BACHELOR IN COMPUTER APPLICATIONS

Term-End Examination

June, 2008

CS-73 : THEORY OF COMPUTER SCIENCE

Time: 3 hours

Maximum Marks : 75
Note : Question number 1 is compulsory. Attempt any three questions from the rest.

1. (a) Draw finite automata corresponding to the following regular expressions :
(i) $(a b+c d) e \quad 2$
(ii) $(\mathrm{b}+\mathrm{c}) \mathrm{a}^{*} 2$
(b) Convert the following NFA to DFA : 4

State	Input	
	a	b
q_{0}	$\mathrm{q}_{0}, \mathrm{q}_{1}$	q_{2}
q_{1}	q_{0}	q_{1}
q_{2}	-	$\mathrm{q}_{0}, \mathrm{q}_{1}$

(c) Design a Turing machine over $\{a, b\}$ which accepts all the strings of type $a^{n} b^{n}$ where $n \geq 1$ i.e.

$$
L(M)=\left\{a^{n} b^{n} \mid n \geq 1\right\}
$$

(d) If language L is recursive, show that $\overline{\mathrm{L}}$ is also recursive.
(e) Describe the following asymptotic notations:

$$
\Theta, \Omega
$$

(f) Describe polynomial time reduction and how it is related to NP completeness.
(g) State two undecidable problems. 2
2. (a) Find the regular expression corresponding to the following Finite automata :

(b) Give a push down automaton corresponding to the following context free language :

$$
\mathrm{S} \rightarrow \mathrm{AB}, \mathrm{~A} \rightarrow \mathrm{BS}|\mathrm{~b}, \mathrm{~B} \rightarrow \mathrm{SA}| \mathrm{a}
$$

(c). State pumping lemma for regular sets and prove that the language $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{P}} \mid \mathrm{p}\right.$ is prime $\}$ is not regular.
(d) Describe the type 0 and type 1 languages in the Chomsky's classification.
3. (a) Design a Turing machine over $\{a, b\}$ which accepts all the strings ending with bbba.
(b) Describe halting problem of Turing machines. 5
(c) Describe the concept of Universal Turing machine. 5
4. (a) Describe three initial functions used to define the primitive recursive functions. Show that the following function is primitive recursive:
$f: N X N \rightarrow N$ defined by $f(m, n)=m+n$ where N denotes the set of whole numbers.
(b) Describe the working of multihead Turing machine. 5
(c) Describe Post Correspondence problem. 4
5. (a) Describe how finite automata can be used to search information on world wide web.
(b) Describe the role of Turing machine as a computer for positive integers. Design a Turing machine which computes the sum of two positive integers m and n, $\mathrm{m}, \mathrm{n} \geq 1$.
(c) State Rice's theorem and describe the concept of
functional properties.
(d) Briefly describe NP-hard problem. 2

