is
equivalent to the class of T.uring rrrachines. NN

ffiffiffifif;ffi A Universol Turing Mochine
Cortsider the fbllowing argurncrrt a,grr,inst Thring's thesis: "A Ttrring machine
as preuented in Definition 9.1 is a special purpose cxrmprrter. Once d is
defitred, tht: ma,chine is restricted to ca,rrying out one partir:rrlrrr type of
computation. Digital computers, on the other hand, arc guneral purpose
machines that can be prograrnmed to do rliff'erent jobs at differerrt tirnes.
Consequently, Thring machines cannot be considered equivalent to gerrcral
purposc digital computers."

This ohjection can be ovr:rrxlme by designirrg a rcprogrammahle Ttrring
machirrc, called a, universal T\ring machine. A rrnivt'rsill T\rring rnachine
M, is arr autclma,ton thal, given ils input the descriptiorr of any T\rring
machine Jl[ir,nd a, string ?u, can simrrLlte the computatiorr of M on ro. To
construct such irn M,r, we first choose a standa,rd way of descritring T\rring
machines. We rnay, without loss of gerrerality, assume that

Q = | q t , Q z , . . . , Q r r I ,

with q1 thc irritial state, q2 the sirrgle Iinal state, and

f : { a r , & 2 , . . . , & r n } ,

where a1 rcpresents the blank. Wc then select an encodirrg in which q1 is
represented lry 1, qz is represented by 11, and so on. Similarly, a1 is encoded
as 1, a2 as 11, etc. The symbol 0 will be rrsed as a separator btrtween the J.'s.
With the initial rrrrrl final state and the bltr.nk defined by this corrvcntion,
ir,ny Ttring rnachirre r:an be described cornpkrtcly with d only, The transition
function is encoded actxrrding to this scherne, vrith the arguments and result
itt sornc prescribed sequencc. For exa,mple, d(gt, uz) : (qz,a3,"L) might
appear a,s

6 .

. . . 1 0 1 1 0 1 1 0 1 1 1 0 1 0 . . .

Figure 10.16

10.4 A Li lrvl lnsnl TuRrNc M.c(:Hr' l r : 267

It folklws frotr this thirt arry Thrirrg rrrachirre has a fitrite ettcoditrg as a string
trrr {0, 1}+, rrrrcl that, given any encodingof M, we carl clecode it uniquely.
Some strings will not represent any Turing machine (e.g., the strong 00011),
but we can easily spot these, so they a,re of no concern.

A universal T\rring rnilr:hirrc M,, thrlrr has itn irrprtt alplnbet tlrrrt in-
cludes {0, 1 } and the stnx:trrrc of ir. rrlrltititllt: milt:}rirrt:, its sltowtt in l'igure
l 0 .16 .

For atry input M and u, ta,pe I will keep a,n encxrded dofirritiorr of M.
Tape 2 will contain the tnpe cxrntents of M, a,nd tapc 3 thc irrtertral state
oI Il[. M* looks first ir.t t]rc cxlrrtcrrts of ta,pcs 2 arrd 3 to deternine the
configurtrtion of M. It thc:rr cxrrrsults tape 1 to see what M would do in this
c:onliguratiorr. Firrally, tapes 2 and 3 will be rnodified to reflect the resrilt
of the rnove.

It is within rea$en to txlnstnrr:t an actuar,l urriversal Turittg tnaciritre
(see, for exiltrplt:, Dt:nrrirrg, I)enrris, and Qualitz 1978), but the process is
rrninterersting. Wrr prcfer irrstead to appeal to 'I\uing's hypothesis. The
irnplerrxlrrtrltirlrr tlc:irrly catr be done usitrg solne programming la,ngua,ge; in
far:t, thtl l)r()grilrrr suggested itr Exercise 1, Section 9.1 is a rea,lizir,tion of ir,
utriversal Ttrring machiue in a, higher level la,ttguage. Thereforc, wtl tlxpect
that it catr also be done by a stanclard T\rring machine. Wet arc tlrt:rr justified

in claiming the existerrce of a, T\uing trachine that, givcrr any program, call
carry out the comprrttr,tiorrs sptrilied by that progl'an ancl tha,t is therefbre
ir proper urorlt:l firr ir gcneral purpose cotnputer.

The observation lhat every T.\rring ma,chine can het rcprtlserrted by a
string of 0's and l's ha,s iruporta,nt irnplications. Brrt bcfbre we explore
these implications, we need to review some resrrltu frorn sct theory.

Sone sets are finite, lrut most of the interestirrg st:ts (and languages) are
infinite, For infinite set$, we distinguisir trtrtwccrr sets that are countable
ancl sets that are uncountable. A set is snirl to trc coutrtable if its eletnents
ca,n be put into a, one-ttl_onc rxlrrt)tporrrlerrce with the positive integers. By
this we mean that tht: clernerrts of the set can be written in ${lme ordtlr,
sirlr, rr11 ,.Tz,,T:1,..., stl thirt cvtlry elertretrt of tire sel has some fitrite index. Fclr
cxilrnplt:, thc set of all even iutegers cau be written in ther ordcr 0,2,4,....

Control unit
of M,

Internal state of ,44

Tape contents of ll4

268 Chopter I0 Ornpn Morrtlt,s ol ' ' l 'unrlc MAcHTNES

Since any positive integer 2n, occurs irr position n { 1, the set is countable.
This shorrld not be too surprising, but there are lrlore corrrplic:irttxl cxilrrrllltis,
sorrre of whit:h ma,y seem counterirrtuitive. 'I'ake the set of all quotitlrrts of
tlte fortrt yt f q, wlrt:rc p ilrxl q a,re positive integers. How should we order this
set to show that it is courrtabk:'l Wc t:ilnnot write

1 1 1 I

I ' t ' 3 ' 4 ' . . .
becaust: thtrrr fr worrld never a,ppear. This does not irnply tlnt thc stlt is
uncountable; irr this r:asu, there is a, clever way of ordering the set to show
that it is in fact courrtablr:. Lrlok ir,t the scheme depicted in Figure 10.17,
and write dowtt the elerrrerrt irr thc rlrder encounterecl following the arrows.
This eives us

Here the elerrtcrrt f; or:r:rrrs in the eiglrth place, ancl every elerrrent has sotrc
place in the seqrrcrrc:t:. Tht: set is therefore countable.

We see from this t:xirrnplc thir"t we can prove that a set is courrtabltl if
we can produce a rnethotl try whir:h its elements can be written in sorrre
$equence. We call such a rnethod arl enumeration procedure. Since an
{lrurrnr:ration procedure is sorne kind of rrrer:}rirrrit:al proce$$1 we can use a
Thring trracltirrtl rnork:l to define it formally.

Let 5 be a set of strirrgs orr rromrt nlpha,bet E, Then an enurneratiorr proc:+
dure for 5 is a 'Ihrirrg rrrirc:hirxr thilt r:rr,n carry out the secluence of steps

qon i q"rr # ELi Q"'rz # sz .. . ,

witlr 1llr1 e I'* - {#} , ", € S', in such a way that any s in ,9 is prodrrt:rxl irr a,
finite number of steps. Tlxr stir,tr: q." is rr, sta,te signifying rnernbership irr S;
tha,t is, whenever q" is entercrl, tlxr strirrg folbwing f rnust be in S.

Figure 10.17

1 1 2 1 2
t ' z ' T ' 3 ' i ' "

10.4 A Ur{rvnnsal. TunlNc Macnrr'm 269

Not every set is countable. As we will see in the next chapter, there are
sorne uncountable sets. But any set for which an enurneration procedure
exists is corrntable bccarrse the enumeration gives the required sequence.

$trir:tly speakirrg, iln (:rnrrnerirtiorr llrttcedur{l crrrrrrot be called att algo-
rithm, since it will not termina,te when S is infinitel. NevertlNrluss, it r:an
bc c:onsirlcrcrl it rnerrrrirrgfrrl llrot:cus, bc{:ir,u$e it prochx:cs wcll-rlc:firrcxl arrd
prtxlir:tabk: rtlsults.

Let X : {a, b, c}. We can show t}rat the S : X+ is countable if we can find
n,n enumeration prclcedure thrr,t prodrrces its elermrrnts in sornr: rlrrklr, sa,y in
the order in which they would appea,r in a dictiorra,ry. However, the order
used in dictionaries is not sr.ritable without modifica,tion. In tr rlictiona,ry,
all worcls beginning with a a,re listed befbre the stling b. But when there
ale an infinite number of a worcls, we will never reach b, thus viola,ting the
condition of Definition 10.3 that any given string he listtNl a.f'tcr ir. finitc
number of steps.

Instead, we (:an rrse il rxldificd rlrdrlr, in which wtl takc the lerrgth of
thc strirrg as thc first criteriorr, followed by an alphabetic ordering of all
equal-length strings. This is a,n enumera,tion procedure tha.t protlut:us thc
sequence

d, It, r, ua, ab, ac, ba, hb, bc:, ca, cb, cc, aae, r,,,,

As we will have severa,l uses for sur:h an orclerrirrg wcl will crrll it the proper
order.

I

Arr irrrportant consequence of the above discussion is that T\rrirrg mir.-
chines a,re corrntable.

The set of all T[rring nta,chines, tr,lt]xtug]r irrfirritc, is countable.

Proof: We ca,n errcode eir.ch T\rrirrg rna,r:hirrtl usirrg 0 and 1. Witlt this en-
coding, we thrlrr rxrrrstnr(:t thc following euunreralion procedure.

1. Genera,te the next string irr {0, 1}* irr properl orcler.

2. Chcck the getreratecl string to see if it defines a, Tlrrirrg rnirchirre. If so,
write it on the ta,pe in the form rr:tpircd by Definition 10.3. If not,
ignore the string.

3. R.r:trrrrr to Stcp 1.

Since every Tlrring rnilt:hirrc hirs a linite description, any specific milr:hirx:
will eventrrir,lly lltl gtlrrt:ratecl by this process, I

-

270 Chopter l0 OurnR MoDEr,s oF TtrRrN(+ Mncslrur:s

The particular ordering of T\rring machines clepends on l,he encoding
we use; if we use a diffcrclrrt crrcxlrlirrg, wc rmrtlt oxllrx:t a rlifferent orrklrirrg.
This is of rro conserlrrcrr(i(lr howevcr, ir,rrd slxrws that the ordering itrrelf is
utrimportant, What rrrattcrs is thc cxisttlrrr:t: tlf sorntl rlrrlt:rirrg.

1 . Sketch an algorithm that exarnines a strirrg in {t), I}
I to tleterrnine w}rether

or not it represents an encoded 'I\rring rna,chine,

Give a complete encoding, using the suggestccl mcthod, for thc Ttrring rna-
chine with

d (g r , a r) : (S r , a r , I t) ,

, i (g r , a :) : (g r ,4 r ,1 ,) ,

d (93, a r) : (S.?, az, .L) .

3. Sketch a Turing rnachinc program that enumerates the set {0,1}t irr proper
o..Je.. {h

What is the irrrlex of ()tlr in Exercise 3?

Design a Ttrirtg rnat:hirre that emrmeraterr the following set in proper ordcr,

7 : { a n b " : r i } 1 }

For Example 10.3, find a function / (tt) that gives for ea,ch tl its index irr the
propel ordering.

Show that the set of all triplcts, (i., j,h) with ,i,.7, k positive irrtegers, is count-
able.

Suppose that Sr and 5'r are coutrtable sets. Slrow that then Sr U Sz and
,9r x ,92 arc also countallle. ffi

Show that the Cartesian uroduct of a finite trurnber of countable sets is rrlrnt-
able.

gpi.$ffiffi1f Lineor Bounded Aufomqto

While it is rrot possiblc tri qrxtend the power of the standard 'I\rring machine
by complicating the tirpc: stnrt:trrrt:, it is possible to limit it by restricting
the way itr which tlrt: ta,1lc r:an br: rrsed. We have already seen an example of
this with pushclowtr autornatir. A llrshdown automaton can be regarded as
a, nondeterrninislic I'uring rrrachirre with a, tnpe thar,t is restricted to being
used like a stack. We catr also restrict thc tir,pe rrsrr,ge in other ways; fbr
tlxample, we nright permit only a finite part of tirc tirlrrl to tlc ustxl as work
$pa,ce. It can be shown that this leads us bir.r:k to finite arrtomata, (see

2 .

4.

D .

6 .

a .

L

9 .

10.5 LINITAR Brturunr:tr Au'r'oNl.q,'nc 27L

Ext:rr:isc 3 rr,t tho end of this section)r $o we need not pursue this. Rut there
is ir wiry of lirnitirrg taptl usr: tha,t lt:ir,rls to rl rnore interesting situation: we
allow the tnachine to use only that part of the tape occupied by tht: input.
Thus, more space is available for long input sl,rings Lhan for short ones,
generating another class of machines, the linear bounded automata (or
lba) .

A linear bounded automaton, Iike a standard T\rring machine, has an
unbounded ta,pe, but how much of the tape can be used is a function of
the input. In particular, we restrict the usable part of the tape to exactly
the cells taken by the input. To enforce this, we can envision the input as
hracketed by two specia,l symbols, the left-end marker ([) and the right-
end marker (]). For ilrr irrput rl, tlrtl irritia,l rxrrrfigurilti<lrr of thc T\rring
rnachine is given by the instarrtaneous descriptiort qn[r]. The errd rrrarkers
cannot be rewritten, and the read-write head cannot rnove to the left of I
or to the right of], We sometimes say that the read-write head "bounces"

off the end markers.

r,St*.$[iP'i;ninPii1,1lffi

A linear lrounded a,utomaton is a nondeterministic Tirring machine M :
(8,E,l-,d,Qo,n, F), a,s in Definit ion 10.2, srrhiect to the rerstric:t ion that X
rmrst r:orrtairr two spct:ial synrbols land], suclt tlnt d (qr,l) catr contain only
elerrrents of the forrn (qi, l, 1t), and d(qi,]) can contain only elements of the
form (q i ,] , .L) .

i i l

A string 'ur is a,ccepted by a linea,r bounded autornaton if there is a possible
s(xllr()rrcc {lf movr:s

qn lrl i l*rqr*rl

fbr some et E F,;t)1,n2 € f*. Tlxl lirrrguirgc acccpted by the lba is the set
of irll suc;h arr:t:pttxl strings.

Note tha,t in this clefinition a, Iinea,r horrndcd irutornirtorl is assumed to
he nondeterministic. This is not iust il rrrilttt)r of corrvetrience but essential
to tlxl rlisc:ussiorr of lba's. While one can deline deterministic lba's, it is not
known whrrtlxlr thc:y ir.rtl ecprivalent to the nondeterministic version. For
sorne exDloration of this. see Exercise I at the end of this section.

272 Chopter l0 Ornen Morrus on Tunrlc MAcsltlss

Exanrplle, l,ilL4li l'he Ianguage

[, : { u , n l t n c n : z > 1 }

is accepted by sorne linear bounded autouraton. This follows from the dis-
cussiorr in Example 9.8. The computation ouLlined there does not require
space outside the original input, so it can be carried out by a linear bounded
automaton,

I

6xil,mF,tl,iiti,Find a linear bounded autornaton that accepts the language

L : { o n t ; r z } 0 } .

One way to solve the problem is to divide the number of tl's successively
by 2,3,4,..., unti l we can either accept or reject the string. Ifthe input
is in -L, eventually there will be a single a lefl; if not, at some point a
nonzero remainder will a,rise. We sketch the solution to point out one tacit
implication of Dcfinition 10.4. Tht: tapc of a linq+ilr boundtxl automatorr rnay
be multitrack, and the extra tracks can be used as scratch space. For this
problem, we can use a two-track tape. The first track contains the nurnber
of a's lefb drrring the process of division, and the second track conta,ins the
current divisor (Figure 10.18). The actual sohrtion is fairly sirrple. IJsirrg
the divisor on tlte secortcl track, we dividc the rrurntrer of c,t$ orr the first
track, say l-ry retrovirrg all syrnbols exccJrt those at multiples of tlx: clivisor.
After this, wc irrcrement the divisor by one, and continue rmtil we either
find a nonzero remainder or are left with a single a.

I

Thc last twcl cxilrnplt:s suggest thirt lincir,r bounded automata, are mortl
powerful than pushdown automata, since neither of the languages are con-
text-fiee. To prove srrch a conjecture, we still have to show that any context-
fiee language ctr,n be accepted by a linear bounded automaton. We will
do this later in a somewhat roundabout way; a more direct approach is
srrggested in Exercises 5 and 6 a,t the end of this section. It is not so ea"Ey
to rnake a conjecture orr tlrtl relatiorr betweerr Thrirtg rrtachirres arrd lirx:ar
botrrrrlcrl arrtorrata. Problems like Exarnple 10.5 a,re invariably solvable by
a littear borrnded aut{rilratorr, sirrce art atrount of scrirttlh spircc l)rol)ortiorral

I ' i g r r rc l {) .18

L

2 .

3 .

10.5 LINFTAR FJor,iruuut Aurc-ruere 273

to the length of the input is availatrle. Irr ftu:t, it is quite difficult to come up
with a concrete and explicitly defined larrguage that r:rr,nnot he accepted by
rrny linear hounded a,utomaton, In Chapter 11 we will show that thc r:la,ss
of lirrcar brlrnded arrtomata is less powerful than the class of unrestricted
Thritrg tttachirres, but il dc:monutra,tion of this requires a lot more work.

Give details for the solution of Exat4rle 10.5.

Find a solution for Example 10.5 that does rrot require a rrecontl track as
scratch space. ffi

Consider an off-line Turing machine in which the input can be read only once,
rnovirrg left to rigtrt, arrd not rewritten. On its work tape, it can use at most
n extra cells fbr work space, whete rt, is fixed for all inputrr. Show that such
a machine is equivalent to a finite autornatot.

Fittd lirtear bountlerl automata for the following languages.

(*) . L : { a ' " : n : n f , n r } l }

(b) fI : {o," : n is a prirne mrrnher}

(") .L : {ai'o : n, is not a prime number}

(d) r : { w w , w e { a , b } + }

(e) I = { w n : w € { a , b } + , n > 1 } W

(f) f : { ru rur ty ' t : ,u re {a ,b }+}

Find an lba fbr the cornplernent of the larrguage irr Exarrrple 10.5, assurrring
t h a t E : { a , b } .

Show that for every context-free language there exists an accepting pda, such
that the number ofsymbols in the stack never exceeds the length ofthe input
string try urore than .rtt*. W

Use thc observation in the abovc exercise to show that anv context-free lan-
grrage not containing A is accepted by some linear bounded automaton.

To define a detenninistic linear bounded autornaton, we carl use Definition
10.4, but require that the Thring machinc be deterministic. Examine your
solutions to Exercise 4. Are the sohrtions all deterministic linear bounded
a,utornata? If not, try to fin<l rrolrrtions that are.

4 .

D .

6 .

L

A H ie rq rchy o f
F o r m q l L q n g u o g e s
o n d A u t o m q t q

e ttow returtr our atterrtion tt) (lrr rnairr intelrc$t, the study clf fbrrrral
Ianguages. Our irrrrrrediirtc goal will bc to cxa,mine the la,nguages
associat,ed with 'I\rring tnircltirrcs ilrrtl srlrnc of thcir rostrit:tions. Re-
cause 'Ihritrg tnachiues can perforrn arry kirrtl of ir.lgrlrithrnir: r:orn-

putation, we expect to finrJ tira,t the family of languages a"ssociated with
thern is rpitt: llroarl. It int:hrrlcs not only regula,r a,ncJ context-free lan-
gua,ges, but also the various exarnples we have crrcourrterecl that lic outsidc
tht:sc fir,milies. The nontrivia,l questiorr is whether there are arzy languages
that arc rxlt a,crx.'pted hy some Tirring ma,clrine. We will answer this ques-
tiorr lirst by slxlwing thrrt tlxrrc a,re more la,nguages than T\rring rnachines,
so that thtlrc rmrst llt: sornt: Iarrgrrilgcs for which there a,re no Ttring rna-
chitres, I'he proof is slrort itntl c:lt:garrt, Ilrt norrr:r)n$tnx:tive, and gives little
insight into the probleut, lbr this rcas()rr, wt: will cstalllisir tlx: cxistenrx:
of latrguages trot recogrrizablc Lry Tlrring rnar:hines thrrnrgh mrirc cxplicit
exa,tnples that actually allow us t,o iderttify oric suc:h lirrrguagc:. Arxltlrcr
avenue of investiga,tion will be to look aL the relatiorr betweerr Thrirrg rna-
chirrtls irrrrl t:crtilin tyllt:s of grirmmar$ and to esta,blish a, connection between
thtlsc grarnmilrs rlnd relgrrlrrr a,nd r:ontext-fiee gra,mmars. This leacls to a

,-t I ti

276 Chopter I I A HlrnnnclHv or FoRtr,tll Leucuacns axn Autoraana

hierir,rc:hy of grilmrnars arrd tlrrough it to a method for classifying ltrnguerge
f'rrrrrilics. Sorrre set-theoretic cliagrarns illustrate the relationships tx:twt:crr
various language families clearly.

Strictly spea,king, many of th{r irrgurnettts itt this clmpter are valid only
for la,ngua,ges that do not inchrrlc thc tlrnpty strirrg. This restrictiotr arises
fiom the frr,ct that T\rrirrg urac:hirrt:s, as we have defined theur, canuot accept
the ernpty strirrg. To irvoitl havitrg to replrrase the definition or having to
adcl er repr,ra,tncl disr:lairncr, w{: rnake t}re tacit assutnptiotr l}rat the languages
cliscussecl in this r:haptor, rrnll:ss othcrwist: statetl, do ttot contain A. It is a
trivia,l matter to rtrstir.tc cvurythirrg so tlrrrt .\ is irrcluded, but we will leave
this to tire rerrder.

irilmmffiffiilt Recursive ond Recursively
Enumerob le [onguoges

We start with some terminology for the languages associa,ted with Thring
rnachines. In cloing sor we rnust nrake the important distinction between
Ianguages for which there exists an accepting Ttrring machine and klnguages
for which there exists a, memhership algorithm. Ber:inrse a T\rrirrg rnat:hirrt:
does not necussarily halt rlrr irrput that it rloes rrot accept, the first does trot
irnply the second.

A language 1, is said to be recursively enumerable if there exists a, Ttrring
ma,chine tha,t accepts it.

This deflnition implies only that there exists a Ttring rnachine M, such
lhat, fbr every ?0 € L,

tyyut I y :I:tqII:21

with gy il finill ster,tc. Thc dtrlirritiorr says rrothirrg about what lnppetrs for
'rr.r not irr .L; it rnay btl that the rrrachine halts irr a rrotrfinal state or that
it never halts and goes into an infinite loop. We can Lre more demanding
irnd ask that Lhe rnachine tell us whether or not any given input is in its
Ia,ngua,ge.

11,1 R,ECURsrvrrt AND R.ncunslvl:lv Exulannenlt Larvcuacns 277

,rFirqflir$,Iriion I |.2

A languirge tr on x is said to be recursive if there exists a 'rhrirrg machine
M that ar:rx:pts L and tlut halts on every .ro in X+. In olher word$, a
Ia,nguage is rrlcursive if and only if there exists a rncrnbership algorithur for
i t .

If a, language is lrx:ursive, then there cxists an easily cclrrstnrcted enu-
ttterirtion procedure. Sr4lpose that M is rr T\uing machine thir,t rleternines
mernbtirship iu a recursivtr la,nguage -L. Wc first construct anotlrrtr lhring
rnac:hirre, say M, that gcrrerates all strings in X+ in proper orrler, let us
sa/ '{t1 ,1.r)2,,,,, As thesc strings are generatrlrl, they becoure thr: irrprrt to M,
wltir:h is modifled so that it writes strings orr its tape only if thcy are in L.

'r'hat thcrr: is a,lso a,n enurrreration procedure lbr cvery recursively enu-
mera'ble languagc is not as easy to srlrl. We cannot use the erhove argumerrt
ir,s it stands, beciruse if sorne rui is rrot in 1,, the machirrc M, when startecl
with ttj ou its tirltt:, may never halt rrrrrl tirerefore never grlt to the strings
irr r, that follow rr.'i irr the enurneratiorr. Trr make sure that this does not
hrlppen, the cornllrtation is perforrnetl irr a, clifferent way. Wc Iirst get fr
to glenera,te u1 arrrl lt:t M execute one rrr()ve on it. Then we ltlt M generate
ur2 irnd let M executt: one rnove on ur2, folklwod by the second ilr()vc on urr,
After this, we gerrrlrate ?lr3 a,nd clo one stcp on ur3, the second step on ur2,
the third step on [r1, rrrd sri on. The order of ltrlrftlrma,nce is depictcxl in
Figure 11.1. Flom this, it is clca,r that M will never get into an infinitcr
Ioop. Since any ur e tr is generatecl by -ffi ancl acceptecl by M in a, finite
numlrer of steps, cvery string in .L is cvcntrra,lly produced by M.

It is easy to sec tha,t cvery language frrr which a,n enumeraticlrr pror:edure
clxists is recursively crurmerahle. We sirrrply cornpare the given irrput string
agairrst successive strirrgs gcriera,ted by the errurnera.tiorr procedure. lf 'ur E
.L, wc will eventually get a rna,tr:h, and the process r;nn be terminatecl.

Defitdtions ll.J ancl 11.2 givc: rr$ very little insiglrt irrto the na,ture of
either recursive or recur$ively enrurrerallkl languages. 'I'hese delirritions a,t-
tilr:h narnes to languagc I'nmilies a,ssociated with rtrring rnachines, but shcd

Figure 11.1 uj-ju2wl

First move

Second move

Third move

278 Chopter I I A Hrnnancny o!' FoRMAL LANcuAGEs AND AuToMATA

no light on thc nature of represerrrtative languages in these families. N6r

do they tell rrs much about the rclationships between these languages or

their conmlt:tion to the la,nguage farnilies we have tlrrcountered before. We

are thercfore immediately faced with question such as "Are there languages

that are recursively orrurnerable but not recursive?" and "Are there lan-
guages, describablt: sotttehow, that are not recursively emrmtlrable?tt While

we will be able to supply some &nswers, we will not be able to produce very

explicit examples to illustrate these questions, especia,lly thc second one'

Longuoges Thqt Are Not Recursively Enumeroble

We can establish the existence of latrguages that are rrot recursively enu-

merable in a variety of ways. Orte is very short and rrses a very fundamentir,I

and elegant result of matherrratics.

Let S tre an infi,nite countirble set. Then its powcrset 2* is not countable.

Proof: I,et S : {"r, "r, s3,...}. Thtrn any element f of 2" can be represented

by a sequenc:c of 0's attd L's, with a 1 in position i if and only if sa is in

t. For example, the set {"r,.tR,,s6} is represented by 01100100..., while

{rr,"r,.ts,...} is represented by 10101"" Clearly, any eletrerrt of 25 can be
represcntcd by such a sequencc, arrd atry such sequentlc represents a unique
clernent of 2s. Suppose that 2s were countable; then its elements could be

writl,en iu some ordcr, say t!,t2,.,., and we could enter these into a table, as

shown in Figure 11.2. In this ta.hk:, take the elements in the maitr diagonal,

and compklrnerrt each entry, that is, replace 0 with 1, and vice versa. In the

example in F-igure 11.2, the elerments are 1L00..., so we get 0011... as the

resrrlt. The trew sequence represerrts some element of 2D, say f1 for some

i. But it camrot be f1 bet:ir.use it differs from fr through s1. For the same

Figure 11.2 ' l 0

0

1

f 0]
*../j

0

f 0)

0

t , r (t)
- \ . ,n

t l L t

t t l l

:

I 1, 1 R.ncuRsrvg AND R.ECUR,srvgLy Er,rurr,ren.c,eLH LANCIUAGES 275

rca$on it cannot tre f2, f3, or arry other fi. This contradiction crcates a
logical impasse that can be rernoved orrly by throwirrg out the a,ssurnption
lhat 2s is countable. I

This kind of arflument, becausc it involves a rrranipulation of tlxr cri-
agonal elements of a table, is called diagonalization. The techniquc is
attrilruted to the mathcrnatician G. F. Cantor, who used it to clernonsrrirre
that thc uet of real nurnbers is not countable. In the next fcrw chapters, we
will see a similar argurrrent in several contexts. Theorern 1l.l is diagonal-
ization in its purest form.

As an irnrnediate consequrlnt:e of this result, we can show that, in some
serrue, there are fcwer T\rring nrachineu than there are languages, so that
there must be sorne languages that ir,re not recursivcly enumerable.

For any nonempty x, there exist larrguages that are rrot recursively errurner-
able.

Proof: A language is a, srrbset of E*, arrcl every such sutrset is a language.
Thercftrre the set of all Innguages is exactly 2E-. Since X* is infinite, The-
orem 11.1 tells us that the srrt of all languagrn on E is not countable. But
the set of all T\rring rnachincs t:tr,n be enumerated, so the set of all recur-
sively enurnerable la,nguages is courrttrble, By Exercisc 16 at the end of this
section, this irnplies that there rrlrst be some languageri on x thar arc rrot
recursivelyenurnera,ble. I

-

This proof, eilthough short arrd simple, is irr rnany ways unsatisfyirrg.
It is completely rronconstructive ancl, while it tells us of the existence of
sorne larrgua,ges that are not rur:ursively enurnerable, it gives us no ferrling
at all for whirt these la,nguages rnight look like. In the next set of results,
we investigate the conclusion rnore explicitly.

A longuoge Thot ls Not Recursively Enumeroble
Since tlvery language that carr he described irr ir direct algorithmic fa-shion
can be acct:pted by a I\rring rnirc:hine and hence is recursively enurneratrle,
the description of a larrguagc that is not recrrr$ively enumerable must be
indirect. Nevrlrtheless, it is possitrkl. The argumerrt involves a variation orr
the diagonalization theme.

Tltcre exists a recursively enumerable lirrrguage whose cornplenrerrt is not
recursivsly enurnerable.

280 Chopter | 1 A Htunnrrc:IIY oF FoRMAI Leucu'q.cus .twn AuroMere

Proof: Let E : {o,}, and consider the set of all Ttrring machirres with this

input alpha,bet. By Theorem 10.3, this set is t;ourrtable, so wc can associatc

arr orcler Mt,M2,... with its c:lements, For cach Tirring rlachile Mi, there

is an associated recursively enumerable lirrrguage L(Mt). Conversely, for

qirch recursively etrumerable larrguage on X, there is some T\rring machirrt:

that accelrts it.
We now cotrsider a ncw language tr dcfined as follows. For each i) 1,

tlre string a'; is in.L if arrd oilly if ad E L(Mt). It is clcirr that the la.rrguage

,L is well defiiled. since the Btatement u' € L (Mr)' and ltettce a' E tr' firust

either btl true or fhlsc. Next, we corlsidet the complcment of -L,

T : { o o ' a i 4 L (M ,) } , (1 1 . 1)

which is rr,Iso well definctl but, a,s we will show, is ttot recursively enumerable.

We will show this bv srtrtradiction, strrrting from the assumption that

.L is recqrsively enumerable. If this is tro, then there must be some Ttuirtg

machine, say Mp, sucltr that

T: t lttt*1 (1 r . 2)

Consider the strirrg aft, Is it in .L or in Z? Suppose that ak eZ- By (11.2)

this implies that

a , k e L (M i l .

But (11.1) now irnplies that

o * f T .

Conversely, if we assume tha,t ak is in .L, therr oo # L and (11.2) implies

that

ak 4 t' ltvt*1 .

But thett from (11.1) we get that

a k e T .

The contradiction is inescapablc, and we must t:onclude that olr assumption

that Z is rccursively enumerable is false.
To complete the proof of the theorem a$ $tated' we must still show that

.L is recrrrsively enumerablc. We can use fOr this the knowrt enumeration

procedure for T\rring machittes. Given a', we first find i by counting the

number of a's. We therr use the enumeration procedure for I\ring machirres

to firrcl Mr. Finally, we give its description along with a" to a universal

T\rrirrg rnachine M,, that simulates tlte action of M orr a'. If a' is in tr, the

computatign carried out by M,, will eventually halt. The combirred effect of

this is a Ttrring tnachine that accepts every o,' e tr' Therefore, by Definition

11.1, L is recursively emrmerable' I

-

11.1 RFrcuRSrvE AND R,ECTTRSIVELy _Er-ruunR.anln LRrucu.qcns ZBI

The proof of this theorern cxplicitly exhibits, throrrgh (11.1), a well-
deflned Ianguage that is not recursively enumerable. Thiu is not to say
that there is arr easy, intriltive interpretation of Z; it would be difficult to
exhibit more than a ferw trivial members of this language. Nevertheless, Z
is llroperly defined.

