CS-73

BACHELOR IN COMPUTER APPLICATIONS

Term-End Examination

June, 2008

CS-73 : THEORY OF COMPUTER SCIENCE

Time : 3 hours

Maximum Marks : 75

Note : Question number 1 is **compulsory**. Attempt any **three** questions from the rest.

(a) Draw finite automata corresponding to the following regular expressions :

- (i) (ab + cd) e
- (ii) $(b + c) a^*$
- (b) Convert the following NFA to DFA :

State	Input		
	a	b	
9 ₀	q ₀ , q ₁	q ₂	
9 ₁	q ₀	q_1	
q ₂	<u> </u>	q ₀ , q ₁	

(c) Design a Turing machine over $\{a, b\}$ which accepts all the strings of type $a^n b^n$ where $n \ge 1$ i.e.

$$L(M) = \{a^n b^n \mid n \ge 1\}$$
 5

CS-73

2

2

4

(d)	If language L is recursive, show that \overline{L} is also recursive.	4
(e)	Describe the following asymptotic notations :	
	Θ, Ω.	6
(f)	Describe polynomial time reduction and how it is	
	related to NP completeness.	5
(g)	State two undecidable problems.	2

2. (a) Find the regular expression corresponding to the following Finite automata :

(b) Give a push down automaton corresponding to the following context free language :

 $S \rightarrow AB$, $A \rightarrow BS \mid b$, $B \rightarrow SA \mid a$

- (c) State pumping lemma for regular sets and prove that the language $L = \{a^p \mid p \text{ is prime}\}$ is not regular.
- (d) Describe the type 0 and type 1 languages in the Chomsky's classification.

CS-73

4

5

2

4

3.	(a)	Design a Turing machine over {a, b} which accepts all the strings ending with bbba.	5
	(b)	Describe halting problem of Turing machines.	5
	(c)	Describe the concept of Universal Turing machine.	5
4.	(a)	Describe three initial functions used to define the primitive recursive functions. Show that the following function is primitive recursive :	6
		$f : NXN \rightarrow N$ defined by f (m, n) = m + n where N denotes the set of whole numbers.	
	(b)	Describe the working of multihead Turing machine.	5
	(c)	Describe Post Correspondence problem.	4
5.	(a)	Describe how finite automata can be used to search information on world wide web.	5
	(b)	Describe the role of Turing machine as a computer for positive integers. Design a Turing machine which computes the sum of two positive integers m and n, m, $n \ge 1$.	4
	(c)	State Rice's theorem and describe the concept of	•
	x − <i>r</i>	functional properties.	4
	(d)	Briefly describe NP-hard problem.	2

,

• • . . .

•