This	question	paper	contains	5	printed	pages.
------	----------	-------	----------	---	---------	--------

72	38	Your Roll No	•••
		M.Sc. / I	
		OPEDATIONIAL DESEARCH Dames V	J
		OPERATIONAL RESEARCH - Paper X	
		(Network Analysis and Theory of Sequencing)	
		(Admissions of 2001 and onwards)	
Tin	ne	3 hours Maximum Marks	75
•		(Write your Roll No on the top immediately on receipt of this question paper)	
		Answer any five questions.	
1.	a)	Define node-arc concept of flow in a network)5
	b)	Prove that for any network the maximal flow value from	
		source to sink is equal to the minimal cut capacity of a	ıll
		cuts separating the source and the sink	Э6
	c)	Formulate the flow maximization problem of a network	rk
		as a linear programming problem and write it,s dual)4
2	(a)	Find the maximal flow in the following network Figure	es
		along the arcs represent their capacities. θ	8

b) Consider the following network:

The distance (in miles) between different stations is shown on each link. Determine the shortest route from station A to station 4.

3 (a) Define minimal spanning tree. Given the sets of nodes X and N - X Let F be the set of edges between X and N - X and let a be the smallest weight of an edge from F. Then prove that every MST must contain at least one edge of weight 'a' from set F For the following network, find the minimal spanning tree. Numbers on the links represent actual distance.

Using Eastman's branch and bound algorithm, find the shortest distance tour for a travelling salesman with his head-office at city 1.

		То				
		_1	_2	, _ 3	, 4	5
	1	•	5	10	8	4
	2	9	-	7	10	5
From	3	12	8	_	6	10
	4	15	6	9	•	12
	5	4	8	5	10	-

4 a) Show that in PERT, expected completion time of an activity is

$$\frac{a+4m+b}{6}$$

b) The following table gives the duration and the manpower requirement for the various activities in a project. Determine the optimal allocation of resources to perform the activities when the total number of men available is 3:

	m , marrow or a train .		1	
	Activity	Duration	Men required	
*	1-2	8	1	*
	1-3	6	2	
	1-5	5	3	
	2-3	Dummy activity		•
	2-6	10	1 .	
	3-4	12	2	
	4-7	10	3	
	5-6	7	1	
	6-7	5	2	07

5 (a) The following table gives data on normal time and cost, crashed time and cost for a project:

Activity	Normal	Crash	Normal	Crash
	time	time	cost	cost
	(days)	(days)	(Rs)	(Rs.)
1→ 2	9	4	1300	2400
1→ 3	15	13	1000	1380
2 → 3	7	4	1200	1440
2→ 4	7	3	1200	1920
2→ 5	12	6	1700	2240
3→ 6	12	11	600	700
4→ 5	6	2	1000	1600
5→ 6	9	6	900	1200

The indirect cost per day is Rs 400 Find the optimum project time and the corresponding minimal total project cost.

- b) Describe briefly the following:
 - a. Dummy activity
 - b Gantt. Chart
 - c Total Float and free Float
 - d. Work Break Down Structure

08

- 6 a) Formulate a general n/m job-shop problem as a mixed integer programming problem.
 - b) Processing times of four jobs on six machines in a flow-shop are given below

Machines

Job	M1	M,	M_3	M_4	Ms	M,
Α	18	8	7	2 ~	10	M ₆ 25
В	17	6	9	6	8	19
C	11	5	8	5	7	15
D	20	4	3	4	8	12

Determine the optimal sequence of jobs that minimizes the total elapsed time.

07

Talula i

i 1