A Longuoge Thot ls Recursively Enumeroble But
Not Recursive
Next, we show there are some languagers that are recursivrlly enumerable
but not recursive. Aga.in, we need do so in a rather roundabout way. We
begin by establishirrg tr. srrbsidia,ry result.

If a lattgutlge tr and its complernt:nt Z are both recursivrlly enumerable, then
both languages are recursive, If.L is rcr;lrr$ive, then Z is also rccursive, and
consequently lloth are recursively errrrnrerable.

Proof: If tr and -Lare both recursively enunrerable, then there exist TLrring
machirres M and M that scrve a,s enumeratiorr procedures for -L and Z,
respectively. The first will produce rily,rlt2,... in L, thc uecond fr1,fr2, ... in
tr. Suppose now we are given any ?r, € E+. We first letff generate ?x1 and
compare it with ru. If they are not thc same, we Iet M gerrerate fi1 and
compare again. If we need to continue, wc: next let M generate u2, then
M gerrcrate fi2, and so on. Arry ru € X+ will be gerreratgd either by M or
,4.{, so eventually we will get n match. If the rrmtching string is procluced
by M, zrr belongs to -L, otherwisc it is in Z. The process is a membership
algorithrn for both -L and .L, so they are both recursive.

For tho (ionverse, assume that tr is recursive. Then there exists a mem-
bership algorithm for it, But this brxxrmes a member$hip algorithm fbr Z by
simply corrrplt:rnenting its conclusion. Therefbre Z is recursive. Sirrce any
recursive language is recursivcly enumerable, the proof is completed. I

-

Flom this, we cxrnclude directly that the family of recursively enurrrer-
tr,ble languages and tlx: f'rr.mily of recursive larrguages a,re not identical. The
language tr irr Tlrrx>rem 11.3 is in the first but not in the second family.

There exists a recursively enumerable languaga that is not recursive; that
is, the family of re:cursive languages is a prolrer subset of the family of
recrrrsively enurnerable langrrages.

Proof; Coruider the la.ngrrage 1, of Theorerrr 11.3. This language is recur-
sively enumerable, but its complement is not. Thereftrre, by Theorem 11.4,
it is not recursive, giving us thr: kroked-for example. I

-:

282 Chopter I I A Hrun.qnc;Ilv orr FoRIrnAt. Ln'lqcuecns nNrr A(r'ro\'Iann

Wc cotrclude from this that there tr.ro irrdeed well-defincd latrguages fbr

which one cantrot crrrrstruct a memhcrship algorithrn.

1, Prove that the set of all real mrrtrbers is uot countable.

2. Prove that the set of all languages that are trot recursively enurnerablc is not

countable. ffi

3. Let -L bc a finite larrguage. Show that then .Lr is recursively enumerable.

Suggest arr etrumeration procedure fbr -L+,

4, Let -L bc a context-free language. Slxrw that l+ is recursively enumerable

arrd suggcst a,n entrrttetation procedure ftrr it.

5. Show that, if a language is not recursively enumerable, its complement carrrrot

be rer:ursive.

6. Show that the family of recrrrsively enumerable languages is closed under

union. ffi

7. Is the family of recursivcly enumerable languages closed urrder intcrsection?

8. Show that the fatrily of recursive lartguages is closed under union and inter-

section.

L S[ow that the farrrilies of recursively emrrnerable and recursive larrguages are

closed under reversal.

10, Isr the family of recursive larrguages closed under concatcuation?

11. Prove that the cornplcment of a t:otrtext-frce language rnust be recursive.

12. Let -Lr be recursive and -L2 recursively cnurnerable. Show that ,Lz - -Lr

necessarilv rccursivelv ernrrtetable,

13. Suppose l,hat L is such that there cxists a'firring rnachine that emrmerates

the elements of tr in l)roper ordcr, Show that this rneans that .L is recursive.

L4, If L is ret:ursive, is it necessarily true that 1,+ is also recursive? W

L5, Choosc a particula,r' encoding for T\rring rrrachines, and with it, find one

clement of the larrguagc Z ir't Theorerrr I1.3.

16. Let ,9r be a countable set, 52 a sct that is not countable, and Sr C 52. Show

that S'r must then r:orrtairr an infinite number of elements that are not in,Sr'

17. In Exercise 16, show that in fact Sr - Sr cannot be countable,

18. Why does the a.r'gumcnt in Theorerrr 11.1 fail when S is firrite'l ffi

19. Show that the set of all irrational mrrnbers is not countable'

ffi

11.2 UNRESTRTCTED GRaMunRs 283

Unrestr ic ted Grsmmdrs

Trl investigate thc connection betweerr recursively enumerable languages
and grarnrnars, we return to the genarnl definition of a grarnrnilr in Chapter
1. In Definition 1.1 the production rules were allowed to take any form,
but various rcstrictions were later made to get specilic grirmmar types. If
we take the gcrreral form and itttposc no restrictiorn, wc gert rrnrestricted
grammals.

iiilffifr,ffi$ffi,fi{,ffi,{tilli l'iirj

A grammar G : (V,T,S,P) is called unrestricted if all the produt:tions
are of the form

U + U ,

where z is in (V U ?)+ ancl u is in (y U 7)..

In an unrestri<:ted grammar, essentially no conditions are irrrposed on
the productions. Any rrurrrber of varia,bles and tertrinerls ca,n be on the left
or riglrt, a,nd these can occur in ilny order. There is orrly one restriction: .\
is not allowtrd a,s the left side of a prodrrction,

As wc will see, unrestricted grrrmmars are nruch rnore powerfirl than
restricted forrns like the regular and contr)xt-fiee grammars we have strrdied
so far. In fact, unrestricted grarrrrnars txlrrespond to the largest faurily
of languages so we ca,n hope to recognizc try mechanical rneansl thir,t is,
rrnrestricted gralrrrnars gcnerate exactly the farnily clf recrrrsively enurnerablc
languages. We show this in two parts; the flrst is quite straightforward, but
the second involvcs n lengthy constructiorr.

Anv language getreratcrl
ir.ble.

Proof: The grarnnrar
strings in the language
.L such tha,t

by tln unrestricted grirrrrrnirr is recursively enurner-

irr cffer:t defines a procedurr: frlr enumerating all
systt:matically. For exarnple, w(.' (:ern list all ur in

S + u ,

tha,t is, ur is derived irr orre step. Since the set of the productions of the
grammar is finite, thcrc will he a finite number of srrr:h strings, Next, we

?.84 Chopter I I A HtnneRcHy or.' !'on,uel Lancueons AND AUToMATA

Iist all w itt L tha,t can he dcrived itr two steps

, 9 + r + t r ,

and so on. We can simulate these derivations on a, Tltring rnachine ancl,

therefbre, have atr enumeration procedure for the langrrngtl. Hence it is

recursivelycrrutnerable. r

This pnrt of the correspondencc betweett recursively emrmerable lan-
gueges and urrrestricted gra,mmars is rrot surprising. The grammar gener-

ates strings by a well-defined algorithmic process, so tlte derivations can

he dclnc on a T\rring ma,chine. To show the converse, we describe how any

Tlrring machine can be mimickccl by an uurestricted grarrrmar.

We are given a Ttrring mat:hine M : (Q,E,f,d,go,n,F) and want to
prodnce a grammar G such that .L (G): L (M)' The idea bchind the con-

strrrctiorr is relatively simple, but its itnplemeutation bet:tttres ttotatioually

cumbersotne,
Since the computatiorr of the T[rring machine carr be described by the

sequerrce of instantancous clescriptions

qou I rqfA, (1 1 . 3)

we will try to arranger it so tltat the corresponding grarnmar has the property

that

Qxu tf ' I :Qy!, (1 1 . 4)

if and only if (11.3) holds. 'Ihis is not hard to do; wltat is more difficult to
see is how to rnake the connection hetw(:t:rr (11.4) and wha't we rea,lly wirrrt,

namelv,

S 4 u '

ftrr all tu satisfying (11.3). To irc:trieve this, we construct a grarrrrrlar which'
irr broad outline, has thr: following properties:

,5 carr derive qou for all ur e X+.

(11.a) is possible if and only if (11.3) holds.

Wherr a string rqly with qy € lr is gerrerated, the grammar,r tratrsforttts
this string into the origirral'u.

1 .

2.

3.

11.2 UrunnsrRrcrED Gnalruans

Tlrt: rxlrnlllete $equen(ie of derivations is then

$ 4 qorr l xq.yy 1w. (i 1 . 5)

Tlrc thirrl step in the a,bove deriva,tion is the troublesome one. How can the
grrrmmar remember u if it is rnodified dr.rring the second step? We solve this
Iw enurding strings so that the coded version originally has two copies of
u.'. Thc first is saved, while the second is used in the steps in (11.4), When
a fitral corrliguriltiorr is tlrrtcred, the grammar erases everything except the
saved'ur,

'Io produce two copies of tr and to harrrllrl thc statt: syurllol of M (which
eventually has to be removed by the grammar), we introduce variables Vo6
ir,nd Voi6 f'or all a € XU {n}, h € I-, and all rl such that qa e Q. The variable
ydb ()rr(j()(l()tr tlrt'two syrnbols rr, tr,ncl b, while V.i6 encodes a and b as well as
thc statc: r;;.

Tlx: first step irr (11.5) can ber ac:hieved (in the encoded fbrm) by

5 - V r rS lSYn l l ? l (11 .6)
7' - TV,ro lvooo. (11.7)

for a,ll a e E. '.fhese procluctions allow the glarrunar Lo gerrerate an encoded
version of any string q0ur witlr a,n arbitra,ry number of leading and trailing
blarrks.

lbr the second sttp, for cirdr trarrsitirlrr

,l (qu, ,J : kt.i , ,1,, R)

of M, we prrt into the gra,mmtr,r productions

W.Vprt --, WdVrtq,

for irll n, p € EU {l}, q e f. For cirr;}r

(r r . s)

d (q 0 , ") : (q j , d , L)

of M, we inch-rde in G

VpqVo,t" - VpiqVoa, (11 .e)

for all a, p e }JU {tr}, q e I '.
If in thc st:t:ttrrrl stc:p, M t:tttr:rs a firral stattl, the gratrrrnar tnust thert

get rid of everyLhing except ur, which is saved in lhe first indices of the V's.
Therefore, for every ei E F, we include productions

285

WiA + et (1 1 .10)

286 Chopter I 1 A HInn,.tncIIY oF Fon,nrlal Lnr'{cuncos awn Auttlltane

f'rrr nll a € X U {tr}, b e f. T}ris creates t}re first terrninal in the string,
which tltcrr causes a rewritirrg irr the rest, by

cWt -

W t c -
(1 1 . r i)
(1 1 .12)

CQ,

a(,

lliHHH$,'$$$$$lliN, mt M : (Q,x, f , d, qo, n, F) ue a Turing machine with

I : {qo, qr} ,
1 . : { a , b , t r } ,

)J : {rr, b} ,
t' : {qt} '

itncl

for all a, c€ EU{tr}, lre f. We need one more specrial prodrr:t ion

E - . \ . (11 .13)

This last production ta,kes care of the ca,se when M moves outside thnt pa,rt
of the ta,pe rlr:t:rrpicd tly thc input 'ur. To rnirkc things work irr this casc, wc
rmrst f irst rrsc (11.6) rrnrl (11.7) to generate

E . . . l q p r r r n . . . ! ,

representing all the tape region used. The extraneous blanks are removed
at the erd by (11.13) .

The following example illustrates this complicated construction. Care-
fully check each step in the exa,mple to see what the variorrs prodrrctions do
antl whv thclv itrt: rrecrlcd.

d (so, o) - (q11,a, R) ,

d (qo, tr) : (gr, ! , r) .

Tlris rttachirre acccpts L(uu*).
Clonsirler rrow tlte tlttrnuutittiorr

esaal aesal aaesl F aqla[(11,14)

which acct:1lts tlrt: strirrg na. Ttl tklrivc this strirrg with (J, wtl first us(r nrlc$
of the form (11,6) and (11.7) to get the appropriate starting string,

S =+ 5'Vll =+ TVaa +'lV""Vaa 4 VoooVooVll.

I'he Iast sentential fornr is the starting point for the part of the derivatiorr
that mimics the cornputation of the'I\rring machine. It contains the original

I1.2 UNRnsTRrcTED GRarrrlrans 287

input aaE in the sequellce tlf first indices and the initial instantarreous
description esaal in the remaining irrdiccs. Next, we apply

VoooVoo - WoWoo,

and

VoooV;,z * Voolltr0tr,

whiclt arc spcr:ifir: insta,nces of (11.8), and

Vo*l/tr0tr - WruVaa

corning frtlur (11.9). Then the next steps in the derivatiorr are

V,,0,,.V,.uVaa * VouVoooVVa)VooVooVlon + VooV,srV11.

The sequence of first indices remains the same, always rernembering the
itrititrl input. The sequence of the other indices is

0aan, aOa[, aa0!, a1aE,

which is equivalent to the sequence of irrstarrtanrxlrs desr:riptions in (1 1. 14) .
Finallv, (11.10) to (11.13) are used itr t l te last steps

Vu"VtuVaa 4 VooaVag + V""al + aal + aa.

Thc cxrnstnrction described in (11.6) to (11.13) is the basis of the proof of
thc following result.

T

For every recursively enurnerable languagc.L, there exists an unrestricted
grammar G, such that ,L : L(G).

Proof; The construction described suarantees that if

r l a ,

then

e (r) + e (y) ,

wherc c (z) denotes the encoding of a string according to the given conven-
tion. By an induction on ttre rmmber of steps, we cirrr then show that

e (So?,') 5 " (g) ,

288 Chopter I I A Hrnnnncnv or Fon,ltnl, L.q.Ncuacns Arttr Atlr'ovane

if and only if

q1uri Y'

Wc also rnust show tha,t we can gcrrt:rate every possible sta'rting t:ttnfigura-
tiorr and that tu is properly rerxlrrstnrctt'd if and only if M enters ir lirrirl
configuration. The cleta,ils, whir:h arc rrot too difficult, a,re left irs iilr cxer-
cise. I

These two theorems esta,hlish what we set out to clo. Thev show that
the family of langua,ges a,ssor:iirtt:rl wittr utrresl,ricted gra'mma,rs is idt:rrtitlirl
with the family of rec:rrrsivcly etrumerable lauguages.

1. What language does the utrrestrictcd grammar

Jj + 5'rB

'5r - a$rb

bB -- bbbB

aStb - aa
' B - A

clerive? ffi

What difficulties woultl arise if we allowed thc empty string as the left sicle
of a production in an unrestrictcd grammar?

Consider a variation oII gl'alnmars in which the starting point for arry deriva-
tion can be a finite set of strings, rather tharr a single variable, Formalize
this concept, then investigate how such gratnma,rs telate to the unrestricted
grarrrfirars we havc usccl here. ffi

In Example 11.1, prove that the constructerJ grarrlrrrar cannot generate anv
sentence with a b in it.

Give the details of the proof of Theorern 11.7.

Construct a Turirrg rrrachine ftrr tr (01 (01)-), thcn find an unrestrictetl grarn-

rtrar for it using the coustruction in llheorem 11.7. Give a derivation fbr 0101
using the resulting gramnrar.

Slxrw that fbr everv unrestrictcd grammar there exists an etpivalent unre-
stricted grammarr a,ll of whose protluctioris have the fortn

' u + a t

with z, u € (Y U ?)+ and lzl < lul, or

.4 + . \ ,

w i t h A € Y . m

2 .

3 .

4 .

5 .

6 .

t .

I1.3 Corur'r:x'r-Snrqsrrrvn Clnauuans .q,rup Larucuacns 289

8. Show that the conclusion of Hxercise 7 still holds if wc add the further con-
dit iorrs zl < 2 and l" l < 2.

9. Somc authors give a definitiot of urrtestrictetl grarnrnars that is not qrrite the
same a,s our Dcfinition 1..|.,3. In this alternate definitiorr, the productions of
atr utrrestrictetl Hrarnrnar are rerruired to be of the form

where

a,nd

T + U ,

, d € (v u ") . v (v u 7) . ,

a € (v u 7) " ,

The diffctcncc is that hcrc thc lcft side rnust have at least orre variable.

Show that this alternate definition is llasir:ally the sarne as the one we
use, in the sensc that for cvcrv grammar of one t.ype, there is an equivalent
grammar of the other typc.

Context-Sensi t ive Grom mo rs
ond Longuoges

Bctween the restricted, context-fiee gra,mmars ancl the general, unrestricted
grarrlrnar$r ir grt:at vir,rir:ty of "srlrncwtrilt restricted" grammitr$ t:tr,n be de-
fined. Not all c:irscs yit:ltl irrttlrcstirrg rrnultu; among the ones thtlt rlo, the
cotttcxt-st:rrsitivtl grilmma,r$ ha,ve relcc'ived considerahle a,ttention. These
grarrrrrrirrs gtlrrcrilte lrr,nguer,ge,'s rr,ssrlr:ia,ted with a, restricted clir-rs of T\rring
macltirres, lirrc:itr trourrdcxl irutornata, whic:h we irrtrorhrt:ed irr Ser<:tion 10.5.

Nffifl tl.'$$fr,ffi,fi N,\tthitffi ,l'

A grammar G: (V,'I',5,P) is said to Lre context-sensitive if all produc-
tions are of the forrn

where tr, a E (V U T)+ ancl

l z l 5 l s l , (i l .15)

290 Chopter I I A Hrnn-,wclHy or FoRrr,tel Lauc;uacns eNn Aurol"tn'r'A

This definition shows clearly one asper:t of this type of grammar; it
is noncontracting, in the sense that thc lcngth of successive sentential
forms can never decrea^sc. It is less obvious why such grammar$ should be
called rxlrrtcxt-serrsitive, but it cau tre shown (see, for cxarrrple, Salomaa
1973) that all such grarlmars can be rewrittt:rr irr a rrormal form in which
all productions are of the form

xAY + YPY.

This is equivalent to saying that tlre prodrrr:tion

A - t u

cirn be applied only in the situation where -4 occur$ irr a context of ihe string
z on the Ieft ancl the string 3y on tlrc riglrt. While we use the terminology
arising from this particular interpretation, thc forrn itself is of little interest
to us here, and we will rely entirely on Dtllirritiorr 11.4.

Context-Sensilive Longuoges qnd Lineor Bounded Automotq

As thc terrrrirrology suggests, context-sensitive grammar$ are a^ssociated witlt
a latrgua,ge family with the sarnc rrarrle.

A language ,I, is said to be contcrxt-st:rrsitivc if thcre exists a context-sensitive
gr i rmrn?rr (J , such that -L : L(G) or L: , (G)U {A} .

In this definition, wo' reirrtroduce the empty strittg. Definiiion 11,4
implies that r + A is not allowerl, so that a context-sensitive gra,mmar
can never gernr:rittc a lirnguagtl containitrg the empty string, Yet, every
contr)xt-frrxl larrguage without .\ can be generated by a special ca-se of a
context-sensitivc grarnrrlar, say by otre in Chomsky or Greibach normal
ftrrrn, both of which satisfy the conditions of Definition 11.4. By inclrrding
thc ernpty strirtg itr the definition of a context-sensitive langrtage (but not
in the grammar), we can claim that thc frrmily of corrtext-free languages is
a subset of the family of context-sensitivc languages.

11.3 Colrrlxr-SnNsrrrvr Gnntttrrtns.q,rqu LeNcuecns 291

. . .
Hm6,tttfble I t,2 The language L : {artfirlsn: n > 1} is tr, context-sensitive language. We

slrow this by exhibiting a context-sensitive grirrrrilrirr fbr thel la,ngua,ge. One
sut:h gramma,r is

S - tthclaAbc:,

Ab - bA,

At: + fi6"",

bB --+ Rb,

aB --+ aalaaA.

We can see how this works by looking at a derivation of o:lblcil.

S + aAbc+ abAc+ abBbct,

+ aRbbcc + aaAbbcc + aubAbt:c

+ aabbAcc + aabbBbtcc

+ aab Bbbccc + aaB bbbccc.

+ aaabbbccc.

Ihe solutiorr clIectively rrses the varia,bles A and B as rnessengers. Arr ,4
is created orr thc luft, trirvels to the right to the first c, where it creates
another b arrd r:. It therr sends the messenger B back to the Ieft in order
to create the corresporrding a. Tlrc pror:ess is very similar to the way one
might program a Thring machine to accept tlrc lir,rrgutr.ge tr.

I

Sirrrxl tlxl lir.ngrrage in the a,bove example is not context-free, we see
that the farrrily of rxrrrtcxt-free ltrnguages is a proper subset of the farnily
of context-sensitive larrguagcs. Exarlple 11.2 also shows that it is not an
easy rnatter to find a context-stlrrsitivc grirmmerr even for relatively simple
examples. Often the solution is rnost cirsily obtained by starting with a
Ttrring machine progra,In, then finding atr equivalerrt grarnrnar frrr it. A
ftlw oxa.rnples will show that, whenever the language is context-serrsitive,
the corresllorxlirrg T\rring machine ha,s predictable space requirementsl in
particular, it carr trcl virlwrxl as a, lirrear hounded automaton.

Frlr every crrntext-sensitive language .L not including .\, there exists sorne
lirx:irr brlrnded a,utomaton M such that tr : L(M\.

Proof; If -L is contexL-sensilive, t,hen there exists a corrtcxt-sc:nsitivt: gram-
mar fbr r-{A}. We show that derivations in t}ris grarrurrar can be sinrulatecl
trv a, Iinear bounded autorna,ton. The linear bounded automaton will have

292 Chopter I I A HreRRRcHy oF FoRMAI Lnmcuacns eno AurouAlA

two tracks, one containing the input string ur, the othrtr r:clrrtainitrg the sen-
tential forms derived r.rsing G. A key point of this argumetrt is that no
possible sentential fbrm can have lcngth greater than lul. Another point to
notice is that a, lincar bounded automatotr is, by clefinitiotr, nondeterminis-
tic. This is rrct:cs$ary itt the argument, since we can claim that the cclrrect
productiorr carr always be guessed and that no unprodrtctive alterrnativcs
havc to be pursued. Therefore, the computation described in Theorctn 11.6
can be carried out without using space except tha,t origirrrrlly occupied by
ur; that is. it can be done bv a linear bounded automaton. I

-

If a language tr is acc:eptcrl by sorne litrear bounded automaton M, then
thcrc r:xists a context-sensitive grammar that generates tr.

Proof: The coustruction here is similar to tha,t in Thcorern 11.7. All
productions generated in Theorcm ll.7 are rroncontractitrg except (11.13),

t r - * 4 .

But this production can be omitted. It is necessary orrly when the Thring
machine moves outside the bounds of the original irrput, which is not the case
here. The grammar obtir,inecl hy thc corrstructiorr without this umrecessary
produr:tion is nttncorttractittg, cotnpleting the argument. r

Relotion Between Recursive ond Context-sensitive
[onguoges
Thrxrrr:m 11.9 tclls us that cvt:ry cotttext*sensitive latrguage is accepted by
somtr T\rrirrg rnirr:hitre: arrtl is tlterefore recursively enunerable. Theorem
11.10 follows easily frorn tlfs.

Every r:rlrrtext*setrsitive lattguage -L is recursive.

Proof: Consider the context-sensitive la,nguage .L with an tr,$sociated context-
sensitive gramrnar G, and look a,t a, derivation of ro

5 + 1 1 = + r ? ' + " ' + r n + u t '

We can a,ssume without any loss of generality that nll serrtcrrtial forrns in a
single derivation are diff'erent; thirt is, *.i t' x.i for all i t' j. The crux of
orrr argrrment is that the numbcr of steps in arry tlerivation is a bounded
firnction of kpl. We know that

l * i l 5 l " i + r l ,

11.3 CoNTExr-Snmsrrrvn GnavveRs AND LANcuAcr,ls 293

because G is noncontracting. The cxrly tlfttg we need to add is that there
exist some rn,, dcperrdirrg otily otr G atrd 'ur, such that

l z . i l < l r i1 . , l ,

for all j, with trl : nL (lrl) u bor.urded function of lV u 7l nnd lz.'1. This
follows because the finiteness of lV U ?l implies that thcrc are only a linite
number of strings of a, given length. Thcrcfore:, the length of a derivation of
w E L is at most l ru l rn (l r r r l) .

This observation giveu rrs imrncdiately a mernbership algorithrn for .L.
We check all derivations of lcrrgth up to l'ulrn (l'rrrl). Since the set of pro-
ductions of G is finitc, there are only a finite number of these. If any of
them give ur, then u € L, otherwise it is not. I

There exists a recursive langurr.grl that is not context-sensitive.

Proof: Conuider tlrtr set of all context-sensitive grammars en 7: {a,b}.
We t:tlrr r$() a convention in which each grammar has tr, vtr,ritr.blc set of the
f'orm

V : {Vo ,V t ,Vz , . . . } .

Evcry context-sensitive grammar is completely spet:ifitrl by its productionsl
we can think of them as written au a single strirrg

lU1 + A t l f Z + UZ l . . .
' , I r n . + J l r r r .

To this string wtl now apply the hotnomorphisnt

ft ' (a) : 616,

h (b) : o1zo,
h (-) : 61: t6,

l z (;) : s 1 + 6 '

h ' (V) : 0 1 i + 5 0 '

Thus, any context-sernsitive grarntrtar call be represented rrniqucly by a
string f'rom I ((011-0).). Furthermore, the representatiorr is itrvertible itr
the sense that, givcrr arry such string, there is a,t most ont: corrtext-sensitive
grarrrrrrar corresponding to it.

Let us introduce a proper orclering on {0, 1}+, so we ca'n write strings in
tlre order uJltlrzt etc. A given string ui rrlay ntlt define a context-sensitive
gramrnar; if it does, call tho grirrnrrritr Gi. Next, we defiue a' la'nguage -L tly

L: {u.i: trr4 defines a context-sensitive grammar (J4 alrd *, # L (G,)}.

254 Chopter I I A HtnnencHv or FoRvel, Larucuncus AND AuroMNr'A,

1, is well defined and is in fact recursive. Tcr see this, we construct a member-
ship a,lgorithm. Given ?o?, we check it to scc if it defines a context-sensitive
grammar G,;. If not, then rua f L. If the strirrg rlclrls dcfine a, grammar, then
L((;t) is rer:ursive, and we can use the membership algorithm of Theorem
11.10 to find orrt if rui € I '(Gt). If i t is not, then u,.bekrrrgs to.L.

Elut .L is rrtlt rxlrrto.xt-sensitive. If it were, there would exist sornrr rl;
suclr that L : L (Gi) We ca,n then a,sk if uri is in .L (Gj). lf *" ,t.s,r*L
tlrat trri (L(Gj), t lrcrr by clefinit ion uj is not in.L, But L: L (Gi), so wtr
Irave a corrtrrrrlir:tion. Conversely, if we assurne that,ui # L(Gi), then by
definition wi € L and we havr: irnother contradiction. We must therefore
conclude that .L is ttot mrntoxt-sr:nsitive. t

The result in Theorern 11.11 indica,tes that linear bounded automata
are indeed less powerful than TLrrirrg urachines, since they accept only a
proper subset of the recursive languagt:s. It f'ollows from the same re-
srrlt that linear bounded automata are rrrore powr)rfirl than pushdown au-
tomata. Context-free languages, beirrg gr:nerated by context-free grarnmars,
art: ir, srrhset of the context-sensitive languages. As various examples show,
they arc ir proper suhset. Because of the esserrtial equivalence of linear
bounded arrtorrrattr tr.nd context-sensitive languages orr one harrd, and push-
down autornilta ilnd context-free la,nguages on the othcr, wu see that anv
Ianguage accepterl by ir, llrshdown automaton is also accepted by stlrne lin-
ea,r bouncled automaton, but that there a,re la,nguages accepted by sorntl
Iinear bounded automata for which there are no pushdown automata.

* 1 . I.'incl context-sensitive granlmars for the following {anguages.

(u) { a n + r b n r "
1 : r i } 1 } .

(b) Z , : { t t " h " a . z " : n , > 1 }

(c) I : {e,rt f i r ' txrt4rrt r n] l ,rn, > 1] f f i

(d) l , : { w w , w € { a , b } + }

Find context-serrsitive fJrammars for the following languages.

(a) I : { tn : n* ('u r) :7 r , (u ,) : n . (tu) }

(b) t : {w t no (r) : rro (u, ') < n,, (ur)}

* 2 .

3, Show that thc family of corrtext-serrsitive languages is closcd under union.

4. Show that the farnily of context-sensitivc languages is closed under reversal. ffi

5 .

11.4 ' I 'HE
CHor"tsxv HIURARC:HY 295

Frrr m, in Theorem 11.10, give explicit bounds for m, as a function of lrrrl and

l v u 71 .

Without explicitly constructing it, show that therc cxists a contcxt-frcc gram-
mar for the language 7 : {uul i 1t.t11t, E {a, b}+} ffi

{ffiffiffiffiffi The Chomsky Hierorchy
We have now encountered a nurnber of language families, arrlong them the
recursively enr.rmera,hle languages (Lnu), the corrtext-sensitive la,nguages
(Zcs), tho rxlrrtcxt-fieer lir,ngrrages (.L6,'p), and the regrrlar lilngrrargers (Ln.nc).
Orre way of exhibitirrg the relatiornhip between these farnilies is by the
Chomsky hierarchy. Noarn Chorrrsky, a founder of fonnal language the-
ory, provided an initial classification into four language types, type 0 [o
type 3. This original tenninology lns persisted and one firrds frequent ref-
ererrces to it, but the numeric types are actually different rlarnes for the
language families we have stuclied. Type 0 languages are those generated
by unrestricted gramurars, that is, the recursively enumerable languages,
Type I consists of the context-sensitive languages, type ? consists of the
context-free la,nguages and type 3 consists of the regular la,nguages. As we
have seen, each larrguage farnily of type i is a proper sulrset of the family of
type i - 1. A diagrarrr (Figure 11.3) exhibits the relalionship clearly. Figure
11.3 shows the original Chomsky hierarchy. We have also met several other
language families that can be fitted into this picture. Including the fami-
lies of deterministic context-free languages (L nc p) , and recursive la,ngua,ges
(I'nac), we a,rrive a,t the extended hierarchy shown in Figurc 11.4.

Other la,ngr.ra,ge fa,milies r:rr,n he defined tr,nd their pltx:c: irr Figrtrc 11.4
sturlirxl, altirough thcir relatiorrships do trot always ltave Lite neatly trestecl
structure of Figures 11.3 and 11,4, In sorne instances, the relationships are
not cornpletely unclerstood.

--------7;'----Figurc I I .3

296 Chopfer I I A HrpRaRcuy ol FoRraer, Lnmcuacns enn AuroMArA

Figure 11.4

ll\]i$'$,.�ilWil$\$ we have previously introd'ced the context-free language

L : { w : n " (w) : n 6 (u) }

and shown that it is deterministic, but not linear. On the other hand, the
language

7, : {a"bn} U {a 'b? ' }

is linear, but not deterministic. This indicates that the relationship between
regular, linear, determirristic corrtext-free, and rrondeterministic context-free
languages is as shown in Figure 11.5.

f

l'igrrre 11.5

11.4 Tsr: Clsorr,rsxv Hlpn,an.crrv 257

There is still a,n unresolved issue. We introduced thu trrrx:cl1lt of a
deterministic linear boundecl automaton in Exercise 8, $ec:tiorr 10.5. We
can now ask the question we a-sked in r:onnection with other autorrrata:
What role does nondeterminism plav here'l Unftlrtrrrratclly, there is tro easy
answer. At this time, it is not known whether thc tarnily of lattguages
accepted by deterministic linea,r bounded automrr,ter, is ir, propcr subset of
the context-sensitive la,ngtrages.

To slrmmarizc, w() have explort:d thcl rclationships betweeu several lan-
gurlgcl farnilies arrd their associated automata. In doing so, we established
a hierarchy of languages and classified autornata, by their power ir^s lan-
guage accepters. Ttrring machines a,re more powerfirl thtln lirrcar botutded
autouata. These in turn are more powerful tha,n pushdown inrtomata. .At
thc bottorn of the hierarchy are finite accepters, with which we begarr our
study.

Collect examples given irr this book that dernotrstratc that all the sub.set
relatiorrs rlepit:tetl irr Figure 11.4 are indeed propcr ones.

Firxl two exarrrples (excluding the onc in Example 11,3) of languages that are
Iirrear but rrot deterministic context-frcc.

Firrtl two exalrrples (excluding thc one in Exa,mple I1.3) of larrguages that are
deterministic context-free but not linear.

I ,

2

3 .

