Roll No.	***************************************	
Total No	of Questions	091

[Total No. of Pages: 02

Paper ID [MC104]

(Please fill this Paper ID in OMR Sheet)

MCA (Sem. - 1st) MAY-2008

COMPUTER MATHEMATICAL FOUNDATION (MCA - 104) (N2)

www. allsuljects4you.com

Time: 03 Hours

Maximum Marks: 60

Instruction to Candidates:

- 1) Attempt any one question from each Sections A,B,C,&D.
- 2) Section E is Compulsory.

Section - A

 $(1 \times 10 = 10)$

- Q1) Let $R = \{(1, 2), (2, 3), (3, 1)\}$ and $A = \{1, 2, 3\}$, find the reflexive, symmetric and transitive closure of R, using.
 - (a) Composition of relation R
 - (b) Composition of matrix relation R
- Q2) (a) Prove that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
 - (b) Prove that $(A \cap B) = A \cup B$

Section - B

 $(1\times 10=10)$

- Q3) Show that $p \Leftrightarrow q \equiv (p \lor q) \Rightarrow (p \land q)$ using
 - (a) Truth Table (b) Algebra of propositions.
- **Q4)** Prove by mathematical induction that $6^{n+2} + 7^{2n+1}$ is divisible by 43 for each positive integer 'n'.

 $(1 \times 10 = 10)$

Q5) Find the rank of matrix
$$A = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5 \end{bmatrix}$$
.

Q6) Solve the equations using matrix inversion method

$$x+y+z=9,2x+5y+7z=52,2x+y-z=0$$

Section - D

$$(1 \times 10 = 10)$$

Q7) Find the shortest path from vertex s to t and its length from the graph given below.

Q8) A non empty connected graph G is Eulerian if and only if its vertices are all of even degree.

Section - E

- Q9) a) Write the negation of each of the following conjunctions. (10 \times 2 = 20)
 - (i) Paris is in France and London is in England.
 - (ii) 2 + 4 = 6 and 7 < 12.
 - b) Draw the truth table for $\sim (p \Leftrightarrow q) \equiv p \Leftrightarrow \sim q \equiv \sim p \Leftrightarrow q$.
 - c) Draw the venn diagram for the following (i) A B (ii) $A \Delta B$.
 - d) Prove that $(A \cap B) \times (C \cap D) = (A \times C) \cap (B \times D)$.
 - e) Distinguish between ϕ , $\{\phi\}$, $\{0\}$ and 0.
 - f) Define Transpose of a matrix.
 - g) Find the rank of a matrix, $A = \begin{bmatrix} 1 & 1 & -1 \\ 2 & -3 & 4 \\ 3 & -2 & 3 \end{bmatrix}$.
 - h) Define Biparite Graph with example.
 - i) Give an example of a graph which is Hamiltonian but not Eulerian.
 - j) Draw the graph G corresponding to adjacency matrix. $A = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}.$

#