L im i t s o f A lgo r i t h m i c
Com pu lq t i on

rrvirrg trr,lked a,bout what Thring nrachincs r:iur rlo, w() now look at
what they cannot do, Although Thring's tlxnis letads us to believe
that thcre are f'ew limitations to the power of a T\rring ma,chine,
we hitvc c:lnimed on severa,l occasions that there coukl rrot uxist a,nv

a,lgorithms for the solution of ccrtain problems. Now we rnake more explicit
what we mean by this claim. Sorne of tlxr results ca,me about quite sirnply;
if a langurrge is nonrecursive, then by definitiorr thurc is no membership
algoritlrrn ftrr it. If this were a,ll there was to this issuc, it would not be
very interestingl norrrec:ursive: lirrrgrur,ges have little pra,ctical value. But the
problem goes deeper. For r:xa"rnplc, we hirve sta,ted (but nol yet proved) that
there exists no algoritlmr to detc:rrrirut whether a context-free grammar is
rrnambiguous, This question is clearly of prrr.crtical significance in the study
of progra,mrning languages,

We first define the concept of decidability and computability to pin
rlown wha,t we mean when we say that sorrxlthing cannot be done by a,
Thrirrg urar:hine. We then look at several classical prcltrk:ms of this tvpe,
alrrong thern tlx: well-known halting problern for Thring rnachirres. FYorn this
follow a nuuber of rrllatrxl prohlems fbr T\rring machines and recursively

299

300 Chopter l2 Lrurr$ oH Ar,coRt'ruMIC CoMpurATIoN

cnumerable languages. After this, wc look at sotne questions relnting to
context-free langua,ges. Hcrc we find quite a few importa,nt ltrobletns for
which, unfortunir.tr:ly, thc:rc are Ito algorithms.

Some Problems Thot Connof Be Solved by
Tur ing Moch ines

The argurnent that the power of met:hilnir:irl txrrnputations is limited is not
surprising. Intuitively wc krrlw that many vague and speculative qutrstiorrs
require special insiglrt and reasotritrg well heyond the captr,city of arty cotn-
plrter that wc carr now cottstruct or even pla,r.rsibly forerstx:. WInt is more
irrterestirrg to computer scientists is that thcrc arc questiotrs that can be
clearly and simply stated, with irrt apparetrt possibility of an a'lgorithmir:
solution, br.rt which are known to lltl rrttsolvable by atry computer.

Computobility ond Decidobility
In Definitirlrr 9.4, wrr stated that a function / on a, certrr,in dornitirr is saicl
to be c:omputrr.bltl if there exisls a Tlrring ma,chine tha,t computcs t]re value
tlf / frlr all arguments in its doma,in. A firnctirin is rrrx:rlrnputable if no such
'I\rring machine exists. Them miry be a Turitrg rnachine that can compute

,f rlrr pnrt of its dorrtairr, but we call the function comprrtable only if there
is a, Tlrrirrg rnac]rine t]ral computes the frrnction on ther wtxlltl of its dotttaitr.
We see fron this that, when we cla,ssify a, ftrrrt:tiorr rrs cortrputable or not
cornputable, we rnust be clear on wira,t its rlomairr is.

Our conceru her:e will be the sorncwhat sirnplilicd setting where the
result of a comlrutatiotr is a, sitrlrkl "yr)$" r)r o'rr)." lrr this case, we talk
about a problem being decidable or undecidable. By a proble.m we will
understir.nd a set of relatecl staterrents, each of which must he either trtrtt or
false. l'or example, we consider the sta,tement "Fer il t:ontt:xt-frtxl graIIIInaI'
G, the langua,ge I, (G) is rr,mbigrrorrs." Fur sttrtre G this is true, for others
it is fa,lse, brrt cleir,rly wc rnust have otte or tlte other. 'I'he probletn is to
decide whelthrlr thrl stirtcrrtetrt is true for any G we are given. Again, there is
iln rrnrk:rlyirrg tlorrrain, the set of all context-free gramma,rs. We say thtlt a
prublc:rn is decidable if there exists a, Tirring macirine that gives tlxr txrrrcct
irnrJw()r filr t:very statetnetrt in the domain of the problem.

Whetr we state decidability or: undecida,bility results, wc rntrst always
krrow whal the domain is, because this ma.y a,flect the: c:onrlhrsiotr. The prob-
lem rnay be decidable on some rlomairr llrt rrclt ort atrother. Specifically, a
single instance of a problem is ir.lwirys rkx:idablc, sirrce the allswer is either
true or fa,lse. In the first cirtrcr a TLrrirrg rnachitre lhat always answers "ttue"

gives ttxl rxlrr(x:t irr$wer, while in the second case one tha,t a,lways answers
"firlse" is appropriate. This may seenr like a fa,cetiollrtrn$w()rr tnrt it ernpha-
sizes atr ittrporlatrt point, fhe fact tha,t we do not know what the correct'

12.1 Solrn Pn,otl,EMS THAT Carvruor Bu Sol,ven ey TuruNc; M.c,cHtvt;s

alnwcr is makes tro differerrcc, what rna,tters is that tlxlrc exists some'Ihring
machinc that cloes give the corr(x:t re$ponse,

The Turing Mochine Holting Problem
Wt: begin with sotne problurns tha,t have sornr: historica,l signific:ance arrrl
thir,t rr,t the same tirne givc: rrs a, starting point frlr cleveloping later results.
Tlrc best-known of thr:sr: is the Ttrring rnachirrc: halting problem. Sirrrply
stated, the prol,rlern is: given the description of a. Thring machine M irrrd
rr,n input 'ur, does ,4,f, whcn startecl in Lhe iritia,l configuration {6ro, perform
rr. c:omputation that t:vcntrrerlly halts? Using irrr tr.bhreviated way of talkirrg
aborrt the problem, we rrsk whelther M applied to .ur, or simply (M,,u), halts
or docs not iralt, 'fhe dorrrairr of this problem is to bc tir,ken as the set of
all l\ring machirrcs ir,nd a,ll ru; tha[is, we arc looking for a single T\rring
marchine that, given thu rlt:scription of an arbitrirry M and tl, will predict
wltctlNlr or not the cornputatiori of M applied to to rvill hrrlt.

We cannot firrrl the iruiwer by simulating tlrc a,c:tion of M on tu, say by
perfbrming it ol a urrivt:rsill Thring machine, br:(:ir,rrse there is no limit orr
the length of l,he cornltrrta,tion. If M en[ers an irrfinite loop, then no matter
how long we wait, w() (iirrr rrever be sure Lhat M is irr ftrct in a loop. It rnrry
simply be a case of a, vcry long cornputation. What we need is an algoritlrrn
tha,t can detennine thc r;rlrrect answer for any M arrrl ur by perfbrming sorne
arrirlysis on the machine's clesclilltion a,ncl the input, But as wc now show,
no such algorithm exists.

For subsequent discussirirr, it is convenient to hilvr: ir, precise idea of
wlra,t we mean by tlu: ha.lting problem; for this rcilrJorr, we ma,ke a specific
tlcfinition of whal, we statc:rl srlrnewhat looselv above.

r'Rfi$,fiinnrnmtmW,Ni'..8Nlli|li�

Let up1 be ir, string that describes a, T\rring machine fuI : (Q,)_1,l, d-, r1o, n, F),
atrcl let,'u bc a strirrg in M's alphabet. We will imsllme tha,t'ur,q a,ncl ru are
encoded as a string of 0's irrrrl l'$, a,s suggested irr Secltirln 10.4. A solution
of the halting problt:rn is a T\rring machine H, wlfch firr a,nv ?rA,r and ?r,
llcrforms the computatiorr

Q(Ju.:11'w i *rqo*r,

if ,tr' applied Lo ,ur halts, anrl

qo'tlt A,t It) i,rr r rl u'.yr,

if M applirxl to zr does not halt. Here q, arrrl g", are both fitral states of ff .

301

302 Chopter l2 Lrlurs or- Ar.c-+orrtrtIr,tIc CoururNt'lol

Thurc cloes not exist any Ttrrirrg rnachiue F-l that bchirves as required by

Definition 12.1. The haltirrg problem is therefbrc urrdecidable.

Proof; We imsurtte the contrary, namttlv, that there exists a,n algorithtn,

and consequently sorne I\rring ma,chine ff , thrrt solves the halting protrlcrn.

The input to ff will be tlte string u,14ru. The: rcxpiretnent is then thtr,t, givctr

any wMwl the T\rrirrg machine,tl w^ill htr.lt with either a yes or no arswer.
We achieve this trv askittg that 11 ha,lt in ttnt: of two correspottding firrrrl

states, s&y, {ri or qr,. The siluation ca,n be visualized }ry a block ditr,gra,rn
like Figure 12.1. TIte intetrt of this dia,grarrt is to indicate that, if M is

startsl irr state {s with input rit14tr, it will eventually ha,lt in state q, or

4r. As reqrrired by Definitiotr 12.1, we want ff to operate according to thc

following rules:

Qowtwu isngyn2,

if M applied to ur halts, and

qDwMu.t f n lltQ,,,!!2,

if M appliecl to tl does mrt halt.
Next, wer modifu fI to produce a, T\rring rnitt:hirre iI' with the strrtctrrrtl

showrr irr Figure 12.2. With thc a,ddecl states itr Figure 12.2 wc warrt to
colrvey that the trtt,nsitiorrs tretween state qo atrd tlrtl rrtlw states q* and q6

are to be rnade, regardlcss of the tape syntbol, in srrt:h rl way that lhe tape
remains unchanged. Thc wtw this is done is stra,iglrtforward. Comparing
iI and II' we see tha,t, irr situations where fI retit(lhtl$ {rr alrd iralts, the
rnodified machine fll will t:rrter att infinite loop. Formirllv, the action of 11'
is descrihed by

qilt)Nt'tu irr,*,

if M applied io 'u,halts, and

qow M u) i rt,,U't (1,,.'!!2,

if M applied to ru dot:s rrot lrrrJt.

Figure 12.1

12.1 SoME PRoBLEMS Tg.q,r Caruruor Bp Solvno ny TuRrrrrc MacnrNns 803

Figure 12.2

FYom f/'we construct arrother Ttrring machine f/, This new rnachine
takes as input ur14 and copies it, ending in its^irritial state qs. After that, it
behaves exactly like I/'. Then the ar:tion of fI is such that

qow*t l ii Q11wx4u)14 Ff, *,

if JI,/ applied to w71halts, and

qowm ifi qouMlilM f p Afl,,Az,

if M applild to wp1 does not halt.
Now fI is a Ttrring machine, so it has a description in {0, 1}*, say, ri.

Tlfs string, in additiorr to being the description of ,[y', also can be used as
input string. We can therefore legitimately ask what would happen if ,F is
applied to fi. Flom the ir,bove, identifyirrg M with Il, we get

*
gsfi l-6 oo,

if fr applied to fi halts, and

qofr i n AtenUz,

if fr applied to fi does not halt. This is clearly norsense. The contradiction
tells us that our assumption of the existence of 11, and hence the assumption
of the decidability of the halting problem, must be false. I

One rnay ohject to Definition 12.1., since we required that, to solve the
halting problem, "I1 had to start and end in very specific configurations. It
is, however, not hard to see tlnt these somewhat arbitrarily chosen con-
ditions play only a minor role in the argument, and that essentially the
same reasoning could be used with a"rry other starting and ending configu-
rations. We have tied the problem to a specific definition for the sake of the
discussion, but this does not affect the conclusion.

It is important to keep irr mind what Theorem 12.l says. It does not
preclude solving the haltirrg problem for specific cases; often we can tell by
an analysis of M and ur whether or rrot the T[rring machine will halt. What

304 Chopter | 2 LIvIrs oF AlcloRl'rHr,tIc Cotueurrrlom

the therlrem says is thrrt this caunot always be done; thtlre is no algorithrtr

thrr,t catr make a correct decision for all toy and ur.
The argumerrts for proving Theorem 12.1 vrcre given becarrsc they are

classical anrl of historical interest. The corx:lusion of the theorem is actua,lly

inrplied irr previous results as the following argument shows'

If the haltirrg problem werq tlecidable, then (lvety recursively crrurnerable

language would be recursivc. Consequentlv, the halting protrlcrn is unde-

cidable.

Proof: To see this, Iet .L be a recursivelv errurlerable language on E, and let

M be a Ttrring mac:hine that accepts .L. Let 11 be the T\rring machine that

solves the halting problem.
'We

cotrstruct from this the following proceclure;

1. Apply H to w14tt.If ,F1 says ','no," thett by definition rrr is not in .L.

2. If H says "ycs," then apply M to u. But M rnust halt, so it will

eventually tttll us whether tu is irr .L or not'

This constitrrtcs a trtembership algorithm, making -L recursive. But we:

already know that there are recrrrsively enumerable lattguages that Arc rtot

recursive. The contradiction implies that I1 cannot exist, that is, thrrt the

halting problem is undecidable. t

The sitrplicity with whit:h the halting problerm can be obtaincd from

Theorem 11.5 is a consequence of the fact that the halting problettt and

the memtrtlrship problem ftrr recursively enumerable languages artl rrearly

identical. The only different:c is that i1 the haltirrg problem we do trot

distinguish between haltirrg in a final and rrotrfinal state, whereas in the

membership problcrrr we do. The proofs of Theorems 11.5 (via Theorem

11.3) and J.2.1 a,ro closely related, both being a version of diagonalization.

Reducing One Undecidqble Problem lo Another

The above argument, t:ttrrrrecting the halting problem to thc ntembership

probletn, illustrates the very important teN:lrrrique of reductiorr' We say that

a, problem A is reduced to a problem B if the decidability of A follows

from the decidabilitv of B. The1, if we ktrow that A is urxlecidable, we carr

conclude that B is also undecidable. Let us do a few exa,mples to illustrattr

this idea.

The state-entry problern is as follows. Giverr atry Ttrring machine M :

(8, X, f , d, 40, [, F) and arry q € Q, w € E+, <lecide whether or not the state

q is ever entered wherr M is applied to tr. This problem is urrdecidable.

12.l SoME PRoBLEtMs THnr Calrlror Bn Solvnt ey Tunrlrc M.q,crrrlus 305

Trr reduce the halting problem to the state-entry problem, suppose that
we have an algorithm A thrrt solves the state-entry problem. We could then
uscr it to solve the halting prohlem. For exanlple, given a,ny M and ,u, we
first modify M to get M irr urrch a way that M halts irr state q if and only
if M halts. We can do this simply by looking at tlxl transition function d
of M. If M halts, it cloes $o beca,use some d(qi,rr) is rmrlefined. To get fr,
we chrr,nge every such undefined d to

. l (qn, a) : (q,a, R) ,

where q is a Iinal state. We apply the state-entry algorithn eto ('rt,1,u,).
If A rr,nswers yes, that is, the starte g is entered, then (M,.rrr) ha.lts. If A says
no, tlrcrr (M,*) does not halt.

Tltus, the assumption that tlrt'sta,te-entry problem is decidable gives
us an algorithm fbr the halting protrlcur. Because the halting problem is
undecidable, the state-entry problcrn must also be undecidable.

T

Bxfiilnpls t fi.il The blank-tape halting problem is anotlrcr problem to which the halting
problem catr be reducerl. Given a Ttrring urachirrc M, determine whether
or not M halts if started with a blank tape. This is undecidable.

To show how this rtxhrr:tion is accomplished, assumc tha,t we a,re given
sornt,' M and some tu, We first rxtnstruct from M a new rnirr:hine M-
that starts with a blank tape, writcs ur on it, then positions itsclf in ir,
configuratiorr qoil). After that, M. acts like M. Clearly M- will halt on a
blank tape if arrd only if M halts on ru.

Suppose now that the blank-tapo halting problem were decidablt:. Given
any (M, ru), we first construct Mr,,, thon apply the blank-tape haltirrg prob-
lern algorithm to it. The conclusiorr tr:lls us whether M applied to tl will
halt. Since this can be done for any M and ur, an algorithrn for the blarrk-
tape haltirrg problem can be converted into an algorithm for the haltirrg
problem. Sirrcc the latter is known to be urrdercidable, the same must be
true for the blarrk-tape halting problem.

I

The construr:tion in the argurnents of thesc two exelmples illustrates an
approach cornurorr irr cstnblishing undecidability results. A block diagram
often helps us visualize the process. The constnrc:tion in Example 12.2 is
summarized in Figure 12.11. In that diagrarn, we first us(] an rrlgorithm that
transforms (M,w) irtto M,,,; srrch an algorithm clearly exists. Next, we use
the algorithm for solving the blank-tape halting problem, which wrr a*.JrJume
exists. Putting the two together yields an algorithm for the haltirrg problem.
But this is impossible, and we can rrunclude that A cannot exist.

306 Chopter l? I ,rrurn's ou AlcoRlrHMI(t CoMPUTATIoN

A decision problem is cffectively a' fitnctiorr with a ra'nge {0, 1}, that

i$, ir true or false ilnlJwcr. We cau loclk ir,lso at rnore genertr,l furtctions to

stx: if they are comprrter,blc; to do so, we f'olltlw the established trcthocl and

rerhrr:c the halting problcrrr (or any other prtlblern knowu to be rrntlecidable)

to the problern of computitrg t,he fr,rnctitlrr in question. Becatrsc of Tbritrg's

thesis, we expect that functions t:rrcoutttered itr prar:titlal circurnstances will

he crtrnputable, so for exermplcs of uucotnprrta,llltl funclions we must Iook

a little firrther. Most exa,rnllltls of uncomputablc ftrtrctions are a,sstlciated

with tr,ttcrnpts to preclict thtr bchavior of T[rring rrrirr:irines.

Let f : {0, 1, n}. Considor t}rc function / (n,) whose value is the mtrxirrrutn

rrumber of moves thilt catr be made by any z-state Ttrring milchirre that

halts when started with a blattk tapc. This function, as it turns out, is not

cxlrnputable.
Before we set out to dt:rnonstrate this, Iet trs rrtake sure that .f (n) is

dclirred for all rz, Noticg first that there a,re orrlY a finite number of T\rring

machines with n statcs. This is because Q arxl 1' are finite' so t)- iras a

finite domain a,nd ritrrge. I'his in turn implics that there are only a linite

rrurnber of different dts and Lherefore a firrite rrurnber of difl'ercrnt rl-state

T'uring machinrrs.
Of a,Il of the n-state machintls, there are some that always halt, for

exarrrple rnachines that ha,vrl orrly final sta,tes and therefore tnake no mov()lt.

Some of the z-state tnachines will rxrt halt when started with a blank tape,

but they do not enter the definition of /. Every ma,chine that does halt

will execrrttl a certaiu number of rntlvesl of these, we ttr,ktr the Iargest to give

I (n)-
Tirkc irny 'l\rring ma,chine M and positive numbcr ttl. It is easy ttr

modify M to produce M in sttch a way that the la,ttcr will always ha,lt with

one of two answers: M a,pplietl to a blank ta'pe htrlts irr rrd more than rzr

nrovcs, or M applied to ir, hlarft tape makes mtlrtl tltatt ?Iu moves. All we

hirvc to do for this is to hirvr: M count its moves arrd termiuate when this

r:outtt exceeds rn. Assrurlc rlow ihat / (tz) is <xlrnputable by some T\rrirtg

Figure 12,5

Algorithrn ftrr

halting problerri.

Figure 12.4

Algorithrn Iirr

blank-tape halting
problern.

12.1 sorvrs PRonlnvs T'rrn*r caNNor Bp solvnn nv Tun,lxc.r MAcHlNns sOz

rrtirr:hine F. We carr then put fr ancl F together as shovrrr in Figure 12.4.
l-irst we compute /(lQl), where Q is thc ster,te set of M. Thiu tells us the
mir,ximum number of moves that ,\4 r:arr ma,ke if it is to halt. The value wc
get is then usecl as rrr ttl r:onstruct fr as outlinecl, a,ncl a clescription of -ffi is
givt:n to a, universal T\rring ma,chine for extx:rrtiorr, This tells us whether M
applied to a, trla,nk tape halts or rloes not halt in lcss tha,n / (lQl) steps. If we
find thal ,4.f applied to a blank tapc makes rnore tharr /(lQl) rnoves, then
trtx:tr,use of the definitiorr of /, the irnplicirtion is that M nevc:r ha,lts. Thus
we have a solutiorr to the blank tape hrrlting problem. r'he irnpossibility of
tlrc conclusion forces rrs to accept that ./ iu not cornputable.

I

I' Dcscribe in detail how H in Theorern I2.1 ca,n bc modified to prodrrce Ii'

Suppose we r:hange Definition 12.1 to require that qo,rrrnr,u I q.o,,t, o, qow*tw i
g,tu, depertding on whether M applied to rl ha,lts or not. R.eexarnirre the proof
of Thcoretr 12.1 to show that this diflererx:e in the clcfinit,iot does rrot affect
the proof in any significarrt way.

Show that the following problerrr is undecida,blc, Given any T\rring ma,chine
M, a E f, and.rrr € X+, detcrrnine whether or not thc symbol a is ever writtcn
when M is appliecl to 2.,. W

Irr the genera,l halting problern, we ask for an algorithrn that gives thc corlect
answer lbr arry M and u, We can relax this gencrality, for exarnple, by looking
for an algorithm that works for all ,41 }lrt only a single ,il. We say that such a
problern is decidable iffor every u there exists a (possibly different) algorithnr
that detcrmines whether or not (M, tu) halts. Show that even in this restrir:ted
setting the problem is unrler:idable.

,

3 .

Mdoes not
halt in rn steps

4 .

308 Chopter l2 LItr,tIrs on Al.GoH,rrttr,tIc Coururun'tol,l

show that there is no algorithrn to decide whether or not an arbitrary Tirring

machine halts on all input.

Corrsider the questiorr: "Does a Turing trarhine iu the course of a computa-

tion revisit the starting cell (i,e, the t:ell under the read-write head at the

beginning of the cornputation)?" Is this a decidable questiorr'i

Show that there is no algorithrrr for dcciding if arry two Ttrring machines M1

arrtl Mr accept the sarne language. ffi

How is the conclusion of Exercise 7 affected if Ml is a finitc automaton?

Is the halting problcm solvable for deterministic pushdown automata; that

is, givetr a pda as in l)efinition 7.2, can we always predict whether or not the

automatorr will halt on input Trr?

Let M be any T\rring tnachinc and r arxl gr two possible instantaneous de-

scriptions of it. Show thatr thc problern of determining whether or rrot

n i u u

is undecidable. ffi

In Example 12.3, give the values of / (1) and / (2)'

Slxrw that the problem of tletermining whether a T\rring machine halts orr

arry input is undecidable.

Lct B be the set of all Ttrring machines that halt when started with a blank

tape. Show that this set is recutsively cnumera,ble' brrt not recursive. ffi

Considcr the set of all tl-statc Trrring machirtes with tape alphabet | :

{0, 1,D}. Give an expression for rn(rr,), t}re nutnber of distinct Tbring ma-

chines with this f,

Lct I' : {0, I, !} and let b (n) be the maxirrrurn nurnber of tape cells exatnined

by any rz-state Ttrring rnachine that halts when started with a blank tape.

Show that b (rr,) is not t:onrputable,

Deterrnirre whethcr or not the following statement is true: Arry problem whose

dornain is finite is decidahle. ffi

f f i Undecidoble Problems for Recursively
Enumerob le [onguoges

We have cletermined thrr.t there is no membership algorithm for recrrrsivtrly
tlrrurnerable languages. Thc lack of an algorithm to decide on some propertv

is not an exceptionirl state of affairs for recrrrtrivcly enumerable lan;lrages,

but rather is the gcrreral rule, As we now show, there is little we caII say

about these la.rrguages. Recursively erlrrnerable languages are so general

that, in e$$errce, any question we arrk about them is undecidablet. Itrvariably,

D .

6 .

7.

L

9 .

10 .

1 1 .

1 2 .

13 .

14 .

1 5 .

1ti .

Figure 12.5
Mernbership

algorithm.

1 2. 2 UNDECTDABLTI PRonlnus FoR R.ECUR$IvRr,y Er*rurrrnRasr,E LaNcuncns 309

whetr we ask a question about recursively enurrerirble languages, we find
that there is sorne way of reducing the halting problern to this question. We
give here sonre examples to show how this is done and frorrr thcso examllles
derive a,n indication of tlre seneral situatiorr.

Let G bc an unrestricted grailrmar. Then the problem of determinirrg
whethcr or not

L (G \ : O

is undecidable.

Proof: We will reduce the menrbership problem for recursivcly enumerable
languages to this problem. Suppose we are given a Thring rrra(:hine M and
some strirrg zr. We can modify M as folkrws. M first saves its inprrt on some
special part of its tape, Then, whcrrerver it enters a final sta,te, it checks its
saved input and accepts it if and only if it is ur. We carr do this by changing
d in a simple way, creating for r:irr:h ur a machine M,,, srrch tha,t

L (M " ,) : L (M) n { z r } .

Usirrg Theorern 11.7, we tlrcn construct a corrcsponding grammar G-.
Clearly, thc rxlnstruction leading frorn M and tl to G. carr alwtr,ys be done.
Eqr.rally clear is that.L(G.,) is nonernpty if and only If w e L(M).

Assurne now tha,t there exists an algorithm A for deciding wlrt:tlrcr or
not tr(G) : E.If we let 7 denote an algorithm by which we gerrcrate G,u,
then we carr prrt ? and A together as shown in Figure 12.5. Figure 12.5
is a T\rring rnac:hine whiclr for any ,44 arrd ,rr.r tells us whether or rrot rt is
in L(M). If sur:h ir T\rring machine existed, we would have a mernbership
algorithm for any recursivcly cmrmera,ble language, irr dirs:t contradiction
to a prcviously esta,blished result. Wu conclude therefore that the sta,ted
problem "L(G):0" is not decida,b le. I

ueL(M)
L(G-) not empty

eL(M)

310 Chopter I2 LIuIrs oF Al.colt,I'r'ulr,tIc Coututnrlot't

Lct M be any Ttring machirre. Then the qrrestion of whether or not L (M)

is finite is undecidable.

Proof: Consider the Blting problem (M,*). From M we construct arr-

other T\rritrg machine M that does the following. First, the halting states

of M a,rc clnttged so that if any one is reached, all input is accepted hy M-

This can be done by having any halting configurtrtiorr go to a final state.

Sccorrrl, the original mat:hirre is modified so that the new machine ff first
generates tr on its tirpe, thetr performs the sarrre computations as M, using

the newly crcer,teclur atrd some otherwise urrused space. In other words, the
moves rrrade by M after it has written u on its tape are the salne as would
have been tnade by M had it started in the origirral configuration gnrr. If

M halts in any configrrrrrtion, thgp fr will tralt in a final state.
Therefore, if (M, ur) halts, M will rea,ch ir. final state for all input. If

(M,u) tloes not halt, then frwiil not halt either a,ncl so will accept nothing'

In other words, M either accepts the infinite language X* or the finite
Ianguage 0.

If we trow assulne the existence of an algorithm A that tells us whether

or not , (fr) is finitc, we can construct a solutiorr to the halting problcm

as shown in Figure 12.6, Therefore no algoritlrrn for deciding whether or
not tr (M) is finite can exist. I

IE

Notice that irr the proof of Theorem 12.4, the specific nature of the
question a,sked, narnely "Is L (M) finite'i", is imrrraterial. We can change
the nature of the problem without signifitnntly affecting the argrrrnent.

Show that for an arbitrrrry Thritrg machiue M with X : {4, b}, the problem
.L(M) contains two different strings of the samc length" is undecidable.

To show this, ye use exactly the sarnc approach as in Theorerrr 12.4,

except that whert M reaches a halting configuration, it will be modilied to

accept the two strings a and b. For this, tht: irritial input is saved and at the

Figure 12.6

12.2 UwpBcTDABLE PRonlu,rs non R.ncuRsrvr:uy ENulrnRanl,p Ler,rcuAces Bl1

errtl of the cornputatiorr compa,red with a arxl h, a,ccepting only these two
strirrgs. Thus, if (M,w) hirlts, M will accept two strings of equal lcngth,
otherwise fr wiil accept rtothing. The rest of thc ir.rgument then procxrercls
as irr Theorem 12.4.

I

In exactly the sarrrc ilIirnner, we can substitute other questiorrs slch as
"Does -L (M) contairr tr.rry string of length five?" or "Is -L (,4,f) regular?"
without affecting the argurnent essentially. Thcse questions, as well ar-s simi-
lar tluestions, are all undecirlrlble. A general resrilt fbrma,lizing this is known
as Rice's theorem. This tlreorem states that any nontrivial property of a
recursivcly enumerable latrguir,ge is undecidable. The adjective ((nontrivial"

refers to a property possessed lly sorrre but not all recursively enumeratlle
Ianguages. A precise statetnent arrd a, proof of Rice's theorem can be fourrd
in Hopcroft arrd llllman (1979).

Show in detail how the rrrachine .[f in Th"o."rrr I2.4 is constructed.

Show that the two problems mentionetl at the end of the preceding section,
namely

(a) .L (M) contains any string of length five,

(b) .L (M) is regular,

are undecidable.

LeL Mt and Mz be arbit,ra,r'y T\rrirrg machines. Show that the problem
" L (Mt) C L (Mz)" is rrndecidable. ffi

Let G be arry rrnrestricted grarnmar. Does there exist an algorithm for deter-
mining whether or rrot .L (G)E is recursively enumerable?

Let G be any unrestricted grarnmar. Does there exist an algorithrn fbr deter-
mining whether or rrot .L (G) : f (G)R?

Let Gr be any urrrestricted gramrnar, and Gr any regular grammar. Slrow
that the problcrn

. L (G r) n L (G z) : a

is urxlecidable. ffi

Show that the question in Exercisc 6 is undecidable for any fixed G2, as long
a^r tr (G2) is not empty.

lbr an unrestrictecl grammar G, show that the question "Is tr (G) : L (G)*?"
is undecidablc, Argue (a) frorn Rice's Theorem and (b) from first principles.
ffi

1 .

,

4 .

5 .

6 .

L

312 Chopter l2 LItr,tIrs oF ALcoRI'I'UMIC CoMPUTATIoN

f iWilff i The Post Correspondence Problem

The undecidability of the halting problem has many (toruequences of prircti-

ca,l interelst, particularly in tlrc area of context-fitNl languages. But irr rrratry

instanrxrs it is cumbersomrr ttl work with the hrr,ltirrg problem dircctly, and

it is corrvcrrient to establish $ome intermediate rcsults that bridge the gap

hetwecrr the halting probkrrn and other prohltrrns. These intermcdiate re-

sults fbllow from the rrndr:r:idability of the lrtlltirtg problem, brrt are more

closcly related to the protrlerrrs we wa,nt to study atrd therefbre make the ar-

gurrrerrts easier. One srrch intermediate result is the Post correspondence
problem.

The Post corrcspottdence prohlem t:itrt be stated as follows. Given two

sequence$ of z stritrgs on som{} alp}rabet E, say

A: u)L t , LDz r , , , , I l) n

Ld

B : U t r I) 2 r . . . r I) r 1

we say thnt there exists a, Post correspondence sohrtion (PC-solution) for

pair (A, B) if there is a nonelmpty sequence of integers i,i,...,h, such tltat

U) i ' t . t . t . i ' " ' u k : U iU i ' ' ' 1 .) 1 r .

The Post correspondence probk:rn is to devise an algoritlun that will tell us,

for any (A,B), whether or not there exists a, PC-solutiotr'

E i f r r lp lq t { ;S Let x : {0,1} and take A and B as

rur : 11,?r2 : 100rutr : 111

u r : 1 1 1 , u e : 0 0 1 , ? s : 1 I

For this case, there exists a PC-solution as Figure 12.7 sltows.
If we take

= 00, rlz : 001, urs : 1000
: 0 , u 2 : 1 1 , u s : 0 1 1

?01

U l

u.u2

"Jv2,1

1 I 0 0 I

Figure 12.7
ul

I2.ll THr'; Posr CoRRnspoNDENCD Pn,oeLEM 313

there cannol, be arry PC-sohrtion simply becausc a"ny string composed of
tlltlments of ,4 will be lorrger thnn the corresponding strirrg frrlrrr B.

I

In sptx:ific insta,nces we rray be abk: to show by explicit constructiorr
that a llair (4, B) permits a PC-solutiorr, ()r we may be able to argue, as
we did abt)vc, that no such solution can cxist. Brrt in general, there is
tro algoritlun ftrr dor:iding this qr.restion under irll r:ircumstances. The Post
corresponderrce prrlllklm is therefore undecidable.

To show this is a sourcwhat lengthy process. For tlrt: sa,ke of clarity, we
break it into two parts. Itr tlrc first pa,rt, we introduce the modified Post
correspondence problem. Wc ua.y that the pair (A, B) has a modilied
Post correspondence solutiott (MPC-solution) if there exists a sequrrnr:e of
intrlgurs i,. i , ..., fr, such that

'W1 'W i 'U i " " t t t k = U11) i 1) i ' ' 'U1x ,

In the modified ltost corrt:sllorrdence problern, the first elernt:rrts of the se-

ilirr,f ,:fi ",f.xTIffi ilTl-il'll;",tJ*Ti.:K'J#liJJTH:il'J:1:
an MPC-sohrtion, then there is also a ltC-sohrtion, but the converse is not
true,

The rrrotliliod Post correspondence problern is to devise an a,lgorithm for
deciding if arr artritrrlrv pair (4, R) admits an MPC-solution. This problem
is a,lso r.rndecidable. Wcr will demonstra,te the undecidability of thc modified
Post correspotrdence problerrn by reducing a known undecidablc llrotrlem,
the membership problem for rrlcursively enumerable languages, to it. Ttr
this end, we iutroduce the followirrg r:onstruction. Suppose we are giverr arr
unlestrictcrl grammar G: (V,'l',5,P) arrrl a targr:t string ur. With these,
we create thc pa,ir (4, B) as shown in Figure 12.8. In Figurc 12.8, the string
.F,9 =+ is to be taken as'u1 irrrrl tIrc string F as u1, The order of the rest rlf
the strings is immaterial.

We want to claim eventually that rp e L (G) if and only if the sets A
artd B txinstructed in this way have an MPC-sohrtion. Since this is perhaps
trot irnrntrditr,tely obvious, Iet us illustrate it with rr simpkt example.

Exom$l f I f , ,d Let G : ({A, B, Cl , Ia ,b, c , } ,5 , P) wi th product iorrs

S - aABblBbb,

B b - C ,

AC --+ uat:,

314 Chopter l2 LIIrllrs ol AlcoRtrHMIc CoMPUTATIoN

d B

F.C --\ Fis a symbol not in FU 7'

a f o reve ryaET

v tl for every VreV

E J roE E is a symbol not in I/ U ?

ti x , for every *, *1, in P

---}
D

and take ut : aaac. The sequences A a.rrd B obtained from the suggested
con$tructiolr are given in Figure 12.9. The string ru : a,a,(Lc is in.L(G) and
lus a derivation

S + a A B b + a A C + a , e , e , c .

How this derivation is pa.ralleled by an MPC-solution with the corrstructed
sets can be seen in Figure 12.10, wltere the first two steps in the derivation
are shown. The integers above and below the derivation string show the
indices for z.' and u, respectively, used to create the string.

Figure 12.8

Figurc 12.9 T u , vi

I
2
3
+
5
6
7
8
9

10
1 1
72
13
l4

F S +
a

tj

t

A
B
c
,s
E
d'{Bb
Bhh
U
ailt

t

A
B
C
s
-j addcb

s
s
Bb
AC

F
tl

b

f s a d B b

Figure 12.10

vg

1J), ̂ u12

'13

tusu2

il'rz

*10

il.

l

vz

,2il14

wl

?10

ur

?10

-1

"10

,7

vI

12.3 THE Posr Con,n,pspoNt)ENcE Pnoer.nlr S15

%to

il!

u1o ur4 *z -s @r2 ur4 u2 u . -

v12 i l t ^ v -

Exarnine Figurc 12.10 r:a,refully to see wlnt is htr,ppening. We want to
construct an MPC-solution, so we must sta.rt with tu1, that is, f.S +. This
string contains 5, so to rnatch it we have to use u1s or u11. Irr this instance,
we u$e tr10; this brings irr'rr.'16, lending us to the second string in the partial
derivatiorr. Looking at several rnore $teprJl we see that the string u.,rur;ur1..,
is always longer than the corresponding string a1uiaj...t and that the first
is exactly one step ahead in the derivation. The only exception is the last
step, where uo rnlmt he applied to let the u-string catch up. The complete
MPC-solutiorr is shown in Figure 12.11. Tho c:onstruction, together witlr
the example, indicate tho lines along which the rrext rcsult is established.

I

Let G : (V,T,S,P) be any unrestricted gra,mmar, with u any string irr
T+ . Let (A, B) be the correspondence pair c:t)rr$tructecl fiom G and trr
be the process exhibited in Figure 12.8. Therr thc pir.ir ('{, B) permits an
MPC-solution if arrd only if w e L (G).

Proof: The proof involves a forrrrir,l inductive argument based orr the out-
lined reirsonine. We will omit the details. I

Witlt this result, we ca,rt reduce the rrretrbership problem for recursively
enurnerabkl lrr,ngua,ges to the rnodified Post correspondence problem and
thereby dernonstrrrte the undecidability of the lattcr.

Figure 12.11

F s d n B b = 4 rt C

F s = a i D b + a C a il Ea t

Construct,4
and B as in

Figure 12.8.

s16 Chopter l2 LItr.nrs on Al(loRIrttNatc CotrrlpurerloN

ueL(G)

vte L(G)

The modified Post correspondence prohlem is undecidable.

Proof: Given arry urrrestricted gra,mmar G: (y,T,S,P) and ur € T+, wt:

construct the sets A and B as suggestctl above. By Theorem 12.5, thc lrair
(A,B) Iras an MPC-solution if and only if w e L(G).

Suppclsc'l now we assume that the modifiecl Post correspondencle prob-

Itlrr is decidable. We can then cttnstruct atr algorithm for the merrrbership
problern of G as sketched in Figure 12.12. An algorithm fbr constrttctitrg
A front B from G and tu clearly exists, but a membership algorithttr for

G and u.' does not. We must therefore c:clrrclude that there ca,nnot be arry
algorithm for deciding thc rrrodified Post correspondorrt:tt probletn' r

With this prelimina,ry work, wc are rlow ready to prove the Ptlst corre-
sporrdence problem in its originirl ftrrm.

The Post corresponclenr:c protrlern is undecidable.

Proof; We argttc that if the Post corresponden(ic l)roblem were decidable,
the modified Post correspotrdence problcm woulcl be decidable.

Srrppose we are given sequence$ A : 'u)71Lu2r.,., tu* and B : 1,t,\) i1 ...1'ttn.
on lrorrre alphabet X. We then introdu(le rrew symbols g and $ and thtl rrtlw
sequeilces

C : A o , A f t - . - t U n * t t

D : z o t Z t t , , , t Z n l t ,

defincd as follows, For i : 1,2,...,n,

l i : w i lQu) i 2Q ' ' ' LD i , n , i $,

z i : l ,a i1Qui2Q.
. . Lt i , ; ,

where ru4i irrrtl u4i denote the jth letter of u); arrd ?i, respectively, a,nrl
rni : lu.il, r'1 : lua l. In words, gri is creir,ttxl frorn trri by appending I to cac:h

Figure 12.12
Membershil.r

algorithm.

Figure 12.13
MPC algorithrn.

12.3 THE Posr ConnnspoNDEN(iE PRosr,urra 317

MPC-solution

No MPC-solution

charat:ter, while aa is obtainecl by prefixing each chirrnr:tr,'r of u; with f . To
cornplete the deflnition of d and D, we tako

A0 : gYr)

3/n,+I : $r
f () * 3 l r

2",+1 * #li.

Consider rrow the pnir ((J, D), and suppose it has a PC-solution. Bcr:arr$el
of the placernent of q arrd $, such a solution must have g/0 orl Lhe left rurd

Un1l olr tlrtl riglrt and stt must look like

Q 1 . 1 1 1 1 Q w 1 2 ' ' ' Q w t t (, , ' Q w ; 1 ' .

Ignoring tlte charactcrs r/ arrd

'W1Ul . j

, q \ : gzt11t lu12. . . Lu. i . r | . . . (.u t ; t . . . QE.

li, we see tha,t this inrplies

' ' " l i l 1 r ' : U 1 ' 1 1 . i ' ' ' U l r j

so that thc pair (,4, B) pcrmits a,n N{PC-solution.
We can trrrrr tht: ilrgrrrnerrt rlrclund to show that if there is an MI'C-

solution for (4, B) therr tlierc is a PC-solrrtion for the pair (C, D).
Assurne now that tlrrl Post r:orrespondence problem is deciclable. We

r:an then construct the rnachine shown irr Figunl 12.13. This mar:hine clea,rJv
tltx:ides the modified Post correspotrcletrce problcrn. Brrt tlrc rnorlifiexl Post
cortesprlrrrlcrrtxr prohlern is undecidable, consequently, we camrot havel arr
algorithtrt for decidirig thc Post rxlrrosp{nclence problerrr. t

1 � L e t A : { 0 0 1 , 0 0 1 1 , I 1 , 1 0 1 } a n d I J : { 0 1 , 1 1 1 , 1 1 1 , 0 1 0 } .
(4, B) irave a PC-sohrtion? Does it havc an MPC-solution'l

Provitle the rletails of the nroof of 'l'heorcm l.2,5,

Does the pair
ffi

,

3L8 Chopier l2 Lrvrrs or, AlcoRrrHurc Conrur.qrtox

3. Show that for lll : 1, the Post correspondeuce problem is decidable, that is,

there is an algorithm that can decide whcthcr or not (4, B) ha-s a PC-solution
ftrr arry given (,4,-B) on a singlc-lctter alphabet. ffi

4, Suppose we restrict the domain of the Post correspondence problem to include
only alphabcts with cxactly two symbols. Is the resulting correspondcncc
problem decidable?

5, Show that the ftrlkrwing rnodilications of the Post correspondence protrlerrr

a,re undecidable.

(a) There is an MPC-solution if there is a scqucnce of integers srrch
that tuatrr i " 'utNwT = uiuj " 'utrur. f f i

(b) There is an MPC-solution if there is a $equence of irrtegers such
that ultrr2zriur j " ' u)k : 'Dt 'Dz't t i 'uj ' ' "D hr.

6. The corrcspondence pair (4, B) is sairJ to have arr euen PC-solut'ion if and
only if there exists a nonempty seqlren(:e of everr integers 'i, j,...k such that
wnw j , , ,wk : Itn'u j. . . 'r.'5. Show that the problem of deciding whether or not
an arbitrary pair (,4, B) has an even PC-solut,ion is undecidable.

f f i i l f f i f f i Undecidoble Problems for Context-Free
[onguoges

The Post correspondence problem is tr convenittrrt tool for studying unde-
cidable qrrestions f'rrr txrntcxt-f'ree larrguages. We illustrate this with a few
seler:ted re$rrlts.

There exists no algorithm ftrr decidirtg wltetlter any given context-free gram-
mar is amhiguous.

Proof: Consider two sequences of strings A: (wt,1J)2,...,t1r) tr,nd B :
(ut,u2,...'ur) over some alphabet E. Choose a, new set of distirtct syttrbols
&Ir&2r. . . , ar , SUCh that

{ o r , o r , . . . , & r } f l X : O ,

and qlnsider thtt twcl larrguages

and

Lt1 : {wiwi
- . - wtuth&ka4. - . aiai. l

Lp : lui t t . i . - . 1) luke,ka,I. . . &j i l i l .

Now look at the context-free gramma,r

G : ({S, Sra, 5n} , }J U {a1, a2, . . .an} , P, S)

12.4 UuoncrDABLE PRonlnlrs FoR, CoN'rEXr-FRue L.q,ncuncns 3L9

wltere the set of productions P is the union of the two subsets: the first set
P4 corrsists of

S - S a ,

S.q. - wi]eatlwiai,

the second set P6 has tltc lrro<1rr<:tions

S __+ Sr,

Sn -+ uiSnailuiat,

Now take

i : I , 2 , . . . , n ,

' i : I , 2 , . . . , n , .

and

Ga : ({S, Sa} , I \) {a1, a2, . . . , &, ,1 , Pe, S)

G n : ({ S , S n } , X U { a 1 , a 2 , . . . , a n } , P n , S) .

Then clearly

L n : L (G n) ,

L n : L (G s) ,

and

L (G) : L e r L n .

It is easy to see that Ga arrd G6 tly themselves rlre rrnamhiguorrs. If
a given string in .L (G) ends with aa, then its derivation with grammar Ga
rrrust have started with 5 + u)isai. Similarly, we can tell at any later stage
which rule has to be applied. Thus, if G is ambigrrourr it mrrst be because
there is a ur for which there are two derivations

and

^ *
J :* Jg) wi5nai 4 wiwi " 'wtrak " 'eiai : 111

5 =+ ̂ 9gg + u i]Ba i 4 u iu i ' ' ' ukek ' ' ' a ia i : v1 .

Consequently, if G is anbiguous, then the Post correspondence problenr
with the pair (4, B) has a solution. Conversely, if G is unambiguous, then
the Post correspondence problem cannot have a solution.

If there existed an algorithm for solving the ambiguity problem, we
could adapt it to solve the Post correspondence problem as shown in Figure
12.14. But since there is no algorithm for the Post correspondence problem,
we conclude that the ambiguity problem is undecidahle. I

320 Chopter l2 Lluns or Ar,c+oR,rrrrrurc Coupuranron

There exists no algorithm for decidirrg whcther or not

r (Gr) n L (G2) : n

for arbitrary context-frcc grarrllllars G1 and G2.

Proof: Take as G1 the gralnlnar Ga and as G2 the Hrammar Gr a*s defined
in the proof of Theorem 12.8. Srrppostr that tr(Ga) and L(G") have a
common element, that is

Sa 3 t r t i t u i . ' , ' u t rak ' , ' a j a . i

and

S6 1 u iu i . . . ukek " ' e j a , i .

Then the pair (A, B) has a PC-solution. Converscly, if the pair does not have
a PC-sohrtion, then L (Ge) and I (G6) cantrot have a common element. We
conclude that ,L (Ga)n L(Gu) is nonempty if and only if (,4, B) ha-s a PC-
solution. This reduction Droves the theorem. r

There is a variety of other known results along these lines. Somtr of
them can be reduced to the Post correspondence problem, whilc otlters are
more easily solved by establishing different intermediatc rc'sults first (see for
example Exercises 6 and 7 at the end of this section). We will not give the
arguments here, but poirrt to sorrre additional results in the exercises.

That there are many undecidable problems connected with context-fiexr
languages seems surprising at first and shows that there are limitations ttt
computations in an area in which we might be tempted to try an algoritlrrrric
approach. For example, it would be helpful if we corrld tell if a programrnirrg
language defined in BNF is ambiguous, or if two different specificatiots of a
language are in fact equivalent. But the results that have beerr established
tell us that this is not possible, and it would tra a waste of titne to Iook for
an algorithm for either of these tasks. Keep in mirrd that this does not rule
out the possibility that there may he ways of getting the answer for specific

Figure 12.14

PC algorithm.

12.4 UNDECTDABLE Pnonlnruls poR, Cor'r.rr.;XT-[,'REE LeNcuecns 321

cases or perhaps even most interesting ones. What the urrdccidirbility results
tell us is that thert: is no txrmpletely general algorithm and that no matter
how many dilTerent cases a rncthod r:an handle, there are invariably some
situations for which it will breah tlowrr.

I .

* ?

Prove the claim made
unambiguous.

Show that thc problem

in Theorem 12.8 that Ga and G.e by therrrselves are

of detertrining whether or not

1 , (G r) c t (G r)

is trnrler:idahle for context-free grammars Gr, Gr.

t 3. Show that, frrr arbitrary context-free grammars Gr and G2, the problem
"L (Gr) n L (Gz) is context-free" is undecidable.

* 4. Show that i f thc languagc L(Ge)nL(Ge) in Theorerrr 12.8 is regular, then
it must be empty. Use this to show that the problem "I (CJ) is regula.rJ is
urxler:idable for context-free G.

* 5, Let -Lr be a regular larrguage arrd G a context-free grammar. Show that the
problem "lt C L (G)" is undecida]-rle.

* 6. Let M be any Tlrring rrrachine. We can as$lrme without loss of generality
that everv computation involvcs an even number of rnoves. For any such
comnutation

* 7 .

* 8 .

gour F f l l F 12 F ." [- f f , ,

we can then construct the strins

qot F * f l F rc , F : r . f | . . ' l xn . .

I-his is called a valid computation,

Show that for every M we carr cortstruct three context-free gramrnars Gr , Gz,
GB, such that

(a) the set of all valid rnmprrtations is /, (Gr) n L (Gr),

(h) the rret of all invalid comprrtations (that is, the complement of the
set of valitl t:ornprttatiorts) is I (Gl).

Use the results of the above exercise to show that "-L (G) : X*" is undecidable
over the domain of all context-free grarnrnars G.

Let Gr be a context-free grarnmar and Gz a regular gramnrar. Is the problem

decidable?

I (G r) n L (G z) : o

322 Chopter l2 Lrurrs or Ar.c;on.rrrnrrc CoNrpurerroN

* L Let Gr anrl G2 be grammars with Gl regular. Is the problern

L (G r) = L (G z)

decidable wherr

(a) Ge is unrestricted,

(b) when G: is context-free,

(c) when Gz is regular?

Other Mode ls
o f Compu tq t i on

Ithough T\rrirrg rnar:hiners a,re the most general models of cornpu-
tation we carr corrstnrt:t, thev a,re not tlre only ones. At variotrs
times, other rnodels hirvt: llccrr proposed, some of which at flrst
glance seerned to tre raclically different f'rorn Thring machines. Even-

tually, however, all thr: rnorlcls were fbund to be equivalent, Much of the
pioneering work in this area was tlorrr: in the period hetween 1!130 and 1940
and a nurnber of rnathernaticiirrrs, A. M. Ttrring among them, contribuled
to it. The results that were fourrtl slrrxl light not only on the concept of a
mecha,nical cornputation, but orr rnatlxlrnaticu a-r a, whole.

T\rring's work was published in 1936. No t:rlrnrn(:r(:ilrl rxlrnprrters were
availahle a,t tha,t tirne. In fact,, lhe whole idca had bccn rxrnsidered only
in a very pt:ripherir,l way. Although T\rring's ideas eventually becarnc vcry
importattt irr cornputr:r sr:iunr:e, his origina,l goal was not to provicle a fotrrr-
da,tion for the study of digital r:ornputcrs. To understand what Thring was
trying to do, we must brielly look at tlxr statc of ma,thematics a,t that time.

With the discovery of diffr:re:rrtiill irrrtl integra,l r:ir,lcrrlus bv Newton and
Leibniz in the seveuteenth and eiglrteenth c:etrturic:s, irrtelrcst in ma,thematics
inr:rea,sed and the discipline entered an era of explosivr: grclwth. A mrmber of

323

324 Chopter l3 O'r'truR. Motnls on Clolrlru.rart(ltt

different areas were studied, a,nrl sigrrificatrt aclvauces were made in alrnost
all of them. By the end of the nirxlteenth century, the body of mathcrnatical
knowledge hacl become quite la,rgrt. Matitettnticiatrs also had becrome urrf-
ficienlly sophisticated to recognizc' that sorne logical difficulties had a,rison
that required a more ca,reful approach. This krd to a concern with rigor in
reasoning and a consequent examiniltiorr of the foundations of rna,thema,ti-
cal knowledge in the proce$$. Ttr see why this was llecessary, considtlr what
is involved in tr, tvpit:a,l proof itr just about every book and ptr.ptrr dealittg
with mathematical subjects. A sequence of plausiblc cla,irns is rrrade, inler-
spersed with phrases like "it ca,n be seen casilytt irrrd ttit follows from this."
Such phrases a,re (pnv()rrtiorritl, irrxl what one Ineans by them is thtr,t, if
challenged to do so, one rxrrrld givt: rrtclre detailed reasoniug. Of course, this
is very dangerous, since it is possiblc to overlook things, use faulty hidden
assumptions, or make wrong infi:rcnt:tls. Whetrever we see arguments like
this, we cannot help but wonclelr if tlrtl llroof we are given is indeed correct.
Often there is no way of telling, irrrd lortg ancl involved proofs have heen
published and fbr,rncl err*one()uiJ orrly after a considerable amount of time.
Becarrse of pra,t:tical liruitatiorrs, Itowever, this type of reasoning is a,txxrptcd
by most rnirtherrraticians. Ihe arguments throw light on the subim:t attd at
least increase our confidence thir,t tlrc rt:sult is true. But to those demanding
cornplete reliability, they are unacceptrr,ble.

One alternative to such "skippv" rnathtlrlrirtitls is to formalize as fa,r
as possible. We sta,rt with er, sct of assutned givetrs, called axioms, and
prec.isely definecl nrlels for logical inference and cleduction. The rules tlre
used in a $eqrr()n(:o of stclls, circlt of whiclt takes us from one proven fa,ct to
a,nother. Thc: nrlr:s rnust bel such Lhat the correctness of their a,pplictr,tiorr
carr be checked itr a routitre atrd completely mechanical way. A propositiorr is
considered proven true if we can derive it fiom the ar,xiorrrs irr a Iirrittl sequeltce
of logical steps. If thr: propositiorr corrflicts with another proposition that
t:iln b(: llroved to be true, then iL is considered false.

!'indirrg such lortnal systetns was a ma,jor goa,l of mer,t]rcrrratic:s at t]te
crrd of the nineteenth century, Two concerns immediately arose. Tlrrl first
was that the system should be consistent. By this wc rrx:irrr tltat tirere
should trot be atry proposition tha,t ca,n be proved to bc tnxl by orre se-
quellce of steps, then shown to be ftr.lse by irrxlthtlr ctpirlly valid argumeut,
Consistency is indispcnsablc irr rnathernatics, aud atrything clerivecl from an
inconsistent ytorrr woultl tltl cotrtrary to all we agree on. A secoud concern
wils whctlrtlr a systern is complete, by which we mea,Ir that a,ny propositiorr
cxpressible in the syst,eur can be provecl to be true or fh,lse. Frlr sorne tirntr
it was hoped that consistent and complete systomtr ftrr rrll of tnalhernat-
ics could be devised thereby opening the door to rigorous but cotrtpletely
mechanical theorem proving. Rut this hope wrs rlir,shtxl by the work of
K. Godel. In his famous Incornpleteness Theorem, Gcidel showed that
any interesting consistent systeiur mrrst tltl irrrxlrrrlrlctel tlnt is, it rnust cou-

1i1.1 R,ncunsrvn !-uncrroFls 3?5

tain soure unprovable propositions. Gtjdel'u rnvolutiotrary conclusion was
published in 1931.

Gcidel's work left rrnanswurud thc tluestiorr of whether the unprova,hle
sta,tementu rxnrld sornt:ltow be distinguished from the provable oncs, so that
thcrc was still sotrte hope that most of ma,thematit:s txltrld be tnade precise
with mechanically verifiable proof's. It was this problettr Lhat T\rring and
other mathematicians of the time, prr.rticrrlarly A. Church, S. C. Kleene,
arrtl E. Itost, addressed. In order to studv the tprcstiott, a variety of for-
rnir,l rrxrtlels of computation were esta,blished. Prorrrirrc:rrt irIIIoIrg them were
tht: rccursive futrctious of Church and Kleene a,ntl Post systems, but there
arc rnarry other such systems tha,t havc br:crr sttrdied. In tiris cha'pter we
briefly review some of the idea.s that arosc out of tltese studies. There is a
wealth of materia,l here thnt wc carrrtot cover. We will give onlv il vtlry bricf
presrlrrtatiorr, referritrg the reader to other ref'ercnctls fbr detail. A qr.rite

accessible account of recursiver firrrt:tiorrs arrtl Post systerns ca,n be firrrnd irr
Denning, Dennis, a,nd Qualitz (1978), while a good disclnsiorr of vitrious
other rewriting systems is given in Salornair (1973) and Salomaa (1985).

The utodels of computation we study here , as well as others tha,t ha,vt:
bccrr proposed, have diverse origins. Brrt it was evetttually found tha't thev
wcrel all equivalent in their power to c:itrry ottt cornputations. ilhe spirit
of this observation is genera,lly r:a,lkxl Churchts thesis, This thesis statcs
that all possible models of ulrnputir.tion, if they are sufficiently hroa,tl, rrrust
be eqrrivaient. It also irnplies lhal there is a,n inherent limitation itr lhis atrd
thir.t there are futrctiotrs that cannot bc cxprcssed itt atry way tha,t gives iln
explicit nrethod for thtlil cotrrputation. I'he clainr is tif t:tltrrse very closely
related to Thring's tk:sis, and the combined notion is sotrretines called the
Church-Tlrring thesis. It provides a genertll prirrciple for algorithmic:
cornputation and, whilc not provable, gives $trong e:virlt:trce that uo more
powerful models cart lle fcrutrd.

1gffiffifi$ffiffi Recursive Functions

Tlrc rnrrcept of a function is firndeurcrrtal to rnuch of nta,thematit:s. As surrr-
milrizcd in Section 1.1, a, flnction is a rulc tlnt assigus to a,tr elcrlcrrt of otre
st:t, called the domain of tlx: firrrc:tiotr, a uniclue value in a,ntltlrt:r set, called
thc range of the function. This is very broad and generrnl irrrd itnmedi-
ately raises the questiorr of how we can explicitly reprtrst)rrt tltis association.
There are many wa,y$ irr whidr furrctions can be definelcl. Sorrte of thetn we
use frecluently, while otht:rs are less colnmolt.

We are a,ll fnmiliar wilh functional rrotatiorr irr wlticlt we write expro$-
sions l ike

I U i : rz2 + l ,

326 Chopter l3 Orrrnn, MoDEr,s oF CoMpuTATroN

Tlfs dcfinrls the function / by means of a recipe for its computation:
given any value for the a.rgrrment n, multiply that value by itself, and therr
add one. Sirrce the function is defined irr this explicit wa,y, we can compute
its valucs in a strictly mechanical fashion. To cornplcte the definition of /,
we also rmrst specify its domain. If, for exarrrplc, we take the domain to be
the set of all integers, then the range of / will be some subset of the set of
positive integers.

Since ma,ny very complicated furrctions (:an be specified this way, we
rnay well ask to what extent the notatiorr is universal. If a function is
dcfined (that is, we know the relation bctween the elements of its domain
atrd its rartgc), can it be expressed in such a functiorral fclrm? To answer the
question, we must first clarify what the permissible forms are: for this we
irrtrodrrce some basic functions, together with nrles for building from thenr
solne rnort) cxlmplicated ones.

Primitive Recursive Funclions
To keep the discussiorr sirnple, we will consider only functiorrs of one or two
variables, whose dornairr is t ither I, the set of all non-negative integers, or
I x I, and whose range is irr 1. In this setting, we start with the ba-sic:
firnctions:

Tlre zero function z (r) :0, for all r € 1.

The successor function.s(r), whose value is the integer ne.xt in se-
quence to r, that is, in the rmual notation, s (z) : z * 1.

Thct projector functions

Pn (n1 , r z) : r k , h : I , 2 .

There are two wa,yrr of building more complicated functions from these:

1. Composition, hy which we construct

I @,a) : l t (n (* , a) ,sz (r , a))

frorn defined functions gL)gz,h.

2. Primitive recursion, by which a function can be defined recursively
through

,,.',-Tll :';,i,i; ,v),r (n,u)),
from defined functiorrs gt, gz, and h.

1 .

2.

3 .

13.1 Rncunsrvr Fr,rlcrloNs 327

We illustratc how this works by showirrg how the l-rasic operatiotu of
integer arithrnetic can be constructed in this fashion.

Additiorr of integers r and E can be implernented wiih the function add(r,y),
defined by

t tdd(n,0) : , r , ,

adrl, (r,3/ + 1) : add (r,t/) + 1.

To adcl 2 and 3, we apply these rules successively:

add(3 ,2) : add. (3 , I) + I
: (add(3,0) + 1) + I
: (3 + 1) + 1
: 4 * 1 : 5 .

Using the add function defined in Example 13.1, we cirrr rr()w dt:fintl rrrrrlti-
plication by

m u l t (r , 0) : 0 ,

rnul 'L (n,Y + 1) : add(n,mul t (r ,Y)) .

Forma,lly, the uerxrnd str:p is arr applicatiott of pritnitive recursion, iu which
h is itlrrntilicd with Lheatld, function, and 92(r,g) is the projector ftnction

P t \ r , t l) .
I

Substraction is not rpite so obvious. First, we rnust deflne it, ta,king into
rr,ccorrnt thnt rrcgativtl nutrrbers are not perrnitted iu our system. A kind of
subtra(:tiorr is dcfined from usual subtraction by

: t - ! ! : . t : - g l f x :7 A,
: t - " u : 0 i f c < E '

The operator - is sornetirrxlu cir,lltxl thc: monus; it defines subtraction so
that its range is 1.

I

328 Chopter | 3 Ornon Monnls or, Conrpureuor-r

Now we defirre the predecessor function

Pred (0) : 0 '

T t r e d (Y * I) : ' c ,

and from it, the subtracting function

subtr (r,0) : r,

subtr (r,t/ + 1) : pred(subtr (*, y)) .

To prove that 5*3 : 2, we reduce the proposition by applying the definitions
a rrumber of tinres:

subtr (5,3) : pred,(subtr (5,2))
: pr ed (ytr ed (subtr (5, 1)))
- pr ed (pr ed (pr ed (subtr (5, 0))))
- pred(ered(ered(5)))
- pred(pred$))
: pre.d(B)
_ ,

In much the same way, we can define integer division, but we will leave
the denronstration of it as an exerci$e. If we accept this as given, we see
that the basic arithmetic operation$ are all constructible by the elementary
processes described. With the algebraic operations precisely defined, other
rnore complicated ones can now be constructed, and very complex computa-
tions built from the simple ones. We call firnctions that can be constructed
in such a manner primitive recursive.

i'r, . fil i,il$' lrr ,irfr,.t,.l

A firnction is called primitive recursive if and only if it can be constructed
from the ba*sic firnction$ s? ,e, pk, by successive composition and primitive
recursion.

Note that lf h, gz, and lr are total functions, then / defined by compo-
sition and primitive recursion is also a total function. It follows from this
that everv primitive recursive function is a total function on I or I x 1.

T

13.1 Rncunsrvn FUNCTToNS 3?9

The expressive power of primitive recursive functions is considerable,
and most common functions are primitive recursive. However, not all func-
tiorrs are in this cla*ss, its the following argument shows.

Let f' denote the set of all frrnctions from I to I. Then there is some
function in .F that is not primitive recursive.

Proof: Every primitive recursive function can be described by a finite string
that indicates how it is defined. Such strings can be encoded and arranged
in standald order. Therefore, the set of all prirnitive recursive functions is
countable.

Suppose now that the set of all functions is also countable. We can
then write all functions in some order, say, f t, f2,.... We next construct a
function g defined as

s (i) : f i (i) + \ i : 1 , 2 ,

Clearly, g is well defined and is therefore in F, but equally clearly, g differs
from every fi in the diagonal position. This contradiction proves that F
cannot be countable.

Combining these two observations proves that there must be some func-
tion in f' that is not primitive recursive. I

Actr.rally, this goes even firrther; not only are there firnt:tions that are
not primitive rccursive, there are in fact computable functions that are not
primitive recursive.

Let C be the set of all total c:omputable furrctiorrs frorn 1 to 1. Then there
is some function in C that is not primitive recursive.

Proof: By the argument of the previous theorem, the set of all primitive
recursive functions is countable. Let us denote the functions in this set as
rr,rz,...and define a firnction .g by

s Q) : r i f t) * - -
By construction, the function g differs fiom every ri arrd is tlterefore not
primitive recursive. But clearly .g is r:onrputable, proving tlte theorem. r

The nonconstructivc proof tlnt there are computable functions that
are not primitivc recursive is a fairly simple exercise in diagonalization.
The actual construction of an example of such a function is a much more
complicated matter. We will give here one example that looks quite simple;
however, the demonstration that it is not primitive recursive iu quite lengthy.

330 Chopter l3 OrHnn Mounls or. 'CoNtrurnrtotl

Ackermqnn's Function

Ackermann's function is a function from 1 x 1 to 1. defined bv

A (o ' s) : 3 / + 1 ,
,4 (4a, 0) : A(:r - 1, 1) ,

A (u , t 1 * 1) : A (r - 1 , A (t : , y)) .

It is not hard to see that ,4 is a total, computable function. In fact, it is quite
elementary to write a recursive computer program for its computation. But
in spite of its apparent simplicity, Ackermann's function is not primitive
recursive,

Of course, we cannot argrre directly from the definition of A. Even
though this definition is not in the form reqrrired for a primitive recursive
function, it is possible that an appropriate alternative definition could exist.
The situation here is similar to the one we encountered when we tried to
prove that a language wa$ not regular or not context-fiee. We need to appeal
to some general property of the class of all primitive recursive functions
and show that Ackermann's function violates this property. For primitive
recuntive functions, one such property is the growth rate. There is a limit to
how fast a primitive recursive function can grow as i --+ oo, and Ackermann's
function violates this limit. That Ackerma,nn's function grows very rapidly
is easily demonstrated; see, fbr example, Exercises I to 11 at the end of this
section. How this is related to the limit of growth for primitive recursive
functions is made precise in the following theorem. Its proof, which is
tedious an<l technical, will be omitted.

Let / be any primitive recursive function. Then there exists some integer
n such that

/ (i) < A (n , i ,) ,

f b r a l l i : n . n + 1

Proof: For the details of the argument, see Denning, Dennis, and Qualitz
(1978, p. 534) . r

E

If we accept this result, it follows easily that Ackermann's function is
not primitive recursive.

Ackermannts function is not nrimitive recursive.

Proof: Consider the function

s (i ,) : A(i , i) .

llHr*sNE[U*il*,$* Ler

13.1 R.ncun.srvp Fur-rcrronrs 331

If A were prirnitive recursive, then so would g. But then, according to
Theorern 13.3, there exists an n such that

ftrr all rl. If we now pick

s (i) < A (n , , i ,) ,

i : rr', wt] get the contradiction

S (n) : A (n , n)

< A (n , n ,) ,

proving that A cannot be primitive recursive, I

11,- Recu rsive Fu nctions

To extettd thc idea of recrrrsive functions to covcr Ar:kermann's function
and other computable furrctions, we must add somethirrg to thc rulcs by
which suc:h fincltions can be constructed. Orrcl way is to introduce the p or
minimalization operator, defined by

pA (g @,?)) : snrallcst 37 such that g (r, y) : O.

In this definitiorr, w(l iL$$rrme that g is a total function.

g (x , ' a) : n * u - 3 ,

which is a total functiorr. If u { J, fhsn

U : 3 - r

is the result of the minima,lization, but if r) 3, then therc is rro y € I srrt:h
that z I y - 3: 0. Thercfrrrc,

P'a (g @,u)) : 3 - r, for r: { 3
: unclcfined, for r) 3.

We see from this that everr though g(r,l l) is a total function, pA(S@,A))
mav only be partial.

I

As the abovc t:xamplr: rthows, the minimalization operation opens the
possibility of definirrg partial firnctions recursively. But it turns out ihat it

33? Chopter l3 Orul:R MoDELS oF CoMpurATroN

also extends the llrlwt:r to defitre total functions so a,$ to int:hrtlt: all com-
puta,ble fi.rn<:tiorrs. Agaitt, we tnerely quote the major resrrlt witlt references
to the litcrra,turtl wirere the deta,ils may be fortnrl.

lili.ffiRq,,frtiffift, Nhft'�ilrii\

A firnction is sa.id to br: p-recrrrsive if it can be constructed fiom thc birsis
functions by a, seqrxlnr:t: of irpplicatiots of the p-operator and the opera,titlrrs
of compositiotr and primitivc rct:ursiort.

A lunction is trr,-recursiver if a,rrd orrly if it is cotttputalrle.

Proof: -Fbr a proof, see Denuing, Derrnis, ir,rrtl Quiilitz (1978, Chapter
13) . I

I'he p-recursive
mic computation,

finctions therrrftlrc givc rrs itrxrtlrtlr rnodel for algoriih-

Usc thc definit ions
2 + 3 : 6 .

Define the lunction

in lixamples Ill.I and lll.2 to rrrove that 3 + 4 - 7 and

Show that this function

Ct-rnsider l,he luttctiou

grea te r (* , v) : 1 i f r > U
: 0 i f r < U

is prirnitive recursive. ffi

rtyt,a,l,s (t:,'g) : I if r :

: 0 1 I x t '

Show that this function is prirnitive ret:trrsive.

4. Let / be defined by

' f (n , t t) : n i f r * u ,

: 0 i f r : U .

Show that this futctiot is ;rrirnitivc rccursivc.

t .

,

3 .

u,
'c.

13,1 Rncunsrvn Frrrucrlons 333

rk 5. Integer division can be defined by two functions iCzu ancl lern:

d iu (x , 'g) : n .

wlrere n is the largest integer such that x j rrg, anrtl

rem, (t , 'a) : n - nA.

Show that the functions d,i,u a:rd re.nr ate prirnitive recursivc,

6. Show that

f (r t) : 2 "

is primitive recursive.

7. Show that the furtction

g (n , u) : x

is primitivc recursive. W

8. Write a cornputer l)rogram for computing At:kermann's function. Ilse it to
evaluate A (?,5) and A (3,:3).

L Prove the following fbr the Ackermann lunction.

(a) A (1 ,s) =s+2 f f i
(b) A (2, a) :2u-r3 ff i
(c) A (3 , u) :2 '+3 * 3

10. Use Exercise I to compute A (4, I) and A (4,2).

11. Clive a gerrcral expressiorr for A (4, g).

L2, Sltow the sequencc of rccursive calls in the cornputation t-rf A (5,2).

13, Show that Ackernrann's functiorr is a total function in 1 x 1.

14. Tfy to usc the plograrrr t:orrstrrrcted for Exercise B to evahrate ,4 (5,5), Cat
you explain what vou observe'l

15. lbr cach g below, r:orrrpute l takl@,37)), and t letertr ine i ts domain,

(a) .s (r, :a) : :ra

(lr) .q (", '',) :2"' -r u - 3 ffi

(c) s (r ,u) : intescr part of (* - 1) I fu +t7

(d) g (n , g) : u m o d (s * 1)

16, The definition of pre.tl in Example 13.11, althorrgh intuitivcly clcar, does rrot
strictly adhere to the defirrition of a prirrritive reclrrsive function, Show how
thc definitiorl t:an be rewritten so that it has the corret:t form.

334 Chopter l3 OrunR Monnls or Covpurnrton

MM Post Systems

A Post system lotlks very much like tln utuestricted grammar' colsistiug

of an alphabet rr,rxl sorne production nrltls by which successivtl strings can

be derived. But there are significant difl'crettces in the way irr which the
productions arc applied.

,,, s.sf,ffi fi ilitftilll\l,l$,1,,

A Post systeur II is defined by

f I : (c, v,A,P) ,

where

C is a finite set of constants, consisting of two disjoint sets (,'1,',

called the nonterrninal constants, and C7', thtl st:t of terminal
constants,

V is a finite set of va,ritr,blt:s,

A is a linite set fiom (J*, cir,lled the axioms,

P is ir" fittite set of uroductions.

The prodrrctions irr a Post system mrrst satisfy certaitr restrictions. Thcy
must bc of the form

f r1V1 f r2 . - .V rT , * , - y tWtUz - . -Wm, ! lm- l t , (13 .1)

where ff,;, yt € C*, and Va, Wi EV, sutrject to the requirerncrrt tltat atry
variallle can appear at most on(:c orl the left, so that

V f v i f o r i l j ,

and th.r,t eac:h virriable on the right mrrst irppear ou the left, that is

U * r U "
i = t t = l

Srrppose we have a string of tcrrnirrals of the forrn rru)trzl:tz' ' 'rDnfrn+t t
wlrere the substrings rt, Tz.'. rrrirtch the corresponding strittgs itt (13'1)
arrd'ur1 € C*. We can then rrrirke the identif ication u)1 : V1,'trz : V2,...,
and substitute these va,lrres for tlte W's ou the right of (13.1)' Since every

13.2 Posr Sysrpus 335

W is some yd that occurs on the left, it is assigned a unique value, and we
get the new string lltwiUzwj . . .Antt. We write this as

I 1 W 1 I 2 W 2 , , , f r n l t + ! y U a ! 2 W i , . . A r n l t .

As for a grammar, we carl now talk about the larrguage derived by a
Post system.

The language genera,ted by the Post system II : (C, V, A, P) is

I, (II) :
{w

e Ci.: ,u.rs 4 u for some zuo e ,a} .

irrt

C 7 : { a , b } ,
C u = 4 ,

V : {Vr},
A : { I } ,

and production

Vt - aVrb.

This allows the derivation

A =+ ab + aabb.

In the first step, we apply (13.1) with the identification 11 : A, Vr : tr,
rt : A, At : &, Wt : Vt, and 3r2 : b. In the second step, we re-identify
Vt : ab, leaving everything else the same. If you continue with this, you
will quickly convince yourself that the language generated by this particula,r
Post system is {attbt' : rz } 0}.

I

irn

C 7 : { 7 , * , : } ,

C w : A ,

V : lVr,Vz,VsI,
A : { 1 * 1 : 1 1 } ,

336 Chopter l3 OrImn Moont s ot'' CoupurartoN

and productions

V t * V z : V 3 - V r 7 I V z : V r l '

V t *Vz : V3 - V t IVz I : V r l '

The system allows the derivation

1 * 1 : 1 1 + 1 1 * 1 : 1 1 1

+ 1 1 + 1 1 : 1 1 1 1 .

Irrterpreting the stritrgs of .['s as ullary representer,tiorrs of integers, t]re

derivation can be written as

1 + 1 : 2 = + 2 + 1 : 3 + 2 * 2 : 4 .

The language gcrrerated by this Post system is the set of all identities of

integer additiors, such as 2 * 2 :4, derived fiom the axiom 1 * 1 : 2.
_l

Example 13.6 illustrates in tr sittrple manner the original intent of Post

systems a^r a rttecltanism for rigorously proving mathematical statt:rnents

from a set of axioms. It also shows the inherent awkwardness of such a

completely rigorous approat:h and why it is rarely used. But Post systems,

even though they are t:urnbersome for provirrg complicated thtloretns' are
general models for computation, as tlte next theorem shows.

A language is recursivcly enumerable if and only if there exists sotne Post

system that generir,tcs it.

Proof: The argurnents here are relatively simple and we sketch them briefly'

First, since a derivation by n Post system is completely mechanical, it can

be carried out on a Thring machine. Tht:refore, any langua.gc getrerated by

a Post system is recursively enumerable'
Frrr the converse, remember that auy recursively enumerable language

is generatod by some unrestrit;ted grarnmar G, havirtg productions all of the

form

t + l t

with r, y e (V U T)-. Given any unrestricted grs,mmar G, wc create a Post

system II : (Vn, C, A, P11), where Vn : {yt' Vz} ,Cw : V,Cr : T, A :

{S}, and with productions

V1rV2 + VrUVz,

for every production fr -i A of the grammtrr. It is then an etr$Y matter to

show that a ur carr be generated by thc Post system II if arrd only if it is in

the Ianguage generated by G. t

13.3 RnwnlrrNc SYSTTTMs 337

For X: {u,,h,c}, find a Post systern that generates the ftrllowing languages

(a) L (a .b 1a [' *c)

(b) r: {urtu} ffi\

(c) l , : lanb" t ! ' j

Find a Post s.ysterrr that generatcs

t :
{ * * * ,

u , e { a , b } - } .

3, Ftrr X -- {o}, what language rloes the Post systern with axiom {a} ancl the
following production generate?

Vr * I4Vr W

4. What language tloes the Post system irt Exercise 3 gencrate if the axiqm set
is {a, ab} ?

Find a Post system for proving the identities of irrteger multiplication, startirrg
from the axiom 1 + 1 : 1. ffif,$

Give the details of the proof of Theorem 13.6.

What language does the Post systcm with

V n a V V

and axiorrr set {ab} generate'l

8. A restricted Post system is onc on which every production r * g satisfies, in
addition to the usual reqrrirements, the further restriction that the number of
variable occurrcnces on the right and left is the safire, i.e., n : nr in (13,1).
Show that for every language.L gerrerated by some Post systern, there exists
a restricted Post system to generates Z.

Rewri t ing Systems

The virrious grammars we havcl studied have a nurnber of things in com-
mon with Post systems: They anl all based on sotne alphabct fiom which
one string can be obtained frorn irnother. Even a 'Ihring rnirt;hine can he
viewed this wrr,y, since its instantarreorrs description is a string tha,t com-
pletely defirrcs its configuration. The program is then just a set of rules fbr
producing one suc;h string from a previou$ one. These observations carr ller
formalized irr tlNr concept of a rewriting system. Generally, a rewriting
system consists of arr tr,lphabet E and a set of rules or productions by which

1 .

,

6 .

t .

338 Chopter l3 O'rseR Monnls or,' Cotrpurnuon

a, strilg in E* can produce another. What distinglishcs one rewriting svs-

tern from a,nqtht:r is the nature of X atrd restrictions for the applictr,titlrr of

the productiorrs.
The iderr. is cluite broad a,nd allows atty numtrt:r of specific ca$os irr ad-

tlition to tfie orrcs we have alretr.tly etrcountered. Htrrc we briefly intrt)thrce

sonre less well-ktrown ones that are interesting arrtl also provide general tnod-

els fbr rxrrnputatiou. For dotir,ils, see Salomaa (1973) and Sa,lomeur (1985)'

Mqtrix Grommqrs

Matrix grammars differ from the grarnrrtars we lrave previously studied

(which are often r:alled phrase-structure grammars) irr how the prodrrc-

tions can be tr,pplied. For matrix graIIIIIlars, the set of productious consists

of subsets P't, P2, ..., Pn, ea,ch of which is an orderul sequellce

1 . Z t + ' A I t 1 2 + ! 2 r , - . -

Whenever thc first production of some set .P,, is applied, we must next ir,pply

the second orte to the string jrrst created, then the third otre, and so on. We

cannot tr,14rly the first production of 4 unless tr.ll otlter productions in tltis

set can also be applied,

Consider thrl rnatrix grammar

P1 : ,9 --+ ,91,92,

P2: 51 + 0,5I' Sz + bSzt:,

P 3 : 5 ' 1 - t r , , 9 2 - t r .

A derivation with this grammar is

S + S1S2 + a,9rbSzc + aaSlbbS2cc + &abbcc.

Note that whertever the first rule ttf 1'2 is used to create arl ar the second one

also ha^r to be used, producing a corresponding b and c. This rnakes it ea,sy

to see that the set of termirur.l strings generated try this matrix gramrnitr is

7 : { a " b " c " : n } 0 } .

Matrix grillrtlnars contain plrrase-structure gramttrars as a special ctt*se

in which each 4 coltains exa,ctlv one production. AIso, since tnatrix grrlrn-

m&rs repre$crrt algorithmic prot:t:sses, they are governccl by Church's thesis.

We cxlnclude from this thir,t rnatrix grammar$ trrrtl plrrase-structgrtl graur-

mars trave the same power ir,s rnodels of computa,tion. But, as ExamJrle 13.7

showtl, sornetimes the use of a, rrtatrix grammar givcs a much simpler solutiotr

thart we cau a,chieve with arr uurestricted phrase-structure grammar.

T

I3.3 Rnwnluuc Sysrnlrs

Morkov Algorithms
A Markov algorithrn is a rewriting systt+m whose productions

n + U

are considered ordered. In a tlcrivation, the first applicable prodrrction must
tre used, Furthermore, the lcftmost occurrerrt:e of the substring r must be
replaced by g. Some of the productions rnay be singled out ir,s terminal
productions; tlNry will be showrr a,s

r + . , ! .

A derivation utarts with sorne string ,ur € x tr,nd continues urrtil either a
tcrminal produr:tion is used or rrntil there arr: rro a,pplicable productions.

For language at:ceptance, a set ? C X of terrnirra,ls is identified. Starting
with a terminal string, productiorrs a,re applied rrrrtil the empty string is
Drodrrced.

339

I

Lct M be
set

a Markov a,lgorithrn with alphabet E arrd terminals ?'. Tlrcn the

L (M) :
{ " ,

e f . ; t , 5 . 1 }

is tlre language accepted by M. I ,it_;! t

t*qmFld lS.$ Consider the Markov a,lgorithn with X *T :

a b - 4 ,

ba - ,\.

Every step in the clerivation a,nnihilates a srrbstring ob or ba, so

L (IV) : { r r € {o, b} . : r t , , , (tu) : "o (r) } .

-R;;'
-'Fr"

{4,6} and productions

I

340 Chopter l3 OrHnn Motlpl,s op Courur.q"ttotl

Wnd a' Mtr,rkov algorithm f.r

I. = {trLfirl : rz > 0] .

An arrswer is

a b - S ,

tz5b -+ S,

5 --i .,\.

If irr this last examplc we take the first two productiorrs and reverse thtr

left nnrl right sides, we gc:t a context-f'rt)(t gralnntar that gcrterates the la,rr-

gua,gcl .L. 11 a certain uense, Markov a"lgorithms are simply phrase-structure

grailrrrrars working brr,t:kward. This ctr,rrrtot be takett totl literally, since it is

nqt rlc:irr what to do with the Iast produt:tiotr. But the observation does prtr

viclq ir. starting point for a proof of thc ftrllowing theorem that cha'ra'cterizcs

tlx: power of Markov algorithms.
I

A ltr.rrguage is recrtrsivt:ly errumera,ble if arrd only if thertl cxists a Ma,rkqv

tr,lgorithrn for it.

Proof: See Salomaa (1985, p. 35). r

L-Systems

The origins of L-systems a,rc quile clifferent f'rorrr what we miglrt expect'

Their clervcloper, A. Lindentrir,yer, used them to rttodel the growth pattern

of certairr organisms. L-systcrrrs are essentially Ttarallel rewritirrg systems.

Bv t|is we mean thnt irt each step of ir. tlt:rivatioll' everY syrtrbol has to bc

rcwritten, For this to rnake sense, thtt llroductions of tr,rr L-system must bc:

of the form

0 , + ' u) (13 .2)

where a € X a,rrd z € X*. Wht:rr a stritrg is rewritterr, otre such productiol

nust be a,pplitxl to every symbol of the string bcfore the new strirrg is

geuertrtetl.

13.11 Ruwnruuc Sysrr:MS 341

i\iHl$[Nt$[$W,toi,, Let x: {a} anrr

define an L*system, startirrg fiom the string tr,, we carr rna,ke the derivation

a + aa + aaaa + a,a,a,a,0,o,a,a,

The set of strings so derived is clcarlv

7 , : { u . 2 " : n > 0 } .

Note agairr how such special rewriting systems are able to deal with prohlems
that are quittl difficult for phrase structure gremrnars.

I

It is known that L-svstems with productiorn of the forrn (13.2) are
rrot sufficierttly general to provide for all algorithmic r:omputations. An
cxtension of the idea provides the necessary generalization. In an extenrlrxl
L-systern, productions irrel of the forrn

\ i x l a t A) + u 1

wlrer(r a e E and 'J:1y 1u E E* , with the interpretaticln that a carr bc replaced
by z only if it occurs as part of thc string rag. It is known that such
extended L-systems are gerrcrell models of computatiorr. For cletails, sec
Salomaa (i985).

7 : { u z n : u t € { a , b } - } . m

2. Wlut language is generated by thc matrix grammar

P 1 : , 9 + S 1 . S 2 ,

Pe: Sr - aSLb,52 + hSza,

P r : 5 ' r - t r , S ' r * t r .

3. Supposc that in Examplc 13.7 we changc the la^,;t group of procluctions to

P 3 : , 9 1 - 4 , , 5 2 + , 9 ,

What language is generated l-ry this matrix grarnmar?

4. Why does the Markov algorithm in Examplc 1B.g not accept abab'l

IxEncrsES

I- Find a matrix grarnura,r for

342 Chopter l3 OrHon Monpls oF CoMPUrerIor'l

5. Find a Markov algorithrn that derives the language L -
{a"hncn : n } 1}'

ffi
* 6. Find a Markov algorithm that acccpts

L : { a " b " ' u n * i n } 1 , r z l } 1 } .

7. Find an L-system that generates tr(oo-).

8. What is the set of strings generated by the L-system with productions

o, + aa1

o, + o,o,0,1

when started with the strirrg a'l ffi

A
c
c

n In t roduc t i onto
om pu tq t i ono I
om plexi ty

rt strrdying algoritlrrns a,nd computirtions, we have so f'ar pa,id Iittle
atterrtiorr to what actually can be expcctcd when we apply these
ideas to rual compulers. Wu have been alrnost exclusively corrr:ernecl
with questions of the existt:rrc:e or nonexisterrr:e clf aleorithrrrs frrr

certain problems. This is an appropriate starting point firr a theory but
cleirrlv of limited lrrat:tica,l significant:c. For actual c:ornprrtations, we rrt)tlrl
not only to know that a, problern can br: solved in principlc, but we also rnust
be rrble to construct algorithms that c:rr,n be carried out with reasonabkr
efficiency. Problerns Lhat can be solved effectively a,re called tractable, a
descriptive term that will Lre givcn a nrore precisc mea,ning in this chapter.

In the pra,clical world of software dcvelopment,, efficicncy ha,s many
facets. Sometimes, we are cuncernecl with thc efficient use of thc r:omputer's
resources, srr(:tr as processor tirne and mernory spa,ce, At other tirnes, we
may be rnore concemed with how quickly softwa,re can be crca,tecl, how
effectively it ca,n be maintairx,rd, or how relirrble it is. At still tlther times,
we may ernphilsize the efficiency with which a us(lr'$ problems can trtl solved.
AII this is mrrr*r too complicatcrl to be captured by any abstract thcorv. All
we can do is to ftrcus on sorne of the more tangitlle issues and create the

343

344 Chopter l4 Arv lurnonuc:rtot't to Couru'lA'l ' IoNAL CoMPLEXITY

appropriate irbstract fiamc:work for thesc:. Most of thc tesults tha,t have been

tlevelopecl arlclress the sllirt:c and time cfficiency of ir, computatitllr, Ieading

to the important topig of complexity theory. In the stucly of t:ornplexity,

the primary colcern is the efficiency of a computir.tioll as met$rlred by its

time arrd space requirerttettts. Wt: refer to this irs the tirne-complexity

and the space-complexity of algorithms.
computational complexity theory is ilrr extetnive topic, most of which

is well outside the scotre tlf this text. Thcre are some rt:sults, however, that

are simply statecl and errsily appreciatQtl, and tha,t throw further liglrt on

the nature of languages arrd compUtations. In this set:tiotr, we giver a brief

overview of some compklxity results. Fclr the most pirrt, proofs a,rtr tlifficult

ald we will clispense with thern hy rcference to appropriate sources. Our

intent heru is to present the flavor of the subject mirtter and show how it

relates to what we knqw about languages and autorrrata. For this reason we

will allow ourselves ir great deal of latitude, hoth irt the selectiorr of topics

rlrrd in the formality of the discussion'
we will lirnit our dis<Irssion here to issues of time-cornplexity. There

are similar results fbr space-cotnplexity, trut time-corrrplexity is a, little rnore

accessible.

Ef f i c iency o f Computo t ion

I,et rrs start with a ctlncrete examplc. Givetr a list of orre thousand integers'

wc want to sort tltem iu som() way, say, in irscendiug ordtlr. Sorting is ir

sitnple problcrn but also onc that is verY furrdamental in cortrputer science.

If we now ask the questi0il ,,How long will it take to do this task'i" we see

immtxliately that mrx:h more inforrration is needtxl before we (laII answel

it. clearly, the numtrerr of itenrs in the list plays arr itnportant role in how

much time will be taktlrr, but there irre other f'actors. There is thc question

of what computer we use and how we write the program. Also, there are a

number of sorting rrrethods so that selection of thc algorithm ilr irnportant.

Tfuere are probably a few more things you carl t]rink of that lleed to be

looked a,t btlfore you can evctt tttake a rorrgh guess of the tirne requirements.

If wc have arry hope of producing sorne general picture of sorting, rnost of

these issues havc to be ignored, arrd we must corrcentrate on those that are

most fundtr,metrtal.
For our rliscussion of computational complexity, we will rnake the fol-

Iowing simplifving assumptiorts.

1. The nodel fbr our study will be a'ftrring mat:hitre. The exact type of

Ttrring machirre to be used will be discussed below.

2. The size of tht: problem will be denoted by n. For our sorting problem,

rl is obviously the number of iterns in the list. Although thc: size of a

14.1 Epr.,rclruNcrr oF CoMprr.r'A.Ftoru 345

problem is rrot rr,lways so easily c:harrr,cterizecl, we can geuerally relate it
in some way tcl rr positive integer.

3. Irr analyzing atr algorithm, we are less intcrcsted in its perforrrrarrr:rr on
a sper:ific case than irr its general behavior. We are particularly con-
ctlrrrttd with how Lhe algorithm behaves wltt:rr the problem size irrr:rerlres.
Becaust+ of this, tire prirnirry qrrestion is with how fh,st the resourrxl re-
quirenents grow as rz becornr:s ltr,rge.

Our inrtrretliate goal will therr llc tcl characterizt: the time requirement of a,
problern il^s a fhnction of its size, rrsing a Thring rnalchine as the cornputer
model.

First, we give some mea,ning t,o the concept of time for a Thring machine.
Wtr think of a 'I\rrirrg ma,chine as making one rrove per tirrrc rrnit, so the
tirne taken by a courllrta,tion is the nurntlt'r of moves nade. As stated, we
wtrnt to study how the cornputational rrxlrirements grow with the size of
tlrc problem. Norrnally, in the set of all protrlems of a given size, there is
sorrrc vtr.riation. Here w(r irre irrterested orrly irr the worst case that hils the
hight:st resource requirclrncrrts. By saying thrrt a, computation has ir time-
corrrplcxitv 7(rz), we rrrearr that the computation firr any problern of sizc n
can be tlclrnpleted in no rnore thirrr 7 (rz) moves orr rrome Ttrring rnachine.

After scttling on a, specific typc of T\rring rnachirre as il computa,tional
model, we coukl a,na,lyze algorithrrn try writing explicit progrrrm$ and count-
ing the nurnber of stcps involvecl in solvirrg the protrlem. tsut, lbr a va,riety
of reasons, this is rrclt ovrlrlv useful. First, the number of operatirlrrs per-
forrntxl may vary with the srnelll details of the progra,m and so iltay depcrrd
strclrrgly on the prograrrirrr{)r. Second, frorrr a pra,r:tica,l standpoint, wc irre
itrtercstcd in how the algoritlrrn perfbrms in the real world, which may difftlr
considelably fionr how it does orr a T\rring machine. TIrc.best we can hope
fbr is that thc T\rring machine analysis is representative of tlxr major as-
pects of the real-lif'e performance, for cxa,mple, the asyrnptotic growth rate
of the time complexity. Orrr first attempt at rrnderstanding the resour(:e
requircrncnts of an algoritlun is thcrefore invariably an ord,e,r-of-magniLude
analysis irr which we use the O, O, nnd () notation introdrrr:ed in Chapter
1. In spite of the apparent inforrnality of this approach, wc often get very
useful itforrniltion.

Givr:rr a, set of rz numbers ir:r1r'21..., r, and a key mrrnher r, determine if tlrt:
set txlntrr,irrs r,

Unlcss the set is organized in some way, the sirrrpklst nlgorithm is just
a l'inear seu,rch, irr which we corrrtr)ar(r r successively against :r:11.T21,.,, until
we either firrcl a, ma,tch or we get to tlrc la,st element of the set. Since we
may find a rrrir,tr:h on tlte first cornprrrisorr or on the last, we carrnot predict
lxrw much work is involved, but we know thtlt, in the worst case, wcl hirvel

346 Chopter l4 Ar'r Inrnonucrrlow ro Coururh-l'loNAl CoNrRLuxtrv

to rriake rz comptr,riscltrs. We ca,n tlx:n say that the titne-complexitV of this

Iirrear search is O(tl), or even bt:tter, O(n). In ilraking this analysis, we

rnacle no specifit: ir.ssurnptious a,ltclrt what machine tlfs is run on t)r how the

rrlgorithm is implernented.
I

LL supposc you are givetr a set offl, rrutttbers l.^r1frz1.'.irD alld are asked trt

tleterminc whether this set conta,ins arry duplicates.

(a) Suggest an algorithrn and find an orrler-of*rnagnitude exJrression

for its tinre-comJrlexity.

(b) Examine if the irnplernentation of the algorithtn on a T\rrirrg rna-

chinc affectrr your conclusions.

2, Repeat Excrcise 2, this tirne dctcrmining if the set containrt arry triplicates.

Is the algorithm as efficient as possible?

3. Review how the r:hoice of algorithrn afl'ects the efficient:y of sorting.

f f i f f i Tur ing Mochines ond Complexi ty

In Chtrpter 10 we a,rgrted that the various types of T\rring machirres were

equivalerrt in their powt:r to solve problems. This allowed us to take what-

tuvcr type was most t:orrverfettt for an argurnent and even use programs in

higher-level r:orrtputer langua,ges to avoid some of the tedium involvtxl in

using thc standard Thring machine model. But whetr we tnake cornplexity

an issue, the equivalence btttween the various tVpes of T[rring mAchifles no

longer holds.

Irr Example 9.4 wc t:onslructed a, singltl-tape
'ftrring machine for the lan-

guage

7 = { a n b " : r r , } 1 } .

A look at that algorithm will show that for ut : unb" it takes roughly

2n stepu to rnatch each a with the correspondirrg b. Therefbre tlte whole

comprtation takes O (n2) titne.
But, as we later indicated in Exa,mple 10.1, with a two-tape machine

w() carr use a different algorithm. We first copy all the a's to the second

Tape 1

Tape 2

(a) Initial tapes.

tirpe, then rnatch tlrcm tr,ga,inst
and afher the copying is slrown
rrtatr:hing can be donc irr 0 (n)
has tirne-corr4rlcxity O (n).

14.2 TuRtNc MncHrruns AND CoMpLEXrry

Tepe I

Tape 2

the b's orr the first, The situation before
in Figure 14.1. Both the copying arrrl the
time atrd wc see that a two-tape malt:hine

347

Figrtre 14.1

I

-
f;tumpl* l4,S Irr Sections 5.2 arrcl 6.3 we cliscussecl the rncmbership problem for t:onrext-

free larrgrrages. If we take tlx: Iength of the inprrt string tt as the problr:m
size n, then the exhaustive st:arr:h method has compklxitv O (n M)

, where M
depends otr thcl gramma,l:. T'he nore elflir:ient CYK algorithrn him urmplexity
O ("'). Both thcse algorithrns are cletcrministic.

A nondeterrnirristic a,lgorithrn for this problem proceeds by sirnply guess-
ing which sequenc() of productions is applir:d in the derivalion of rr. If we
work with a gralrlllrirr th.r.t has no unit or .\-productions, the Ierrgth of the
dtlrivtr,tion is essentially l,rlrl, so we have an O (n) algorithm.

I

Fr(qffiFl$ l4;4 We uow introcltrc:c the satisfiability problern, which plays an irnporta,nt
role in complexity thexrrv.

A logic or boolcla,n ,,.rnsta,rrt or variablc is one tha,t can take orr exar:tly
twtt vtrlues, true or firlse, which we will denotc: tly I and 0, respecl,ively.
Botlletr,n operators are thcrr used to combine booklan rxrnstants a1d variafles
irrttl bclolea,n expressiorts. The simplest boolearr oprltltclrs are or, denoted
by V a,rrd defined by

0 V 1 : 1 V 0 = l V l : l

0 V 0 : 0 ,

(b) Tapes aftcr copying of a',s.

348 Chopter l4 Ar'{ IrurRonucrIoN l'o CoMPITTATIONAL Cotr,tplnxlrv

rr,nd tlrtl artd operation (n) definecl by

0 A 0 : 0 n : L : 1 A 0 : 0 ,

1 z \ 1 : 1 ,

Also needed is ne.gat'ion, dettoted by a ba,r, and definecl by

0 : 1 ,

t : 0 .

We consider rurw boolea,rt exprt:ssitlrts iu corqiunction normal form. In
this fbrm, we create expressions frotrt variabl€s fi1, 1r2, ..., rrr, starting with

(: : f t A t r A . . . A t 7 . . (14. r)

Tlre terms ti,ti,...,fk trr() t:reated by or-ing together variables tr,ilrl their

nrrgation, that is,

I i : . s , V . s m , V . . . V . $ p r (r 4 .2)

wlrere each El.srr,...,.9p stands for somtl variable or the tregtr,titlrr of a vari-

able.
The satisfiability problem is therr simply sta'ted: givcn atr expression e

in coniurrctive norma,l fbrm, is there an assignrnent of values to tire va,riahlels

rt,Tz,...,t' that will tnake ttrtl value of e true. Rtr rr specific case, lclok irt

e 1 : (7 1 V r 2) n (r 1 v r 3) .

Ther assigntnent rt : 0, fi2 : 1, t3 : I na,kes e1 trtrc: so that tllis expressiclrr
is satisfiable. On tht: otlter haucl,

c2 : (r 1V r2)Az r A rz

is not satisfirr,blt: btlcause every a,ssignrnc:rrt lbr l,he variables flr irlrd z2 will

make e2 fa,lsc.
A dr:tr:rrninistic algorithm for the satisfiability problcxn is easy to dis-

cover. Wu take: all possible va,lltcs ftll the variables rr , ff2, ..., t'r, alrd evaluate

the exprrlssiotr. Siuce there a,rtl 2t' such choices, this t:xhiruslive approa't:h
iras r:xporrential tinre compk:xity,

Agaitr, the nondeterurirristic: approaclt simplifics rrtatlers, If e is satisfi-

itble, we guess the va,ltrc of citch r i and then evir,hrir.tc: e. 'flils is essentially irrr

O (n) algorithrn. As irr Exarnple 14.3, we hirvt: ir deterttriuistic exhaustive

sea,rch a,lgrlritlrrn whose complexity is exponetrtial and a lirrear uotrdeter-

rninistic orrt:. However, urrlike tht: llrtlvious exa,tttllle, we dtl rr<lt ktrow of any
norr()xl)()rtential deterministit: algclrit,hm,

I

14.2 'I'uRrNcl MecHrrues erur Col,tprnxrlv

These exarnples suggc:st thrlt complexity cluestions are affectcrl try the
type of Ttrring tnar:hirrt: w() ll$e a,nd tha,t the issue of deterrnirrisrrr v()r$llti
noncleterminism is a partir:ularly r:nrr:ial one. Exa,rnple 14.1 suggests that
a.lgorithrns for a rnultitapc rnirr:hine may be reasonably close to what wt:
uright use when we prograrrr irr ir rxlrnputer language. For this reason, we
will rrse a, nrultitape T\-rring rnachinrl iLs orrr model for stuclying cornplexity
issutls.

For the tlxur(:ise$ in this set, assume that the Thriru rrrirr:hirrcs involved are
all deterrrfnistir:.

I . Find a, linear-timc algorithrn lor rnernbers]rip in {tlur: ru E {a,b}.} using a
two-tape Turing machine. Wha,t is thc Lrest, you could expect on a one-tape
macirinc?

Show that any cornputation that can be performed on a singlc-tapc, off-line
'llrring machine in titre 0 (T (rr)) also r:an be perfornred on a standard Turing
rnar:hine in t imc O (? (n)),

Show that any txrrnglrtation that ca,n be pcrformcd on a standard Tfring
tnachitre in tirne O Q (n,)) also can be performcd on a Turing machine with
one semi-infinitc tapc in tiue O (T (n)).

lihow tltat any t:ornJlrtation that can be performcd on a t,wo-tape rrrachirre
in t imc O(Z(n)) catr be perforrnerl orr a standarcJ' l \rr irrg machinc in t ime
o (" ' � (n)) .

Rewrite the boolcan cxprcsslon

(r r Ar r) Vn i l

in conjunctivc nornral lbrrn.

6. Dctertuine whether or rrot the expression

(rr vr.; vrr) n (r1v:r2 vn 3) n (nr vnr vn3)

is satisliable.

7, Irr Example l4.2 we claimcd that thc first algorithtn harl tirne trrmplex-
ity 0 (rr,'�) antl the $et:onrl O (n,). ()a,n wc. bc morc precise and rdairrr that
T (n):(.) (t l2) f trr the f irst t :ase, and T'("): O (n) for thc scconcl ' l I Iow this
strcngthen the argutrretrt in Exarnple I4.2?

349

a)

s.

4 .

5 .

350 Chopter l4 Aru IN'r'Rot)uc'I'Ior't ro Co\,IIUTATIONAL Corvet,r:xIrv

Longuoge Fomi l ies ond Complex i ty C losses

In the Chomsky hicrirrr:hy for language classifica,tion, we assctc:iate language
fa,milies with clir.ssos of inrtornata, wltere each cla,ss of arttomir.til is deflned by
the natrrre of its tt:trrporary storage, Another way of t:lir,ssifyirrg latrguages is
to usc a Thrittg tnachiue of a 1ra,rticrrlar typc but corrsider tiute complexity
rr distinguishing factor, To do so, wc first clefitre the time complexity of tr
language.

ritsof'1.1ini, ir lolllll."f'i,,ir

Wu sa,y that a Thring machine accepts a langrrrr,ge .L irr tirrre T (n) if every ?u
in.L with lrl < r, is accepted inO(T (z)) moves. If M is trondeterministit:,
tlris implies tha,t for ()v{}ry 'u € L, t}rere is at lea,st one $eqlrenctl of rrroves of
lcrrgth O (Z (ltul)) that leads to accepta,nrx.

A lrrrrguage.L is said to be a tnember of the cla,ss DTIME (f (")) if there
exists a deterrrrinistic mrrltitape Tirrirrg rnachirre tltat accepts .L in time
T (n \ .

A lir.nguirgc.L is said to be a member of the cla,ss NTIME (f (n)) if
there t:xists a rrorrdeterrninistic rmrltitape T[rring mar:hine that atrepts -L in
tirne T (n).

Some relatiorrs between theser rxlrnplc:xity classes such as

DT |ME (r (')) c NT IME (7 - (")) ,

and

T1(n,) : O (T. .2(n))

irnplies

DTIME (ri (")) c DTIME (Tz (n)),

n,re obviolrs, llrt frorn here the situation gets obscure quickly. Whtr,t wt) r:arr
say is th.r.t a,s tlrtl order of T (z) increases, we take in progressively morr:
languirgc:s.

14,3 Lalrcuecn Fauu,rps enn CourlExrrrr Classns 851

For every integer A > 1,

DTIME ('"*) . DTIMn (t**t) .

Proof: This follows from a result in Hopcroft and Ullman (1979, p.
299). r

The conclusion we can clraw frorn thiu is that there are sorne larrguages
thrlt ca,n be accepted in tirne z? for which there is no linear merrrber-
slrip nlgorithm, that there are languagcs in DTIMH (n3) that are not irr
DTIME (n2), and so on, This gives us iln inlinite number of nested com*
plexity classes. We gct cvcn more if we allow exponerrtial timt+ complexitv.
In fhct, there is no limit to this; no matter how rapidly the cornplcxity
firnction 7(n) grows, there is alwrrys sornething outside DTIME (f (")).

There is no tota,l Ttrring computable function / (n) srrt:h that every recursive
larrguagcr is in DT I M E (f (n)) .

Proof: Consirlt:r the a,lphabet X : {0, 1}, wit}r all strirrgs in X+ arranged
in proper otder'u1,trzt....AIso, assume that we have a proper ordering for
the T\rring rnachines it M1, Mz,....

Assume now that the function / (n) irr the statement of the theorem
exists. Wt: ca,n then define the Ianguage

7 - {tut: M, does not accept ,rl i in f (lur;l) steps} . (1 4 . 3)

We cla,im that .L is recursive. To see this, r:onsider any ur f tr and compute
first / (lurl). By assuming that / is a tota,l T\rring computable function, this
is posuible. We next find the position i of u,' in the sequence 101,r1t2,.... This
is also possibk: bet:arr$e the sequence is in proper order. Whcn wr: have i, we
find M. and let, it operate orr to fbr /(lr,l) steps. This will tell us whether
or not zu is in -L, so is recursive.

But we carr n()w show tha,t.L is not irt D'I ' IME (/(")). Suppose it
were. Since.L is recrrrsivt:, thert: is some M6, such that tr: L(Mn). IslL.ln
in,L? If we clairn that'ur1. is in -L, then M6 accepts trrp in /(ltrr6l) steps.
This is because L € DTIME (/ (")) and every w e L is accepted by M6 irr
time / (ltrrl). But this corrtradir;ts (14.3). Conversely, we get a contradiction
if we assume that ** # L. The irurbility to resolve this issue is a typical
diagonalization result and leads us to conclrrde that the origina,l assurnption,
namely the existence of a computable / (z), must be false. I

-

Theorern 14.1 rr,nd 14.2 allow us to make various clairrn, for example,
that there is a language in DTI M E (na) ttrat is not in DTi M E (nB). et-
though this may be of thcorctical interest, it is not clear that such a result

#

352 Chopter l4 Arq INrnotrtrc'tIou ro ClonrurlTtoNAI- Coltplnxlrv

ha,s any pr:r,ctical sigtrificance. At this point, we have no t:hrtl wltat the
r:Irirracteristics of a, la,ngrra,gt: fu DT'IME (na) might bc. We can get a little

rrrore insight into thc matter if we rela'te the c:omplcxity classification to tht:

languages in the Chornsky hierarchy. We will krok irt sotne simple exa,mplc:s
tlrrrt give sorne of the mrlrc cltrvious results.

Ilvery regular language can be rerxlgrriztxl by a det,ermittistic finitt: autorna-
torr irr titrte proportiona,l to tlrc lcrtgth of the input. Thert:ftrre

Lanc; C DTIME (rt).

Brt, DTIME (n) includes mtrc:h rttore lhatr L6a6. We havc rrlready estab-
Iislxxl in Example 13.7 that tht: c:ttrrtext-free lauguage {a"b' : rr. > 0} can be
rclcogtrized in time O (n,). Tlrc argtrtnetrt given there r:tlrr lltl rrsed for eveu
rnore complicated la,ngrrilges.

I

The non-contcxt-f 'ree language 7': {wu: rr.r € {n,b}.} is f i NTIME(n,).
This is straiglrtftrrward, as we calt recognizt: strirrgs in this langua,ge by thtr
algorithm

1. Ct4ry tlte itrput from the inprrt filc to tape 1. Nondetertninistictr.llv gut:ss

thc rnirldle of this string.

2. Ctlpv the secoud llart to ta,pe 2.

3. Compare the symbols orr tape I and ta'pe 2 one bv tlrrtl.

Clearly all of t lre steps r:an bc dorre in O (lul) t ime, so L e NTIME (n).
Actua,lly, we cirrr show tltal L € DTIME (n,) if wtr c:arr devise au algo-

rithm for flnding tlx: rnitltlle of a string in O (n) tirntr. TIds can be done:
we look at ea,ch syrntlol orr tape 1, keeping a count on talrc 2, but couuting
only every seconrl syrrrbol. We leave the details tls iln t:xercise.

I

It follows fiorn Exarnple 14.2 that

[,cp { DTIME (n:])

Lar E NTIME (n) .

e*ompte i ; ,$,

f *innpidlilUildlt

and

14.4 THn Coupr,nxlly Cl.,l,sses P nrul NP 353

Consider now the family of context-srlrrsitive languages. Exhaustive searc;lr
parsing is possible here also since at every step only a; limited number of
productions are applicirtrkr. Therefore, every string of lcngth n can be parsed
in time n,M, where M clcpcncls on the granurrar, Note, hrlwever, tha,t we
ca"rrnot claim from this that

Lcs c DTIME (nM)

because we cannot prrt arr upper bound on M.
I

Frorr these exa,mples we note a trrlrrrl: as 7 (n,) increases, more and
nrore of thc fermilies L,R1G, Lcn, Lcs arcl txlvered. But tlte connectiorr
between the Chomsky hiera,rchy and the corrrplcxity r:lilsses is tenuous and
not verv clear.

1. Cotrplete the argumcnt in Example 14.5.

2 . S h o w t h a t . L : { w w d w : w € { u , , 4 } + } i s i n D T I M E (n) .

Show that 1, : {www : tr € {a, b}+ } is in DTI M h) (n),

Show that thcrc are langutr,ges that are not in NT'IMfl (2").

ffiffiffi*ffiffi The Complexity Closses P ond NP
Sincc the a,ttempt to produce meaningful hicrarr:hics virr, time-complexities
witlt differcrrt growth rates a,ppears to lre unproductivrl, lct us ignore some
f'actors that are less irrrportirnt, ftrr example by removing sorne urrirrtercsting
distinctions, such as that betweert DTIME (nft) and DTIME (rzh+l). We
(rfirr argue that the difference between, say, DTIME (n) and DTIME (n2)
is trot fundamcntal, since some of it depends on the specific modtrl of TtringE
machine we have: (rr.g., how ma,ny tapes), and it is not a priori clear which
model is most appropriate frrr ir real computer. This leads us to consider
the famous corrrplclxity c:lir^rs

p - U D T r M E (n t) .
rl) I

This r:la,ss includes all languages that are accepted by some deterministic
T\-rring machine in polynornial tirne, without arry rcgard to the degree of the
polytrotnial. As we htr,ve a,lready seen, .L466; and .Lcrp are in P.

3 .

4 .

354 Chopter l4 Ar'r lrutRoouctIoN To CoMPITTATIoNAL Couplnxtrv

Since the distinction bctween deterministir: irrrd noldeterministit: txtrn-

plexity classes a,ppear$ to bc fundamenta,l, wtl irlso int,roduce

NP : ! I'rzrua ("t) .

Ohviously

P g N P ,

but whtlt is rrot known is if this c:orrtainment is proper. Whilc it is generally

believrxl that there are sorne ltr.rrguirges in NP that are not irr P, no one has
yct fourrd an exanrple of this.

I'he interest in these complexity classtltt, particularly in the clilss P,

come$ fiorn arr at,tempt to distingrrish between realistic and urrrcalistic cotn-
prrtatiorrs. Certain comprrtir.tiorrs, alLhough theoretictr,llv possible, have such
high resource requiremrlrrts that in practice they mrrst tlc: rejected as unreal-
istic on existing computtrrs, irs well as on supercomptrtt:rs yet to be designed.

Such problems are sorrxrtirncs called intractable to irrtlicate that, while in

prirrciple cornputable, thrrrc is rro realistic hope of tr, prirctical algorithm.
To utrdersLand this bettelr, c:ornputer scientists have ir.ttt:rnpted to put the
itlea of intracta,bility orr ir formal basis, One atternpt to defile the term
intractable is ma.dc irr what is generally called thc Cook-Karp thesis. In

the Cook-Ka.rp thesis, a problem that is in P is called [racta,ble, and onc
thnt is not is said to be intra,ctnbkt.

Is the Cook-Knrp thc:sis a good way of separir.tirrg problems we c&n
work with rea,Iistic:a,1ly frotn l,hose we ca,nnot'l The answer is not clear-
cut. Obviouslv, rrny rxrrnputation that is not in P hirs tirtre complexity that
grows faster tha,n ilrry llolytrornial, and its require:trcrtts will increase very
quickly with the probletn size. Even for a, firnctiort like 20'1", this will be
excessive fbr large ?r, say rz) 1000, and wc rrriglrt feel justified in ca,ll-
ing a. prohlcrtt with this complexity intra.c:table. But what a,bout problcrns

tlrat are il D'I'IME (n,too)f While the Cook-Karp thesis t:a,lls suclt a prob-

Iem tra,ctable, rlrrc srrrely cannot do much with it even for small n'. The
jrrstificntion for tlte Cook-Karp thesis sccrns to lie in the empirical obscrva-

tiorr tlrat tnost practical problems irr P are h DTIME (n), DTIME (rf),

or DTIME (rz3), while thosc outside this class tetrd to havc exponential

crrtrplexities. Among practica,l prcibletns, a clear distinction exists between

llroblems in P and those not irt P.
The study of the rela,tiorr between the complexity cltt^sscs P and NP

has generated partir:ular irrterest alnoltg computer scientists. At the root of
this is the question whcthtlr or trot

P : N P .

This is one of the funda,mental urrsolved problems iu the theory of corn-
putation. To explore it, cxrmputer scientists have introducerrl a variety of

14.4 THU Col, lplnxrry Cllessns P aNn NP

related concepts and questions. Orre of them is the idea of an NP-<:omplete
problern. Loosely speaking, an NP-complete problem is one that is as hirrcl
as any NP problem and in sorrre sen$e is equivalent to all of thern. Wha.t
this rrreans ha,s to be explained.

llM

A ltr"nguage,Ll is said to be polynomial-time reducible to sorne lirrrgrra,ge
.L2 if there exists a determirilstic T\rring ma,chine by which an1' u1 irr thr: al-
phabet of "L1 can be transfonned irr polynomial time to a tu2 in the alphabet
of .L2 in such a way that w1 € L1 if nnd only if w2 €. L2.

355

Florr this we see
L2 e P, therr .L1 e P.

is polyrromial-time reducible to .L2, arrd if
i f Lz e NP, thcrr trr E NP.

that if .Lr
Similarly,

Definition 14.4

Iangrrage /, is said to be NP*corrrplct<: if I e NP and if every .L/ e NP
polynomia,l-time reducible to .L.

It follows easily frorn these definitions that if sorne .L1 is NP-txrmplete

ruljn",T,'1l-H:til,"*j#l"ll'-';*.-'r'J::'::,T*,liliill-,lli#i-''Ji.
tinte algorithm f'or any NP-cornplete larrguage, therr cvcry la,ngrrage in NP
is also in P, tha,t is

P : N P .

This puts NP-cornpltlterrttss in tr, central role for the study of this tpcstion.

a' be vir:w.rl a,s a language problem, We e'cocle
specific instances as a string that is actrrpted if and only if the expression is
satisfinble. This problem is NP-complett:. The staltement tha,t the satisfia-
bility problem is NP-complete is known as Cookts theorern, rr, discussion
of which t:irrr be fcrund in Hopcroft and Ullman (1979).

I

In addition to the satisfiability problern, a largc rurrrrber of other NP-
complete probltrms have heen found. For all of thenr we carr lirrd txponuntirrl

A
is

356 Chopter l4 Arrr lrutRopucuoN ro CoN4r,urATIoNAL Cotr,lpr,nxIrv

algorithms, but for none of them has anyone discovered a llolynomial-time
algorithm. These failrrres ltlad us to believe that prohably

P I N P ,

t-rut until someone produces an actual language in NP that is not on P

or, alternatively, until someone proves that no such language exists, the
question remains open.

1. Prove the statement that if a larrguage .Lr is NP-complete and polynomial-

time reducible to tr2, then -L.: is also NP-complete.

** 2, Consult books on complexity thcorv, and compile a list of problems that are
NP-cornplete.

3. Is it possible that the question P : NP is undecidable?

S o l u t i o n s q n d

for Selected
Exerc ises

H i n t s

Chopter I
Section 1.1

5. To prove that two sets are equal, wc mrrst show that an eletnetrt is in
the first set if arrd only if it is in the secorrd. Suppose n .€ 51 U Sz,
Then r f 51U,92, which means that r catrnot be in 51 or in 52, that
is r € ,91 tl 52. Conversely, if z € ,9r t'l ,92, then r is uot in 51 and r is
not in 52, that is r e 5r U 52.

6. This can be proven by an induction on the rrumher of sets. Let' Z :

51 U 52... U Sr. Then,9r U,5'z-.. U 5'. U 51",+r : Z l) 5,,.+t. By the stattdard
DeMorgan's law

M : E) 8 , , + t .

assurrrption, thc rclatiorr is true for up to rz sets,

Z :5, n Fr rt ...n-.9*.

Therefore

ZnE,,+l : Sr f-'l 5z fi "'15' I F,+r,

completing the ilductive step.

With the inductivc
that is,

357

358 Alrswnns

Suppose 5r : 52. Then 51 l'-l$2 : ^91 tl 5"2 : ^9r fl^9r = O and tlte entire
expression is the empty set. Srrppose now that St f Sz and that there
is an element r in Sr but not in,5z. Thcn r e Fz so that SL1E1 + fr.
Thc c:ornplete expression carr then not be equal to the empty set.

If r is in ,91 and u is itr ,92, then u is not in (,51 U Sz) - Sz. Because of
this, a rrecessary and sufficient condition is that the two sets be disjoint.

(c) Since

n l n n - L 2 1 ,

n n n n n n

is the product of factors less tlurr or equal orre. Therefore, n! : O (n").

27. An arguilrent by contradiction works. Suppose that 2 - 14 were ratio-
rral. Ttren

2 - r t : n

WL

gives

\/t =

contradicting the fact that V2 is not rational.

By induction. Suppose that every integer less than z can he written as
a product of primes. If z is a prirne, there is nothirrg to prove, if not, it
carr be writterr as the oroduct

R,: ? ' tyTL2

where hoth factors are less than n. By the inductive assumption, they
both can be writterr a*s the prochrct of primes, and so can rt,.

Section 1.2

2. Many string identities can be proven by induction. Suppose that (zu) R :

ufuft for all u € E* and all u of length rz. Take now a string of length
rr { 1,, say ur : ua. Then(.,,) * : r#;;;,,il",,T,J,,,_;,,__"_,",fi ;::_"
By indrrction then, the result holds for all strings.

8 .

L2,

15.

2 m - n

n1,

Solu:uorvs nNn llrnrs pon Snlncrnr Exlln,crsus S59

4. Sitrce abaabu.o.uba.u. t:ilrr bu decomposed into strings ab,e,e,baa,ab,aa,
eaclr of which is iri -L, thc string is in tr*. Similarly, baaaaabaa is in L*.
However, there is no possiblcl rlt:r:omposition frrr haaaaabaaaab, so this
string is not in I*.

10. (d) Wc first go'nerrrte three c,'s, then add an arbitrary nurnber of a's ancl
bts arrywhcrtl.

S --+ AaAaAaA

A - aAlbAlA

The first productiorr grlrrcratcs three a's. The secorrd can generate any
number of ats and b's in atry posititln. This shows tha,t the grammar
can geuerate atry string trr € {4, b}* rrs klrrg ir.s n,, (ru,) } 3.

1 1 .

S + a A + a b S + o . b a A + a b u b S

fiom which we see that

L(G) : { (ob)" : n , > 0} .

13. (a) Generate one b, then an equal number of ats and bts, finally a.s rrrarry
more b's as needei.

S --+ AbA

A -+ aAblA

B -, bAlA

13. (d) The arrswer is ca.sic:r to stxr if yorr notice that

Lt : {1""-l:1b"' : ttt } 0} ,

I'his leads to the easy solutiorr

S - aaaA

A - aAbl,\

14. (b) The problem is simplified if you break it into two cases, lrul mod 3 :
1 rr.nd I'rirlmod3 :2. Tlrc first iu cxrvered by

St + aaaStl(t t

thc sec:ond by

Sz - aaaSzlao,

TIte two carr be t:orrtbined irrto a singlc gramrnar by

5 - 51152.

360 ANSWERS

ro. (a) We can use the trick and results of Exantple 1.13. Let .L1 be the
language in Example 1.13 and modify that grammar so that the start
syrnbol is 51. Consider then a $tring u € L. If this string start with
an a, then it ha,s the fbrm ur : o:tltt where trrl e .Lr. This situa,tion can
be taken care of by S -+ rr,$'r. If it starts with a b, it can be derived hv
S --r ^9r5.

Section 1.3

1 .

integer --+ sign magnitrrdtr

s i gn + + l - lA
magnitude - digit I digit magnitrrde

digit --+ 0l1l2l3l4l5l6l7l8le

Tlds can be considered an ideal version of C, ir^s it puts no lirnit
on the Iength of an integer. Most real crompilcr$, though, place a
Iimit on the number of digits.

7. The automatort lus to remember the input for one time period so
that it r:arr bc reproduced for output later. Remembering t:an htt
done by labeling the state with the appropriatc irrforrnatiotr. The
label of the state is then produ<:erd a*s output later.

- (^)

10. We remember inprrt by labcling the states mnemonically. When a set
of three hits is dene, w{: produce output and return to the beginning to
profft$$ tlx: rrext three bits. The following solution is partial, but the
completion shtiulrl trc obvious.

,*,

b/a

/)uo
/-\-''

7q
l \\ r .
)---\./

Y , t)
Vi\

\-)uh

+

1 1 .

SolurroNs AND HrNTs poR Spl,pcteD ExERcrsEs

In this case, the transducer must remember the two preceding input
symbols and make transitions so that the needed information is kept
track of.

362 ANSwERS

Chopter 2
Section 2.1

2. (c) Break it into three cases each with an accepting state: no o'il, t)tltl a,
two a's, three a's. A fourth a will then send the dfa into a non-accepting
trap state. A solution:

n' n' a ' n ' n"o\ t \ t \ t \ , I \ t
, A { A A

+ti]t+il l f+il l l-+il t i+t l

\ / o \ / " \ y ' " \ y ' d \ * J

(a) The first six symbols are checked. If they are not correct, the string
is rejected. If the prefix is correct, we keep track of the last two symbols
read, putting the dfa in an accepting state if the suffix is bb.

o .

7. (a) Use states Iabeled with ltul mod 3. The solution then is quite simple.

Soluttor'rs aNn Hn-rrs FoR SELECTEI ExnRcrsns 363

(d) For this we use nine state, with the first part of each label no (ru) mod B,
the second part rz6(tr)mod3. The transitions and the final states a,re
then simple to figure out.

9. (a) Count consecutive zeros, to get the main part of the dfa.

(}--O-r-O:{}
Then put in additional transitions to keep track of corsecutive zeros
and to trap unacceptable strings.

364 ANSWFTRfi

(d) Here we need to remembcr all contbinations of thrcc bits' This
requires I states pluu sorrrc start-up. The solution is a little long but
rrot hard. A uartial sketr:h of the solutiou is below.

-{;n
\

13. Ttrl tlirsiest way to solve this

{u"' : n,:4}, then complerlt:rrt
probll:rn is to cotrstruct a dfa, fbr L
the solution.

21 . (a) By rxrrrtradictiorr. Suppose G1a has no cycies in arry patlt from the
initia,l sta,tc: to any final state. Then every wa,lk ha*s a, Iirrite trumber of
stcps, arrrl so every accepted string ha,s to ber of firrite length. But this
irnplies that t,he language is finite.

(h) AIso by cortttaclictiou, Assutne that (J,14 ha,s $otrc c:ycle in a path
f'rorn thel irritial staLe to sotne accepting utir,tt:.

'Wt:
carr then use the cycle

to generate an arbitrarily long wa,lk Lr,berlrxl with atr accepted string. But
a finite language ca,nnot c:ontairr a.rtritrarily lotrg stritrgs,

Sot,tj'uor'rs ano Hlr'r'r'snoR Snlnc;rnr FixnRcrsns 365

24. Tltcre il,re many diffcrr:nt solutions. Here is one of tlxlrn.

Section 2.2

4 . d* (qo ,a) : {so , e t ,ez l t ,d* (Qr , t r) : {qu ,qr } .

7. A four-sta'te solutiorr is trivial, but it takes a little expcrirnernting to get
a tlrrr:rr-sta,te one, Herr: is one answer:

r . L

/ \
A a / - \ r n*V-\'_/-\-i

No. T'he strirrg a,hc lia,s three diffi:rent symlrols arrcl tlxrre is no way this
r:iln he accepted with f'ewer than tlrrcc utates,

This is the kind of problem in which ylrr jrrst]rave to try diffcrcnt ways.
Prohalbly rnost of youl tries will not work. Here is one that doos.

17. Introduce ir sirrgle sta,rting sLate p6. Then add a transitiorr

d (P6' . \) = gu.

Next, rerrrtlvc ster,rting state status frrim Qe, It is straightfrlrward to see
thnt the new nfa is rxlriva,lent to the origina,l one.

1 5 .

366 ANSwERS

20. Introduce a non-accepting trap state and make all undefined transitions

to this new state. Solution:

Section 2.3

2. Just follow the procedure nfa-to-dfa. This gives the dfa

7. Introduce a new final state p1 and for every g € F add the transitions

d (q, A) : {prr .

Then make ?7 the only final state. It is a sirnple matter then to ar-

gue that if d* (qs, w) e F originally, then d* (qo,r) : {pf } afber the

modification, so both the original and the modifies nfa'$ are equivalent.

Since this construction requires tr-trarrsitions, it cannot be made for

dfa's. Generally it is impossible to have only one final state itr a dfa,

as can be seen by constructing dfa's that accept {I'o}.

Sol,uttolrs er'ro Hrr-rTS ron Snr,ecrpo ExeRcrsns 367

8. Getting an answer requires some thought. One stllution is

a , b_ffi
h

lL. Suppose that .L : {trrr, wz,...w^}. Then the nfa

acceptsw,, fr- - - - - - - - = + { t t l\r'

accepts -L, so the language is regular.

14. This is not easy to see. The trick is to use a dfa for tr and modify it so
that it remembers if it has read an even or an odd number of symbols.
This can be done by doubling the rrumber of states and adding O or E
to the labels. For example, if part of the dfa is

368 ANSwERS

its equivalent becomes

Now replace all transitions from an E state to an O state with .\-

transitions.

With a few examples you should be able to convince yourself that if the
original dfa accepts a4o,2&3o'4, the new automaton will accept tra2.\aa'..,
and therefore eaen(L).

15. Suppose we have a dfa that accepts tr' We then

(a) identify all states Q ttrat can be reached from gs, reading any two-
symbol prefix u, that is

Q : { S e Q : d * (g o , u) * q i .

(b) introduce a new initial state p0 and add

d (Ps,,\) : Q.

It should not be hard to see that the new nfa accepts chopz(L).

Although the constructiorr is plausible, a complete answer requires a
proof of the last statement.

SoLurroNs eNn HINrs rron Sunc.r.l;D Exnncrsns 369

Section 2.4

2' (c)

@"*64__r_@___@*G)
Tlris is rninimal for the firllowing reasorr. % f F and qa € F, so (3 and
ga are distinguishable. Ncxt, d* (Sr,o) # -F tr.nd d* (qo, a) € h-, sr) e2 and
Qa are distinguishable. Sirnilrr,rly, d* (qr, uu,) f F and d* (q,uu) e F,
ur) Q1 and {3 are distinguishable. Continuing this way, we see that all
statcs ir,re distinguishable and therefore the dfa is minirrml.

First, rerrrove the inaccessible states {2 and 4a. T}ren use the procerhrre
marh to firxl the indistinguishable pairs (go,gr) arrd (g3,gr), This thcn
gives the rrrinimal dfa.

By contracliction. Assume that -il[- is not minirnal. Then we can corr-
struct a srnallcr dfa M that accepts T. tnffi, cornplerntrnt the final state
set to give a dfa fbr .L. But this dfa is smaller than M, contradictiru
the a,ssumption that M is minirnal.

By contradiction. Assume that q6 ir,nd q. are indistirrguisha,hle. Since go
a.nd q6 are indistirrguishable and indistingrrishability is arr equivalence
relatiorr (Exercise 7), qo ancl g,, must be irrdistirrgrrishable.

Chopfer 3
Section 3.1

2. Yes, treca,use ((o+ t)(0+ 1).). denotes arry string of 0's ancl 1's. $o
does (0 + 1)-.

5. (a) Separate irrtrl ruNes ???:0, 1,2,3. (Ienerate 4 or rrrore a'$, fbllowed
by the requisite nunrber of b's. Solutiott: uaa(1,(1,* (A + b + bb + bblt).
(r:) The complernerrt of the language irr 5(a) is harder to find. A utring
is not in L If it is of tlxl fbrm o,t'b"", with either rz { 4 or rrz > 3, brrt

6 .

10.

370 ANSWERS

this cloes rrot txrrrrpletely describe Z. We rmrst also ta,kel irr the strings

in which a b is followed by an a. Solution:

(.\ + a + u(r + aaa) b* + u*bbbbb* * (4, * b)* ba (a+ t). .

Spl i t in to three r : i rses: nt , : l ,z) 3 , nZ2, m,7 2,and n, : 1 , r t t ') 3 '

Ea,c:h case has a, strrrightforwarrl solution,

Enumerate irll cases with I'rrl : 2 to get

aa (a * b)* aa I ab (a -f b). o,b * ba, (a 1 b)* ba + hb (a * b). bb.

(c) You just have to get in each symbol at lcast once. The tcrrn

(a + b * c) * a (a * b * c) * b (a + h+ c) * c (a + b + rN -

will do this, but is not enorrgh since the a, will precede tht: b, etc, For

the completc solution you rilust genera,te all permutations of the three

symbols, givirrg six terms that cau be adrltxl. The answcr, although

quite lorrg, is conceptua,lly rrot hard'

(c) Create two 0's, interspersed with l's, then rcpeat' But don't fbrget

the case when there are no 0's at all. Sohrtion: (1*01.01.)* + 1*.

(a) Create all strirrgs of length tlree and repeer,t. A short sohrtiorr is

((a + b+ c) (a + b + r) (a * b+ c)) . .

(c) The staternent

(r '1 * 12) . = (r '1*r '2*)*

is true, Bv thc given rules (r1 +rt)* denotes the langua,ge (I(r1)u

tr ("r))., that is the set tlf all strings of arbitrary cont:er,tcrrations of ele-

ments of .L (r1) anr l L (r r) .Br . r t (r1; r2*)* denotes ((r , (" r)) - (I (" r)) .) . ,

which is the same set.

The expresSiorr for an infinittl latrguage mgst involve at least rlrre starred

subexpressiorr, otherwise it r:arr only denote Iirrite striugs. If there is one

starrecl sullexpression tha,t tlenotes a non-errtpty string, then this string

ca,n be rcpeated as often as desired and thcrefore denote arbitrarily long

strings.

A closecl gorrtour will be gcntlrated by an expressiou r if tr.nd only if

n1 (r) : n", (r ') and nu (r) : na (r).

9 .

12 .

14.

15.

16 .

18.

2L,

23.

Solurlons .c,ND Hrr-rrs FoR SELECTEo ExeRcrsns BZl

25. Notice several things. The bit string must be at least 6 bits long. If it
is longer than 6 bits, its value is at least 64, so arrything will clo. If it is
exactly 6 bits, then either the second bit fiom the left (16) or the thircl
bit from the left (8) must be 1. If you sec this, then the solution

(111 + 110 + 101) (o+ 1) (0 + 1) (o + 1) +
1 (0 + 1) (0 + 1) (0 + 1) (1 + 0) (1 + 0) (1 + 0) (t + 0) .

readily suggests itself.

Section 3.2

S. This can be solved from first principles, without going through the
regular expression-to-nfa construction. The latter will of course work,
but gives a more cornplicated answcr. Solution:

4. (a) Start with

Then use the nfa-to-dfa algorithm in a routirre rrranner.

372 ANSWERS

7. One case is

n
l l t
\ ir'-----\
}{

(rr)--"-----*(I)\+/

11

Since there is no path from qj to qa, the edges in the general case created

by such a path are omitted. The result, gotten by looking at aJI possible:

paths, is

Ou.o
\ /
t /

qlL **19

The other case can be analyzed in a similar manner.

E. Removing the middle vertex gives

b b + a h

The language accepted then is ,L (r) where r : a* (a + b) ab (bb * ab*

o.a* (a I b) ab)
-
.

10. (b) First, we have to modify the nfa so that it satisfies the conditions

imposed by the construction in Theorern 3.2, one of which is qs f F.

This is easily done.

(ab) + (aa + h)(ba)t bb

0
-ai}-r-o

\---l
\/

The regular exprelssion then is r' : (ab * (aa + tr) (Oo)- OA-)
-
.

17' (a) This is a hard pr.blem until yorr see the trick. start with a clfa
witlr states eotett,.,t irrrd introduce a "parallel" autorrraton with states
Q0,4t,.... Then arrange matters scl that the spurirlrs symbol nondettlr-
ministically transfers f'rom any state of the original automaton to the
corresponding state irr the parallel part. For exarnple, if pa,rt of the
original dfa looks like

SoLUTroNs nr'ro HrNrs r,.on Snr,ncrnl ExnRcrsns BZB

Therr rernove statrl 3.

a a + b

Next, removcl state 4.

tltett the dfa with its para,llel will be arr rrfh whose corresponding part
is

It is not hard to nrakc the argurnerrt that the original dfa rrccepts .L if
arrd only if the corrstnrcted nfa accepts i,nsert(L).

374 ANSWER,S

Section 3.3

a. Right linear grarrrrrrar:

S - a a A

A - aA lB

ts - bbbG

C - bClA

Left Jinear gramma,r:

S -+ Abbb

A'-+ AblB

B --+ aaU

C --i a(.J1.\

we (:arr show by irxlrrction that if tu is a sententirrl form derivtxl with

G, thcrr t tR can be <lcrived in the sirrrre number of steps by G.

Beciilrse ur is cretr,tetl with left lincar derivations, it Inust have the

form ur : Awr, with A € V andrur e T*. By the inductive assumptiorr

wR : u,FA can be derived via G. If wc now apply A --+ Bu, then

w 1 Btnttl,

But 8 contairrs the rule A ---, uRB, so we (larl tnake the dcrivation

ll,R -- wfuRB

: (Buw)R

completing the inductive steP.

Split this into two cases: (i) z and rn are both even and (ii) rr and rn

are both odrl. The solutiorr then falls out eir"sily, with

5 --+ aaSlA

A + bbAl l

tnkirrg care of casc (i).

rZ. (a) First constnrct a dfa fbr -L. This is straiglrtforward and gives tran-

sitious such a^s

d (qu, o) : q1, d (qu,b) : ,1,

d (qr, o) : (1o,5 (qt, b) : qr

d (qr, o) : t1:1, d (q2,b) * Qo

d (gs, a) : e2,6 (qr , b) : gr

t .

lo .

SoLU'r'roNs nr'rn HrNrs poR Sur,eflret ExnRcrsns 378

with qs the initial and final state. Therr thc' construction of Theorcm
3.4 gives the answer

qs _, aq1 lbg2l ,\

qr --+ bqnlaqo

qz - aqtlhrlo

Qz - tulzlbQt

16. Obviously, 51 is regrrlar as is 52. We can show that their union is also
regular by constructing tlrc f'ollowing dfa.

\ Ff^f"'L(qtl

The condition that V1 ancl V2 should be disjoirrt is cssential so that the
two nfa's are distinct.

Chopter 4
Section 4.1

2. (rr) The construction is straightforward, but tedious. A dfa for
L ((a + b) a.) is given by

d (qo, a) : qr , d (qo, l r) : gr , l i (gr , a) : qr , 6 (h,b) : q t ,

with q1 a trap sta,te and final state 91. A dfa for ,L(baa.) is given by

d (po, n) : pt,6 (po,b) : pl,6 (p1ra) : pz,

,f (pr, b) : Ft,6 (pz, a) : pzl6 (pz, b) : p,

with Iirral stir.te p2. Flom this we find

d ((so ,po) , a) : (h ,p r) , . 1 ((q , r , po) , b) : (q r , p t) ,
d ((q t , p t) , a) : (q t , pz) , d ((s r , p r) , a) : (q r , pz) ,

etc. When we complete this construction, we see that the only firral
utate is (qr,pr) and that L ((u + b) a.) n L (baa*) : baa* .

376 Ar-rswHlrs

7. Notice that

nor (I '1, Lz) : L1l-) L2.

Tlrtl result then follows frorrr closure under irrtt:rsection and complcrntltr-
tir,tiorr.

12. The an$wcr is yes. It can be olrtairrecl by sta'rting fiorn the set identity

Lz = ((Lr u.Lz) n Zi) u (r ' 1rz) .

Tlre key observer,tiorr is that sitrce tr1 is Iirrite, L1 tt l'2 is finite atrd

therefore reElrlirr for all tr2. The rest ttrett follows easily fiorn the known

closures unrlcr uttiott antl compl(lrrxlrrtatiotr'

14. By closurc urtcler reversa,l, .Lft is regular. The resr.rlt tht:n follows fronr

closure untler cottcateuation.

16. Use trr : X*. Therr, fbr aIV tr2, LylL2: X*, which is regula,r. Tlrt:
given statement would then imply tha,t :r,ny .L2 is regular'

18. We cim use the following construction. Find a,ll sta,tcs P suclt that there
is a path fiom tlrt: ittitial vertex to somt: elertrent of P' and fitlrn tltat

elenent to a, final state. Then make every tllrlrrrent of P a fina,l sta,tt:.

26. Suppose (Jr :1yt ,7,5r ,Pr) and Gz : (Vz,T,52,P2)- Wi thorr t loss of
genertr,lity, we calt a"ssume that yl arrd V2 are disjoint. Corntlirre the two
gra,mmars aild

(a) Make 5 the new sttr.rt sytrtbol and add prodrrt:tiorrs.9 - 51 lS2'
(b) ln P1 , replace cvury production of the flrrrn A+ frt with A € y1

a t r d r € ? * , b y A + : r S z .

(c) In Pr, replar:t: every production of thc forrn A+ rt with A e V1,
ir,nd z € 7*, by A - r:Sr.

Section 4.2

1. $ince by -Exarnple 4.'l L1 - L2 is regular, there exists a' rrtetnbership

algorithrn for it.

2, If Lt c .L2, thetr L1l L2: Jlz. Sint:c L1l L2 is regular and wtl have att

algoritlrrn fbr set equality, wer illstt have att algorithm for sct irrclusion,

5. Frotn the clfa ftrr.L, cotrstruct the tifa for -Lft, usitrg the constnrt:titlrt
suggested in Thcorern 4.2. Then use thc rxprality algorithm in Thcxrretrt

4.7.

12. Htrrc you need a little trick. If .L contains Ilo even length strings, theu

L n L ((u.u1 ab * ba I bb).) = a.

The Ieft side is regula,r, $o we can use Theorem 4.6.

Soluuons .qxo Hrw,r.s r..on Selncrrnn Exnncrsns 377

Section 4.3

2. For the dfa ftrr -L to l)r(x:e$rJ the middle string u reqrrirt:s ir. wa,lk in
the transition graph of lt:rrgth lul. If this is longer than thc rurrnber
of sta,tes in the clfa, Lhere rmrst bc ir, crycle labeled E in this walk. But
r:leir,rly this cycle can be repcatrxl a,s often as desired wilhout charrgirrg
the acceptability of a strirrg.

4, (a) Givcxr rn, pir:k rt.t: ettzb't 'a2"', The strirrg,ry rmrst then he aa and
the putnpcxl strings will be

'ut; : a,m't
(i'* I)k r,rnt

O2rn,

If we ta,ke i) 2 then nL+('i - i)ft > rn, then u; is not in /:.

(e) It does not seern easy to apply tht: prrmping lerrrma, directly, so we
prcltxlerd indirectly. Suppose that 1, wert: rrlgrrhlr. Then by the closure
of regular languages under c:ornlllrlrnonttr,tion, Z would also be regular.
Brrt Z : {to ; n,o(w): no (u)} whit:h, rrs is ea"ri ly shown, is not regular.
By contradiction, .L is not regular.

5. (a) Ibke p to bt: tlxr srna,llest prime number greater or tlqrrirl to rn rr,nd
clroose 'Lt) : trP. Now ig is a, string of a's of length fr;, so lhat

wi : aP+ \ i - t) h .

I f we take i - 1 : p , th t , r r r p+ (i * 1) fu : p(h+ 1) is composi te arx l
Irtplr is nclt irr ttn lirngrrir,ge.

Tlre prolrosition is false. As a courttc:rtlxilmple, ta,ke L1 : {a"b* : n, 1 m,}
tr,rrrl L2 *

{att6nt ; n, > rn}, bot}r of whic}r arrl rulrr-rcgrrltr,r. But Lrt-lLz :
L(a,*h*), which is regular,

(a,) The Iauguage is regular. This is nxrst qilsily seen by splitting the
problem iuto cases such as l :0 ,h:0, r t > 5, f i r r which one can ea,s i ly
cottstnrr:t rcgrrlilr expressions.

(lr) Tlris lir.ngua,ge is not regula,r. If we choose u : a(Laauab-a,-, our
opporx.'rrt hrr,s severa,l choices. If y consists of orrly o's, we use i : 0 to
violatr: thc txrndition n) 5. If the opponent chooses gr as consistirrg of
b's, we carr thclrr violir,to the condition ft < L

tr is regular. We see this frorn L : h rf .Lf rrnd tlx,r known closures fbr
regular Ia,nguages.

(a) The larrguagc is rcgular, since anv string tha,t has two consecutive
symbols the sarne is in the languagc. A regrrltr,r expreusion for "L is
(a + h) (a * b)- (aa + bb)(a + b) (a + b)..

E.

9 .

1 1 .

1S.

378 ANSwER,S

(b) The language is uot regrtla,r. Take '7,t: (ab)'"'aa(ba)"'. Tlte adver-

sary llow has severir,l r:hoit:cs, such as y : (.ab)k ot ,'tJ : fub)k'a, In the
first case

uro = (nb)--k aa(ba)"'' .

Since the ouly possihlt: idtlntification is ururft = hta,o,ltl , 'tl6 is trot in 1,.
With the second choirur, thc lettgth of u0 is odd, so it r:irtrnot Lre in 1,
either,

Take .Li : tlb' ti : 0, 1, ,.,. For ea,ch ri, -t; is firrite atrd therefbre regtrlirr,
brrt the utriotr of all the langtrilgcs is the notr-regula,r languir.gc tr :

{ a 'b" : rz > 0} .

No, it is not. As cotrttterexantple, take the lir,nguirges

L i : { u i u u f ; : l t r i l = i } u { r . ; r f : l u d l < z } , 2 : 0 , 1 , 2 , . . .

We claim that the rrrriorr of all the .Li is the set {ttrtrrft}. To justify

tlris, take any strirrg z : lttu)Rt with ltul : n,. If rr.) ti, then a E

{uiu,uf ; : lo i l = i } a , r r r l t } rcrefore in.La. I f rz < z, tht rn z e { t t iu f ; lu l l < z} ,
z: {0, 1,2,...} i lntl so also itr -L,;. Consequently, e is irr the uniou of a,l l
t,ht: Li.

Corrversely, take any string.r of lt:rrgtlt rtl that is in a'll of tht:.La. If
we take i greater tha,n m,, .s (:irrrrlot be in {tizuon: ltr, l = i} trec:ause it

is not Iong enough. It must tht:rcfrrrct be in {lr1u,f ; luil < i}, so t}trt it
has the form tutlft.

As the final step we must slrow that for each i,, Liis regultr.r. This
follows from the fa,ct that for circh i tltere are onlv a' finite mrrntttlr of
substrings ui.

15 .

L7 ,

Chopter 5
Section 5.1

a. It is qrritc otrvious that atry string genera,texl by this grarnmar has the
silmc rrurlrber of ots as b's. To show thtr,t thtl llrelix conclition no (u) >

n6 (u) holds, we carry out an induction on thtt lcrrgtlt of ihe derivation.
Suppose that for every sentential fbrm dt:rivcd frotrt 5 itr rt, steps this
corrdition holds. To get a sententirr.l forrn irt rl * 1 steps, we ca'n a,pplv
S - .\ or 5 - 55. Since neitlrtlr of these chatrges the nurnber tlf a's arrd
b's or the location of those irlrt:ir.rly there, the prefix condition txlrrtirlrt:s
to hold. Altcrrratively, we apply S - a5b. This ndds arr extra a attd
an extra b, tlrt sirrce the addecl a is to the left tif tht: adtled b, the prefix
r:orrdition will still be satisfied. Thrru, if tlrtl prefix cotrdition holds after
z steps, it will still hold a,fJer n { 1 stt'ps. Obviously, t}re prefix conditiorr
holds after one step. so we havc a trirsis arrd the induction succeeds.

SoI,urroNs eun Hrrurs poR SslucrHD FlxgRcrsEs 379

7. (a) First, solve the ca$e n, =
done by

m * 3. Then add rnore b's. This can be

S - ttaaA

A + aAblB

B- -+ Bb l I

L2.

15 .

But this is incomple,te since it creates at Ieast tlrree a's. Trr tir,ke care
of the cases z : 0, 1,2, wt: add

5 - A laA laaA

(d) This ha^s arr unexpectedly simple solution

S + aSbb la^9bbblI.

These productions nondeterministically produce either bb or bbb for cach
generatecl a.

(a) For the first c&se rz : ?n arrd ft is arbitrary. This c;rn be achieved by

S t : A C

A + aAbl\

C --+ Ccl,\

In the second case, n, is arbitrary and m 5 h, Here we use

Sz --+ BD

B -+ rr,BlA

D - bDclE

E - Ecl),.

Finally, we start productions with S -t Srl,Sz.

(e) Split the probltlrn into two ()ii*,Je$: n,:h*m and rn: h+rz. The
first case is solved by

5 - a,9c l51l .\

Sr - aSrbltr.

(a) If S derives .L, then ,5r - 55 derives -L2.

It is normally not lrossihle to use a grammar for .L directly to get a
grammar for Z, so we rreed another, hopefully recursive description for

380 ANSWER,S

Z, ttris is a little harrl to stle here. One obvious subset of 1, contains
tire strings of odd length, trrrt this is not all.

Suppose we hrr,ve irrr cv(llt length string tha,t is rrot of the form uuft.
Working fiom thc r:crrtcr to the left and to the right sirrrultaneously,
compare corresporrrling symbols. While some part irroutrd lhe center
ca,n be of tlte forttr wwR , at some point wc get aII a otl tire left and a b
in ther rxrrrcsponding pla,ce on the right, or vice versa. 'I'he string must
tlrcrefore be of the fortn utturRbu rsr ubwwRau with lul * lul. Orrct:
we see tlris, we can then corrstruct grailtlna,rs for these typtls of strittgs.
C)ne sohrtion is

S - ASAIB
A -+ a,lh

B - b](rla]b

C - aCa |bCb lA .

The first two productiotrs geuerate the u and u, thc third the two dis-
agrecirrg symbols, atrd the last the innttrmost palitrdrome.

19. The only possible derivations stirrt witlt

S + aaB + aaAa + aabBba + aabAabu..

But this scrrterrtial form has the suffix abc, so it cer.nnot possibly lead to
the senterntlc aubbabba,

22. E --+ E * E lE.EIE. l(E)l l ls.

Section 5.2

2. A solution irr

S --+ aA, A --+ a.ABlb, ts - b.

Note that the more obvious grammar

5 --+ a^9rB

5r --+ a5rBltr
B - b

is rrot arr s-grammar.

6. There are two lef'tmost derivatiotrs for w : aab.

5 + a a B l a a b

S + A B + A a B l a a B + a , a b .

L

Souluoxs ar'rl HrNrs FoR, SELECTET Exnn.crsns 381

Ftorn thtl dfa for a rcgrrlilr limguagc w(] cirrl gct a rcgulirr gritrnrnat by
the rrtt:thorl rlf Th(xlrcrn 3.4. Thcl grirrnrnirr is itrr s-grittrtrnar except for

{l - .\. But this rulc rlotls rrlt crclatc irrqy arntrigttity. Sirrce the dfa
never has a choice, there is never arry choice in the procluction that can
be applied.

Arntriguity of the grir,mmilr is obviorrs fiom thu rklrivatiorrs

S + a S b + a h

S +,5,9 + abS + ab.

An orltivir,lont rrrril,rnlligrttlrrtt gri.rrnrnirr i$

5 - Al,\
A - aAblabl AA.

It is not ea,sy to see tha,t this grammar is unambiglr()lrir. To rnir.kt: it
plansible, consider the two tvpical situations, ut = aahb, whictr r:ir.rr orrly
be derived by starting with ,4 -n aAb, and ti., * uhab, whitfi carr otrly
be derived stir,rting with A --+ AA. Morc cxrrnplicated strings are built
frorn these two situations, so they can be parsed only in one way.

20. Solution:

S - aAlaAA

A - bAblhh.

Chopter 6

Section 6.1

Use lhe rule in Theorem 6.1 to substitr,rte fbr B irr tirc first grantrnar.
Then B becomes useless and the associated prodtrt:tiorrs c;ilrr be retrtoved.
By Theorems 6.1 and 6.2 thc two grilrnmirrs are equivalent.

The only nullable variable is A, so removing A-prorlx:tiorrs gives

S - -+ uA lu laBB

A - aaAlau

B --+ hClhbC

C - 8 .

C - B is the only unit-prodrrction rr,nd llrnovitrg it results in

f i - -+ uAlalaBB

A + ae,Ala,a

B --+ b}lbbl

C --+ bClbb1.

r4.

3.

, l i
h
,,fi

'?

' i * h l
' r |

f i
A

\,s

b

i", d"*\>
'8 yl

a?

382 ArqswnRs

Finally, B and d ere useltltss, so we get

S - uAl(r

A -- aaAlaa.

The language generated hv this grarrrrrrar is I ((aa)- a) .

14. An exa,mple is

21 ,

S + a A

A - B B
B - aBbl\.

When we remove tr-productions we get

S - aAla

A - BBIB
B - aBblab.

This is obvious sincxr the rernoval of rrseless Drocluctiorrs rrever adds
anvthing to the grammar.

The grammar ^9 --+ aA; A --+ a does not have any useless productions,
any unit pr()ductioruJr er any A-prodrrctions. Brrt it is not minimal gince

S - aa is an equivalent grammar.

16.

Section 6.2

5. First we must eliminate A-productions. This gives

S - - + A B l B l a B

A - a a b

B - bbAlbb.

Tltis has introduced a unit-production, which is not acceptablc in the
construction of Theorem 6.6. Removal of this unit*production is easy.

S - AB lbbAlaBlbb
A - aa.b

B + bbAlbb.

We can now apply the construction and get

S --+ AB lVhV,Al V"BIV,V,
A --+ V,rV6V1,
B + V7,V6AIV6V1,

Souluoms eNl Hrr'rrs poR, Srlncrno Exnn,crsns 383

a,nd

S - ABlV.AlWBlVbVb
A - VaVa
g - V,.AIV,V,
V' - V,V,
Vt - VnV,

W * a
V n - b '

8. Consider the general fonn for a production in a linear grarnmar

A - a taz . . . an Bb1b2 . . . b ru .

Irrtrodrrce a new variable Vr with the productions

Vr + az...anBbft2...b-,

a,nd

A - a tV r .

(lontirruc this process, itttroducitrg V2 alrd

Vz --+ QB :..(trn Bb1b2...br,,

irrrrl so rlrr, until no terminals remain on the left. Then use a, simila,r

I)ro(less to rernove terminals on the right.

9. This normal fbrm r:arr bt: reached easily frorrr CNF. Productions of the
form ,4 --+ BC a,re perrrnittr:d since a : .\ is possible. Fbr A - a, create
new varitr.blelu I/r, Vz attd productions A - aVtVz, tr/l - tr, Vz - A.

12. Solrrt ions: 5' --+ aV6laSluV"S, W - a, Va - b.

15. Only A --+ \ABC is not in the required form, so we introduce A - bAV
and V + BC. The latter is not in correct form, but after substituting
filr B, wtl hirvc

S - a S A

A - b A V

V - b C

C - aBC.

Section 6.3

2. Sirrce aab is a prefix of the string in Example 6.11, wc catr use the
yij colrtputed there. Since S € Vrir, the string arlb is irt the latrguage
generated by the grammar and can thercft)rc be parsed.

384 ANSWF]Rs

Frrr ptr,r$ing,

f i r r g 5 e V 1 3 :

S e V r r

A €, V11

B €V23

A € V 2 2

B e V r r

This shows a,ll the productions needecl to justify membership; these can
thcrr bc usetl irr thc parsirrg

S + A B + a B + a A B + a a B + a a b .

Chopter Z
Section 7.1

2. The key to the argument is the switch frorn q6 to q1, which is done
nondeterministically and need not happen in the middle of the string.
However, if a, switch is made at some other point or if the input is not of
the ftrrm ur?rrft, iln a,cr:epting configura,tion ca,nnot he reached. Suppose
tlre ccrrrtcrrt tlf thcl stirck ir,t thc timc of the switt:h is n112...np.z. Trr arx:ept
a string we rnust get to tlte cotrfiguratiott (r71,.\,.e). By exarrrirrirrg thtr
transition functiotr, we see tlut we carr get to this tlorrfiguratiort orrly if
at tlris point the utrread lrirrt of tltc irrptrt is r1:r2...rp., that is, if thc
original input is of the forrn 'ururE and the switch was rnade cxactly irr
the rniddle of the input string.

a. (a) The solution is obtained by letting each a put two markers on the
stack. while eaclt b corsurrres orre. Solution:

(f) Here
by

arrtl

d (go , I , z) : { (q1 , a) }

d (qo, a, z) : { (q1, 11a)}

d (qo , o , 1) : { (q1 , 111) }

d (qr , b , t) : { (St , I) }

d (,1r , t r , u) : { (,1 i , ") } .

w€) u$e nondeterminism to.genera,te one, two, or three tokens

we determine the prodrrt:tions that wttrc trscrl irr jrrsti-

beca,use S - AB,wi th 4 € V1l and R eVzt

because A- a

because B - AB, with A € Vzz, B e Vn

because A- a

bet:a,trse B + b.

d (qo, a, a) : { (qr , 1") , (qr , 11a) , (q1, 11la)}

d (qo , o , a) : { (q r , 11) , (g ro , 111) , (q1 , 1111) } .

Solu'r'rons Ar'rD HlNrs rron Snl,l:c.r'r;rr llxnRcrsns

The rest of l,]re solrrtiorr is then essentially the $a,me a"s 4(a).

385

L This is n pda that makes rro us(] of the stack, so that is, irr trfl'ec:t, a,
finite acx:t:pter. The state transitiorrn r:a,n then be taken directly from
the pda, to givc

,l (go, a) : qr

r) (qo, b) : gt

d (qr , a) : cr
d (gr, 6) : ,70

11. Tlace through thc: pror:ess, taking one path rrt ir time. The transition
fiom qs to 92 can bc rnade with a single a. The altcrnative path requires
olle a,, followed by orrrl or more b's, terrninated by irrr n. These are the
only choices. The pda thercfbrc a,ccepts the Ianguage

L : { " } D L (t b h * a) .

14. Here we are not allowrrd enough states to track thrl switr:h from n,'s to
b's and back. T(r ovtrrcome this, we put a syrnbol irr the stack that
rernembers wherc irr the sequerrce we are. For exarnplrr, tr, solution is

d (so, a, u) : { (So, 1)} ,
6 (eo ,a , t) : { (Sn , t) } ,

d (,10, lr, 1) : {(So, 2)} ,
d (r11 , a ,2) - { (qo ,2) } ,
d (Q o , A , 2) : { (q l , Z) } .

We have only two states, thc initia.l state qs and the acceptirrg state gr.
What wor.rld normally be trackrxl hy different states is now tracked by
thtr symhol in the stack.

16. Here we use internal states to rcrnember symbols to be put on the stac:k.
For cxilmple,

is repla,t:ed by

6 (tu. i ,a ,h) : { (q i , cde)}

6 (qo ,o ,b) : { (q i . , de) }

d (qj", tr, d) : {(qi, cd)} .

Since d carr hirvrl only a finite number of eletrerrts and each can only
add a finite arnount of infbrmation to the stack, this rxrrrstnrction ca,n
be ca,rried out for any pda.

386 ANSWERS

Section 7.2

3. Ytnr carr follow the constnrt:tiorr of 'I'heorem T.l tlr you can trotice that
tlre language is {a"+?bzntl :'n, > 0}. With t}re latter observatiorr wc
get a solution

d (q i1, n, z) : { (Sr ' a)}

d (q r , o , a) : { (qz , z) }

6 (q r ,o ,a) = { (q2 , 11 .z) }

6 (q r , o , 1) : { (q 2 , 1 1 1) }
6 (t 12 ,b , t) : { (q r , I) }
d (qr , l , , 1) : { (qr ' A)}

,l (,1*, ,tr, a) : { (q.r , a) }

where qs is the initirr,l state atrd q1 is the finer,l stirtc:.

4. First txlrrvert the gramtnar into Gritlbach trortnal form, giving 5' -

aS,5^5'; ,l - aB; B - b. Then ftrlkrw the cotrstruction of Thslrr:rrt 7,1'

d (qt ' , A, a) : { (q1,5 ' r) }
d (qt , o, ,5) : { (q1 , SSS) , (qr , B)}

d (q r , b , f) : t (, 1 r . , I)]
d (q ' , . \ , ") : { (qr . e)} ,

7. Florn 'Iheoreur 7.2, givcn arry trpda, we call constrtrt:t arr equivalent
cotrtext-free grammar. Frorrr that gramlnar we can tlrtlrr construct an
equivalent three-sta,trl rrlltla, usitrg'Iheorem 7.l. Be<:ause of the trausi-
tivity of equiva.klrrcltl, the original and the fintr,l rrpdrr's are also equiva-
Ient.

L We first obtain a grirnrrrrar irr Greibach normal filrm for tr, for exantple
S + o,liBlb,B - b. Next, we apply thc corrstructiou in Theortrrn 7.1 to
gct art npda with three statcs, (lo)(h)qI. I'he state tJ1 ttirrl bc clittritratecl
if we use a special stttck syrrtbol z1 to rnark it. A r:ornplcte solution is

.)- (qn, tr, s) : { (qo, 5'sr) }
, i (,1n, o, S) : { (qo, SB)}

d (r;n, b, S) : { (qo, I) }
6 (q o , h , B) : { (q n , I) }

d (qo, A, ar) : { (s i , I) } .

11. Thcrc rnust be at least one a to get started. After tha,t, d(g6,a,A) :

{(Sn,A)} simply reads o,'s witltout changing the stir,t:l<. Fitrall.y, when

Soluuow$ er'rn HlFrrs non SnlncrnD ExliR{trsus 387

the first b is encountered, Lhe prltr goe.'s into state q1, from whir;h it ca,n
only ma,ke a ,\-transitiorr to tlxr final state. Therefore, a strirrg will be
ac:t:cpted if and only if it consists of one or more {r,'s, followed try a single

Section 7.3

4, At first glauce, this tna.v seerrr to lle a noncleterminislic larrguir,gc, since
the prcfix q, ca,lls for two different types of suffixes. Nevertheless, tht:
Ianguage is tlcltr:rrnirristic, as we can constrrrc:t a rlpdtr,. This dpda, goes
into a final statc wlxrrr the first input sytrbol is arr a. If more sym-
bols follow, it gclrrs orrt of this state and thcrr ir:rnpts at'bt. Complete
solutiorr:

d (qo, a, a) : { (q3, 1z)}

d (qB , a , i) : { (q1 , 11) }

b (Q r , a , 1) : { (q 1 , 1 1) }
d (q ' , b , 1) : { (s 1 , r) }
d (, 1 r , A , a) : { (qz , a) }

w h e r e F : { q 2 , q J } .

9. The solution is straiglrtforwrrrrl. Prrt a's and b's on the stack. Thc: c
signals the switch from savirrg to rnr.rtching, so everything can be dorrc
dctcrrnirristically,

11. There are two stiltcs, the initial, non-accepting statc 96 ir.nd the fi-
nal sta,te q1 . The pda will bc in sta,te qr unless a a is on top of thc
sl,ack. Wlrcrr this happens, the pda will switc;h stirtcs to q0. The rest
is essetrtially tlrtl sitrnc nu Exa,mple 7.3. 'I'hus we have d (t111,a,,2) =

{(qr , Ot) } , d (s1, a, ,0) : t (s , ,00)} , e tc . wi t } r d (qr , , t r , ") : { (so, a)} .
When you write this all out, you will see thai the pda is deterrnirristic.

15. This is ohvious since every regular languirgc r;rlrr be tr,r:cepted by a dfa
artrl such a dfa is a dpcla with an unused stir.r:k.

16. The basic idea here is to corrrbirrc rr, dpda, with a dfa along the lines of
thc rxrnstrrrction in Theorem 4.l, with thc sta,r:k hnndled as it is for.L1.
Il should rmt tre too ha,rcl to see that the result is a durlir.

Section 7.4

2. Consider the strings aabb and aabbbbua^ In the first case, tire derivation
rrrrrst stelrt with 5 + aSB, while in the sccxrrxl 5 + SS is the necessary
Iirst stt:p. Brrt if we see only the first four syrnbols, wo r:ilnnot decicle
wlric:lr t:ir"st: a,pplies. The grammar is thereftrrtt rrot in LL(4). Since

388 ANSWTTR$

similar exa,mplcs c;arr be made for arhitrarily long strings, the grirrntnar

is not /,I (k) fbr any A.

4. Ltrok rrt the lirst three symbols. If they are (r,tl,(t,r aab, ct aba, then the

strirrg c:an only be in.L(a.bn). lf the first three svrnbols are abb' then
atty parsa,ble string rmrst be in .L (abbb.). Ftlr t:ach case' we can find a,rr

-L.L grammar anrl the two can be combintxl irr an obvious fa,shion. A

sohrtiorr is

.5 - 51152

,91 -'+ nS1 lba
Sz + ahbB

B - bR lA .

Looking a,t the first tlrree symbols tells rrs if S + 51 or S =* 5'z is

necessrrry. The gramtnar is thereftrrt: LL(3).

7. For a detcrmirristic CFL there exists a, dpda, When this dpdir. is con-

verted into ir, grarnrrar, the gra,nlmtrr is urrirtnbiguous.

s. (a)

S - aSc l51 l A
'5'1 --+ bS1cl.\.

This is almost a,n s-grammar. As lotrg as the currentlv st:arrrred sytnbol
is rl, we must apply S - aSc, if it is b, wc rnust use 5 - 51 , if it is r:,
wc carr otrly use 5 - .\. The gra,mrrrar is .L.L(1).

Chopter I
Section 8.1

3. Take ut: u,"'b"'brrlartlattlbttr. The ir,dvcrsary lrow has several r:htlit:tls
tltat have to be consiclered. If, ftrr exaurple, u: ak and't7: tl{, wit}r u
atrd E located in the prcfix a*, tltett

1!)O : Q,' '*h-L6nt6m OrnOut6rtt,

which is not in -L. There a,re il rurrrlber of olher possible choitxls, but in
all cases the string ca,n he purnped out of the langua,ge.

?. (a) Use the pumping lcrntna. Givetr rrz, pick u., :4,t26m. The only
choice of u irrrd g that treeds any serious tlxarnirratiott is tr : aft and

Solurrons AND HrNTS FoR SELECTEn ExnRcrsps

A:bI , wi th k and I non-zero. Suppose that l :1 . Then choose i :2 ,
so that tr2 ha^s m2 + h a's and rn * 1 b's. But

(r n + I) 2 : m z + Z n - t , * I

> - m z + k '

Since ru2 is not in the language, the language cannot be context-free.
Similar arguments hold a fortiori for I > 1.

(f) Given m, choo$e rp *qtnfitn+l"m*Z, which is easily pumped out of
the language.

(b) The la"nguage is not context-free. Use the pumping lemma with
I.u : e,^bn'an'b* and examine variou$ choices of u and .,r7.

Perhaps surprisingly, this language is corrtext-free. Construct an npda
that counts to some value h (by putting h tokens on the stack) and
remembers the h-th symbol, It then examines the fr-th symbol in ru2. If
this does not match the remembered syrnbol, the string is accepted. If
w C L there must be sorne h for which this happens. The npda chooses
the fu nondeterministically.

Use the pumping lemma ftrr linear languages. With a given rn, choose
u) : a*bz*a*, Now u and y are entirely made of a's, so ,ru is easily
pumped out of the language.

15. The language is not linear. With the pumping lemma, use

u , : (. . , (o) . . .) + (. . . (o) . . .)

where (...(and)...) stand frrr rn left or riglrt parentheses, respectively.
If lzl > 1, we can easily purnp so that for some prefix z, n1 (u) < ny (u)
which results in an improper expression. Sirnila.r arguments holcl for
other deurmpositions.

20. Use'u): qrtQ, wherep and q are prirnes such that p> m arrd g > rn. If
luul : k, then

l n i + r l : p S + i k .

If we cho11se i : pq, then

wi+L : aps (l + l i) 1

which is not in the larrgrrage.

389

E.

L0.

L2.

390 Ar-rswurrs

Section 8.2

1. The complemerrt is context-fiee. The complement irrvolves two caseu:

n ,, (w) # nu (*) and ?2,] (*) # n. (ru). These in turn can be broken into

n " (w) > no (w) ,n " (w) 7 n " (w) ,n " (w) < no (u) , and no (' u r) < n " (u r) .

Each of these is context*free as can be shown by construction of a CFG.

The full Ianguage is then the union of these four case$ arrd by closure

under union is c(lrrtext-free.

5. Given a context-free gra,mmar G, construct a context-fre* gru*** d

by replacitrg every prochrt:tiorr A - r by A -- xR ' We can then show

by an induction orr the number of steps in a derivation that if tu is a

sentential fbrm for G then uft is a sentential form tbr d.

9. Given two linear grammars G 1 : (V1,7, ,91 , P1) and G2 : (Vz,T, Sz, Pz)

with VrftVz : @, form thc combined grammar G : (Vr\)V2,7,^9, Pl U Pz

US -i Sr l,Sz). Then d i, Hnnu. and .L (t) : r, (Gr) u L (Gz).

Ttr show that linear langrrages are not closed under concatenation, take

tlre litrear language 1': {a"b": n > 1}. T}re language .Lz is not linear

as can be shown by an application of the pumping lemma.

tS. Let (Jr : iy t ,? ,Sr ,Pr) be a l inear grs,mmar for .L1 and let G2:
(Vz,T,Sz,Pz) be a left-linear grammar for L2. Construct a grammar

82 from Gz by replacing every production of the form V + rtn e T*

with V --+ Sr?:. Combine gra,mmar$ Gr and d2, choosing Sz as a start

symhol. It is then easily shown that in this grammar

S z l S r w l u t u

if arrd only if u E L1 atrd tu € tr2.

TIre languages -Lr : {arrbtlc.Ill} and .L2 - {u'nbtrt"rttl are both urlam-

biguous. But their intersection is not evt)rr cotrtext-free.

I e , (G) if and only if 5 is nullable.

1 5 .

2T,

Chopter I
Section 9.L

2. A three-state solution thtr.t scans the entire inprrt is

d (go , a) : (u ,u , R)

d (qr, a) : d (sr, h) : (q1,a, R)

d (sr, tr) : (gz, !, l?)

with F: {Sr} .

Sot,urrolrs arul Hrmrs l.on Snr,ncrnD ExERCISEs Bg1

It is also possible lo get a two-state solutiorr by just examining the first
sytrbol and ignoring the rcst of the input, ftlr example,

d (qo, a) * (gz, a, lt) .

7 . (a)

d (go, a) : (8r, a, ft)

, l (St , l t) : (qz,b, R)

6 (qz, a) : (qz, a, R.)

6 ((tz,b) : (gs, b, f i)

with .F : tqi].
(b)

d (qo, a) : d (so, b) : (q1, D, f l)

d (qo, tr) : (qz, n, ft)

d (qr , a) : d (qr , b) - (qs, n, .R)

wi th .F: {qr} .

10. The solution is conr:eptua,lly simple, but tedious to write out in detail.
The general scherntr looks something like this:

(i) Place a marker symbol c at cach end of the strirrg.

(ii) Replace the two-symbol combination ca on the left by ac arrcl the
twcrsymbol combinatiorr ar: on the right by ca. Repeat until the
two c's meet in the middle of the string.

(iii) R.emove one of the cr's arrd move the rest of the string to fill the
gap'

Obviously this is a lorrg joh, but it is typical of the cumbersone wayir
in which Thring rrrachirrers often do simple things.

12. We cannot just search in one direction since we dorrtt know when to
stop. We rrrust proceed in a back-and-fbrth fashion, placirrg markers
at the riglrt and left boundaries of the searched region arrd rrrovingJ the
markers outward.

19. If the final state set .F corrtains more than one elernent, introduce a new
firral state g.i and the trarrsitions

d (q, a) : (q.r, a, R)

f o r a l l q € F n n d a € 1 ,

392 ANSWHRfi

Section 9.2

s. (a) We catr think of the machine as constitrrted of two main parts, an

add,-one rrtachine that jrrst adds one to the input, and a multiplier that

multiplies two numbers. Stltetnatically they are cornbined in a simple

fashion.

(c) First, split the input into two eqrral parts. This can be done as
suggested in Exercise 10, Section 9.1' Then compare the two parts'
symbol by corresponding symbol until a mismatch is fouttd'

A solution:

d (go, a) : (er., a, R) ,
.l (qo, c) : (Qo, c, lt) for all c e X * to} ,

d (so, l) : (qi , n, .R) .

The state qs is any state in which the searchright instruction rrray be
applied.

Section 9.3

2. We have ignored the fact that a Ti.rring machirre, as defined so far' is

deterministic, while a pda can be non-deterministic. Therefbre, we can-

not yet claim that Thring machines are more powerful than a pushdown

autolnata,

Chopter | 0
Section 10.1

a. (a) The rrrachine has a transition function

d : Q x f - 8 x f x { . L , r t , 5 }

with the restriction that for all transitions d (qz, a) : (qi ,b, L or .B), the

condition a: b must hold.

(b) To simulate 6(si,u) : (Qj,b,.L) with a'+ h of the standard ma-

chine, we introduce new tratrsitions d (qa, a) : (rljz, b, S) and 6 (qiz,b) :

(si,b, L) for all c € f , and so on.

o .

8 .

6 .

L

1 1 .

Sol,u'r'ror.ls exn Hrr-{rs FoR SELECTEI Exnncrsns 393

We introduce a pserrdo-trlrr,nk F. Whenever ther original machine wants
to write n, the new rnachine writes B. Then, fbr each r) (qi,ll :
(qi,b, L) wt': ilckl .l (qi, fr) : (qi,b,tr), rrrrcl so on, Of course, the origintr,l
trarrsit irrn d(S,,!) = (Qi,b,,L) must be retained to handle blarrks tha,t
are origirra,lly on the tape.

This dotls rrot limit the power of the rrrachine. For each symbol {t € l,
we introdut:tr a pseudo-symbol, say A. Whenever we need to preservtr
this a, wt: first write A, then return to the cell in question to replace .rl
by a.

Wc repla,ce

6 (s, , {o,b}) : (qr. c, r t)

6 (q e , d) : (q i , c , R)

f b r a l l d e f - { a , b } .

Section 10.2

L . F o r t h e f o r r n a l d e f i n i t i o n u s e f 7 ' : I ' x f x . . . x l a n d d : Q x l r -

8 x fz x {L,nJ"', where rn is the rrurrrbcr of reacl-write heads. One
issue to consider is wha,t happens when two reatl-write heads are on
the same cell. Thc frrrmrr,l definition must provide ftrr the resolution of
possible conflicts.

To simulate the original rnachirrc (OM) by a standard'furing ma-
chirxr (SM), we let 5M have rrr f 1 trirr:ks. On one track we will keep
the tape contcnts of the OM, while the other rru tracks are used to show
the position of OM's tape heads.

tape content ofOM

position oftape head # 1

position oftape head # 2

,9M will simulate each move of OM by sca.nning and updating its active
area,

This exercise shows tlnt a qrrr,'ue ma,chine is equivalent to a standard
Ttrring machine and tlrrt therefbre a queue is a rnore powerful sttlrage

by

394 ANSw}]RS

device thirn a stack. 'Io simulate a standard TM by a queue machine'

we can, fbr example, keep the right side of the OM in the front of the
queue? the left side in the back.

,'

read-write head

b c d f tape of OM

Simulation
by queue

A right move is easy arJ wc just remove the front symbol in the queue

arrd place something in the back. A left movtt, ltowever, goes against

the grain, so the querre t:tlrttents have to be circrilated several times to
get everything in the right place. It helps to use additional markers Y
itnd Z to denote boundarics. For example, to simulate

d (qr, c) : (qi, z, L)

we carry out the following stcps.

(i) Remove c fiorl the front and add .sY to the back.

(ii) Circulate contents to get bzYdef gXa.

(iii) Add Z to the back, then circ:rrlate, discarding Y and Z as they
crlnte to the front,

8. We need just two tapes, one that mirrors the tape of the OM, the
second thir.t stores the state of the OM.

configuration ofOM

configuration ofSM

c d c f g x b

e b c d c

SM needs only two states: an accepting and a non-accepting state'

Sor,uuolrs aNn HrNr.s roR SnlncrnD ExERcrsEs BgE

Section 10.3

S. (i) fJtart at the left of the input. Rememlrer the symbol hy putting
the rnar:hine in the appropriatc state. Then replace it with X.

(ii) Move the read-write head to the right, stopping (rrorrdeterministi-
cally) at the center of the irrput.

(iii) Compare the syrrrbol there with the rerrrernbered one. If they
. match, write Y irr thr: cell. If they don't rnatc:h, reject input.

(iv) With tlrc rxlnter of the input rrrirrked with Y, we carr now proceed
deterministic:allg a,lternatively rnoving left and right, corrrparing
symbols.

For ir, completely deterrnirristic solution, we lirst find the center of the
input (e.g. by putting markers at cir(:h end, and rnoving theur inwards
until they nrcct).

6. Nondeterministically choose a, value for n. Dt:termine if the length of
the input is a rnultiplc of rz. If it is, accept. If an € L, then there is
$ome n for which tiris works.

Section 10.4

3. An algoritlrrn, in outline, is as follows.

(i) Start with a copy of the preceding string.

(ii) l'ind the rightmost 0. Clrrrrrgc it to a L. Then change all the J.'s
to tlrc right of this to 0's.

(iii) If there are no 0's, chirrrgc all I's to 0's ancl add a 1 on the left.

(iv) Repeat frorn step (i).

L Let 51 : {s1 , ,s?, . , , } and,92 : { t r , f2 , . . . } Then t } re i r urr ion r :ern be
enumerated by

51 U 52 : t .sr , f 1 , ,s2, f2 , . . .] .

If sotnc si. : tit we list it otrly orrc:t:. The union of l,]re two s.ts is
thereforr: r:clrnta,ble. For 51 x ,92, usc thc ordering in Figure 10.17.

Section 10.5

2. First, divide the input by two arrd rnove result to one part of trr,pe. This
frcc sperr:e initially occupied by tlrtr input. This space carr thcn he used
to slore sur:cxrssive divisors,

396 ANSWITRS

+. (e) Use a three-track machine as shown below. On the third track,
we keep the current trial value for lrul. On the second track' we place

dividers every ltr.'l cells. We then compare the cell contents between the

markers.

inFut

dividers

trial ralue of lwl

g .

T.

Use Exercise 16, Section 6.2 to find a grammar in two-startdard form.

Then use the construction in Theorem 7.1. The pda we get from this

consumes one input symbol on every move and never increases the stack

contents by more than one symbol each time.

Example:

Configuration of OM

Stack Configurations

Stachl c:ontains the symbol under the read-write head of the OM and

everything on the left. Stack? contains all the information to the right
of the read-write head. Left arrd riglrt moves of the OM are easily sim-
rrlated. For example,6(ei,e,): (qi,b,,L) can be simulated by popping

tlre a off Stackl and puttirrg a b on StachZ.

-*l-"1
H

r-l
l f I
l e Irr

Steckl

-fl
l o ln
[l
---l

Stack2

Section 11.1

2. We know that the union of two counttr,hle sets is countable and that the

set of all recursively enumerable larrguages is countable. If the set of

Chopter | |

Sol,utlolrs altn HIt'Irs ron Snlncrno ExpRcIsns

all languages that are not recursively enumerable were also countable,
then the set of all langrrages would be cxruntable. But this is not the
ca.ge, as we krrow,

Let ,L1 and t2 be two recursively enumerable languages and M1 and
M2 be the respective T\rring machines that accept these two languages.
When represented with an inprrt u.', we nondeterministically choose M
or M2 to process zrr. The result is a T\rrirrg machine that acr:epts LtQLz.

A context-free language is recursive, so by Theorem 11.4 its complement
is also recursive. Note, however, that the complement is not necessarily
context-free.

For any given 'u (L+ , consider all splits 'tD : 7ltLlz...'tlrr,. For eaclt
split, determine whether or not wi e L. Since for each'ur there are only
a finite number of splits, we can decide whether or not w € L+ .

Thc a"rgurnent itttcrnpting to show by diagonaliza.tion that 2s is not
countable for finite 5 fails because lhe table in F'igure 11.2 is not square,
having lzsl ro*s and l5l columns.

When we diagona,lize, the result on the diagona,l could be in one of the
rows below.

Section 11.2

1. Look at a typical derivatioru

S l aStbB + aaSlbbB 1a"S1b"B t on*r6n-7R + an+rb"+l.B +....

Flom this it is not hard to conjecture that the grammar derives

L : { a "+ rb " t k , i l } 1 , f r : - 1 , 1 ,3 , . . . } .

397

6 .

1 1 .

14.

18.

lSl columns

398 ANSwHRS

Fornnlly, the grammar carr be described by G: (V,S,T,P), with 5 f
(V u r)+ and

L(G): { r eT* : .s *s r for any s € ,9} .

The rrnrestricted gra,mma,rs in Dtllirritiorr 11.3 irrt: txpivalent to this
exterrsiorr becarrse to arry given unrestricted grarrurrar we can always
add startirtg rrrlrr.r Sp --+ .5, f{rr all .sa € S.

7. To get tlfs forur for unrestricted grammars, insert dummy variables on
the righi whenever l"l > lul. For example,

A B - C

r:an he repla,ced by

A.B --+ CI)

D - . \ . .

Thtl equivaklrr(jc irrgunro\nt is straightfrlrwarrl.

Section 11.3

1. (c) Working with context-sensitive grammars is not always easy. fhe
idea of a messenger, introduced in Example 11.2, is often usefirl.

In this problern, the first stcp is to crtlatt: thc scrrttlrrtial fclrrn o.nBt:nD.
The variables -B and D will act as rrrarktlrs irrrcl urcsscrrgcrs to assrrrc
that the correct nurnber clf b's and dts are r:reaterl irr the riglrt places.
The first part is achievtxl casily with the produr:tiorrs

S + aAcDlaBcD

A + a.AclaBc.

Irr the rtext sttlll, thc: B travcls to thc right to nxret the D, bv

Bc --+ cB

Bh --+ hB.

When that happens, we can create one d and a return messenger that
will put the b in the right place a,rrd stop.

BD - Erl,

c E - E c

b E - E b

aE - ub.

Sol.urroNs alo HrNrs ron Snrlcrrr Exnncrsls

Alternatively, we create a, d plus a, marker D, with a diff'erent messenger
that cr.*t.s a b, but **" tT;:T;;*,

tF --+ Fr

b.F - I-b

aF - ubB.

4. 'l'he easiest argument is from an lba. Suppose that a language is
context-sensitive. 'I'hen there exists an Iba M that acceots it. Given
?u, we first rewrite it as tuft, then apply M to it. Because LR :

{w : wR €. L}, M accepts trrn if and only if w (LR . 'I'he rnachine
tha,t reverses a string and applies M is a,n lba. Therefore -Lft is context-
sensitive.

6. Wc (:arr rlrglle frorn a.n lba. Clearlv, there is an lha tha,t can recognize
arty strirrg of thc ftrrtr u.r'url. Just stirrt irt oppositt: enrl$ a,nrl cr)rrrpiirc
syrnbols rrrrtil yorr grtt ir mat<:h. Sirrce there is tln lbtr,, the larrguage is
cxrrrtext-sen$itive emd a. rxrntext-sensitive grammar must exiut.

Chopter | 2
Section 12.1

3. Given M and tu, rnoclifv M to get fr, which ha,lts if ancl only if a
sllcr:ial syrntxrl, say arl irrtrrlrluc:ctl syrntrol ff, is writterr. We carr do this
by changing the halting configurations of M so lhat every one writes

f, then stops. Ihus, M halts implies the M writes f, and M writes

f implies that M halts. 'Ihus, if we have an algorithm that tells us
wlrether or not a specified syrnbol o is ever written, we apply ft tu fr
with a: f . This would solve the halting problem.

?. Given (M,w) rnoclify M to fr so that (M,w) halts if and only if fr
accepts some simple language, say {a}. This ca,n be done by M first
checking the input irnd rurncmbcring whcthe:r thc input was a. Then
M carries out its rrorrrral cornputatiorrs. When it halls, check if the
input was a. Accept if so, reject otherwise. Therefore M accepts {c,} if
and only if M halts. Now construct a simple Ttrring ma,chine, say M1 ,
that accepts rz,. If we had an algorithm that checks tbr the equality of

two languages, we could use i t to see i f L(f r \ : L(M). I f L(f r \ :
\ , / \ , /

L(Mr) therr (M,.u.,) halts. If I (,fr) # L(M) then (M,ru) does not

halt arrcl we havc a solutiorr to tli trattirrg problem.

10. Given (M,w) we modify M so that it always halts irr the configuration

eyw. If the giverr problern was decidable, we could apply the supposed
algorithm to the rnodified rnachine, with configurations qgu, and qf?r,.
This would give us a solution of the halting problem.

399

400 ANSwER,S

Take a universal T\rring machirre and let it simulate computations on
an empty ta,pe. Whernevtlr the sintulated computations halt, accept
the T\rring rnac:lftrc: bcirrg sittrulated. The universal Ttrring machine is
therefore atr accepter for all Ttrring machines that halt when applicd to
a blank tape. The set is therefbre recursively enumerirbk).

Suppose now the set were recursive. There would then exist rr,n trlgrr
rithrn A that lists all Ttrring urachines that halt on a blank tape input
in some order of increasing lengths of the program. See if the.original
Ttrring machine is amongst the T[rring rnachines generated hy A. Sincc
the length of the original program is fixed, the compa,rison will stolr
when this length is exceeded. Thus, we have-a sohrtion to tlx: blirrrk
tape halting problem.

If the specific instances of the proble[fl,ra p1 ,i?2, ...,pn, wQ corr$trlr(]t a
Turing machine that behaves a^r f'ollows:

if problem : gr1 thr)n rcturrr firlst:

if problem - pz then return true

:

if problem : p, then return true

Whatever thc truth vahres of the various instances are, there is always
some T[rrirrg machirre that gives the right answer. Remember that it
is rrot nccessary to know what the I\rring machine actually is, only to
guarantee that it exists.

Section 12.2

3. Suppose we had rr.n ir.lgoritltrrr to decide whether or not L(ML) C
L(Mr).We could therr construct a machine M2 such that ,L (Mr): a
and apply the algorithm. Then L (Mr) Q L (Mz) if and only it L (Mr) :
fi. But this contradicts Theorerm 12.3, sint:e v/e can construct M1 frorn
anv given grammar G.

6. If we take ,L (Gz) : E*, the problem becomes the question of Theorem
12.3 and is therefore undecidable.

E. Since there are $omc grirmrrrars for vrhich -L (G) : L (G). and some for
which this is not ${r, the undeciclability follows from R.ice's theorem.
To do this from first principles is a little harder. Take the halting
problem (M,*) and modify it (along the lines of Theorem 12.4), ry
that if (M,*) halts, M wil l accept ia]" and it (M,w) does not halt, M

accepts fl. FI'om M get the grammar G by the construction leading to

Theorem 11.2. I r t (f r) = {o}* , rhen.L(d) = r (d) . : {a}* . But

13 .

1 6 .

Solurrons errp Hrrurs noR SnlncreD ExERctsHs 401

fi L (fr): o, then , (t) : @ and , (")- : {A}. rherefore, if this

problem were decidable, we could get a solution of the haltirrg probletn.

Section 12.3

r. A PC-solution is u3u4w1 : uzutat. There is no MPC-solution becarrse
one string would have a prefix 001, the other 01.

3. For a one-letter alphabet, there is a PC-solution if and only if there is
some subset J of {1, 2,...,n} such that

f l r r l : f l u i l .
JEJ JE , I

Since there are only a finite numher of subsets, they can all be checkctl
and therefore the problem is decidable.

5. (a) The problem is undecidable. If it were decidable, we would have
an algorithm for deciding the original MPC-prohlem. Given u)Lj'trz...)
n'n, we form tuf, w{...,u,f afld u$e the assumed algorithrn. Since

wrwi...uk: (w[...wfu,f)f , tte original MPC-problern has a solution
if and only if the new MPC-problern has a solution.

Chopter | 3
Section 13.1

2. llsing the firnctiorr subtr irt Example 13.3, we get the solution

greater (*,A) : subtr (1, subtr (I ,subtr (r ,y))) '

7.

s fu ,a) : mt t l t (* ,9 (* ,gr - 1)) ,
g (r , 0) : 1 .

s' (a)

A (1 , y) : A (0 , A (1 , s - 1))
: A (1 , y - 1) + 1
: A (1 , y - 2) + 2

: .4 (1,0) + E
: v 1 2 -

4OZ AuswnRs

(b) With the results of part (a) we can use induction to prove the next
ident i ty. Assume that for A : I ,2, . . . ,D - 1, we have A (2,a) :2U + S.
Then

A (Z , n ') : A (1 , A (z , n - I))
: A (1 , 2 n + 1)

:2n* 3, f iom part (a),

Since

A (2 , 0) : A (1 , 1)
- 3 ,

wtt havqt ir basis and the equation iu true fbr all y.

15 . I f 2 " ' IA-3 :0 , theu A:3- 2 ' " . The on ly va lues o f r tha t g ive a
positive gr are 0 and 1, so the doma,in of p is {0, 1}, giving a minimum
value of g : 1. Tlrt:rcfrrrc

p a (2 " * s - B) : 1 .

Section 13.2

1. (b) Use Cr : {a,b,c}, Cx7: {ru} and A : {c}. The non-terminal r is
used as a boundary between the left and right side of the target string
and the two ru's are built sirnultaneously by

V1rV2 --+ V1 ar.V2{r lVrhrVzbl V crVpl

At the end, the r: is removed by

VnVz + VVy

3. At every step, the only possible identification of Vr is with the entire
derivcd string. This results in a doubling of the string and

n : { a ' " , 2 > 1 } .
t -)

5. A solution is

V1 , rV2: Vr - V1I+V2:VtVz

V1 + V2 : Vt -+ Vt * VzL : VsVr.

tFor exanrple

1 * 1 : 1 + 1 1 + 1 : 1 1 + 1 1 * 1 1 . : 1 1 1 1 ,

and so on.

Sol,urtot-rs ann Htrvrs noR Snl,ecrnD ExERcrsEs 403

Section 13.3

1 .

^9 * ^9r^92

5r --+ a5r, Sz + aSz

^9r - b,9r, Sz - bSz

,91 --+ .\,,92 --+ .\.

5. The solution here is reminiscent of the use of messengers with context-
sensltlve grammars,

a b - + n

n b + b r

rc - ,\.

8. Although this is not so easy to see, this is one way to solve Exercise 7.
Take any string, say a255. This can be derived from a127 by applying
& + &&& once and (t + ee, 1?6 times. Then a127 can be derived from
a63 in a simila.r way, and so on. Thus every string in L (aa*) can be
derived.

P1

P2

P3

Pa

for Fur ther Reod ing

A. V. Aho and J. D. Ullman. 1972' The Theory of Pars'ing, TTanslation,

and Compi.ling. Vol. 1, Englewood Cliffs, N.J.: Prentice Hall.

P. J. Denning, J.B. Dennis, and J. E. Qualitz. 7978. Machi,nes, Languages,

and Computafion. Englewood Cliffs, N.J.: Prentice Hall'

M. A. Harrison. 1978. Introduction to Formal Language Theory. Reading,
Mass.: Addison-Wesley.

J. E. Hopcrofh and J. D. Ullman. 1979. Introduction to Automa,ta Theory,

Languages and Computafion. Reading' Mass.: Addison-Wesley.

R. Hunter. 1981. ?he Des'ign and Constructi,on of Comp'ilers' Chichester,
New York: John Wiley.

R. Johnsonbaugh. 1996. D'iscrete Mathematics' Fourth Ed. New York:

Macmillan.

Z. Kovahi. 1978. Swi,tching and Fi,ni,te Automata Theory. Second Edition.

New York: McGraw-Hil1.

A. Salomaa. 1973. Formal Languages. New York: Academic Press.

A. Salomaa. 1985. "Computations and Automata," it Encycloped'ia of

Mathernat'i,cs o,nd lts Appli,cations. Cambridge: Cambridge University Press.

405

A
accepter,26
Ackerman's function, 330
algorithm, 2,246
alphabet, 15
ambiguity, 136

of a grammar, 141
inherent, 144

automaton, 2, 25
deterministic, 26
nondeterministic, 26

axiom$, 324,334

B
Backus-Naur fcrrnt, 146
base of a cycle, I
blank, 2?3
blank-tape halting problem, 305

C
Cartesian product of sets, 5
child-parent relation in a tree, 8
Chomsky hierarchy, 295
Chomsky normal forrn, 149, 165
Church's thesis, 325
Church-Ttrring thesis, 325
closure, 99

positive, 18
star, 18

closure properties
of context-free languages, 2L3
of regular languages, 100

complement
of a set, 3

of a language, 18
complete systerns, 324
complexity, 343

of a grammar, 163
space, 344
tirne, 344

cornplexity class P, 353
complexity class NP, 354
composition, 326
computability, ?99
computable functiotr, 233
computation, 228

models, 323
valid, 321

corrcaterration
of languages, 18
of strings, 15

configuration of an autclmatorr, 25
conjunctive normal form, 348
consistent ytems, 324
context-free grammars, 126
context-free langrrages, 125

deterministic, 195
context-sensitive grammars, 289
context-sensitive languages, 290
control unit of atr automa,ton, 25
Cook-Karp thesis, 354
Cook's theorem, 355
cycle in a graph, 8

simple, I
CYK algorithm, 172

D
dead configuration, 52
decidability, 299
DeMorgants laws, 4

407

408 Iwnex

dependency graph, 154 labeled, 7
derivation, 21 Greibach normal form, 149, 168

leftmost, 129
rightmost, 129 H

derivation tree, 130 halting problems for Turing
partial, 131 machines, 301
yield, 131 halt state of a T\rring machine, 224

deterministic finite accepter, 36 hierarchy of language families, 275
dfa, 36 homorrrorphir: image of a,
diagonalization,279 language, 103
disjoint sets, 4 homomorphistn, 103
distinguishable sets in a dfa, 63
dpda,195 I

incompleteness theorem, 324
E indistinguishable states in a dfa, 66
empty set, 4 inherent ambiguity, 144
end markers for an lba, 271 initial state, 36
enumeration procedure, 268 input file, 25
equivalence, 7 instantarreous description

of automata classes, 250 of a pushdciwn arrtomaton, 179
of dfa's and nfh's, 55 of a Thring machine, 226
of grammars, 24 internal states of an automaton,

25, 36
F intractable problenrs, 354
family of larrguages, 42
final state,36 L
finite automata, 35 lambda-productions, 156
formal languages, 2 language, 15, 17
functions, 5 accepted by a dfa, 38

computable, 233 accepted by a dpda, 196
domain, 5 accepted by an lba, 271
partial, 5 accepted by an nfa, 51
range, 5 accepted by a Ttrring machine,
total, S 229

ociated with regular
G expressions,73
grammar, 19 generated by a grammar, 2L

context-free, 126 generated by a Post system, 335
context-sensitive, 289 language families, 42
leftJinear, 89 lba, 270
linear, 91 left-linear grammar, 89
regular, 89 leftmost derivation, 129
right-linear, 89 linear bounded automata, 270
simple, 140 linear grammar, 91
unrestricted, 283 Ll-grammars, 201

graplr, 7 L-systems, 340

M
Markov algorithrtt, 339
mir,trix gramrnar, 338
membership algorithm, 111

for context-free languages, 172
for context-ser$itive languages,

293
minimal dfa, 67
minimalization opertrtor, 331
monus, 327
move of an a,utorntrtotr, 25
MPC-solution, 313
mu-rtrcursive futrctions, 331

N
nfa,48
non-contracting grarrtmars, 290
nondeterministic finite accepter, 47
nondeterminism, 52
nonterminal consta,nt, 334
normal form of a grarnmar, 149,

165
NP-complete problems, 355
rrpda, 177
null set, 4

o
order

proper, 269
relation in a tree, I

P
parsing, 136

exharrstive search, l3(i
top*down, 136

path
in a graph, I
labeled, 8
sintple, 8

pattern matching, 85
PC-solution, 313
pda, 175
phrase-structure gramrrrar, 338
pigeonhole principle, 114
polynomial-time reduction, 355
Post corresporrdence problem, 312

modifierd, 313

It'tlpx

Post system, 334
powerset, 4
primitive recursiorr, 326
prirnitive recursive functions, 328
primitive regular expressions,T2
productions of a grarrrrrtar, 19
program of a Ttrring macltirre, 224
projector function, 326
proof techniques, I

contradiction, 11
induction, 9

proper order, 269
propcr subset, 4
pumping lemma

for context-free langirages, 206
for linear larrguages, 21O
for regular languages, 115

pushdown automata, 175
deterministic, 195
nondeterminiutic, 176 ! 1

e:

R
read-write head of a T\rring

machine, 222
recur$ive futtction, 325
recursive la,nguage, 277
recursively erturnerable languages,

276
reduction rrf states in a dfa, 62
reductiorr

of undecidable problems, 304
polynomial-tinre, 355

regular expressions, 7^
regular grammar, 89
regular language, 43
relation, 5
reverse

of a language, L8
of a string, L5

rewriting systems, 337
Rice's theorem, 311
right-linear gra.mmars, 89
rightmost derivation, 129
right qrrotient of languages, 104
root of a tree. 8

409

410 Ilt nr:x

satisliability protrlcrn, i347
sernantics of prograrnrning

langrrages, I48
sentence, 17
sentential forrn, 21
set, 3

countable, 267
uncounta,ble, 267

set operations, 3
s-gra,trmilr, 140
simulaLion, 251
upace-complexity, 344
sttr,r:k, 175

alphabet, 177
start symbol, 177

standard representation for
regular languages, 112

sta,te-entry problem, 304
storage of a,n automa,ton, 25
strirrg, lS

ernpty, 15
Iength, l5
olletrir,tions, l5
prefix, I6
urrffix, 16

srrbset, 4
proper, 4

substring, 16
successor func;tiorr, 326
symmetric difference of two sets,

109
syntan of a prograurrning langua,ge,

r47

T
tape alphabet,223
tape of a Ttrring rnachirre, 222
terminal constant, 334
terminal symbol, 19
time-complexity, 344
tracks rlrr ir ta,pe, 253
tractatrkl prohlems, 343, 354
transducxlr, 26
transitiorr firnction, 25, 36

exterrdcd, 37
transition graph, 36

genera,lizecl, 8l
trap statc, 39
trulu, 8
T\rring-computable function, 233
T\rqing machine, 221

multidimensional, 261
with multiple tracks, 253
mrrlt itape, 258
trondeterrnirristic, 26i3
off-line, 255
with scmi-infinite tape, 253
starrdirrd, 226
with sta.y-option, 251
rrniversa,l, 266

T\rring's thesis, 244

U
urtdcxlitlir.ble prohlem, 300

for cotrtcxt-frtxl lir,ngrrages, 3 II
for recursively enurrrerable

lir,ngrrages, 308
trnit llroductions, 158
urrivtlrutll set, 4
rrrtivt)r$rrl Ttrring machine, 266
urrrtlstrir:ted grammar, 283
uscltlJs productions, J.53

V
vilriahle

of a grarrtrrrar, 19
nullable, 156
start, 19
useless, 153

w
walk in a graph, 8

Y
yield rlf a derivation tree, 13L

z
zero function, 326

t r q
5 t E

V F, R J

1
h
t l

,J'
J

,l
.t
J

5
'l

3.a

ilfi|-
I(r)
Io
T*r*
I-
E..

