UP-CPMT - 2002

Paper-2

Physics

1. The energy of X-ray photons coming out of coolidge tube depends on :
1) kinetic energy of incident electrons
2) intensity of incident electrons
3) both (1) and (2)
4) neither (1) nor (2)
2. If $C_{p} \rightarrow C_{v}$ are molar heats at constant pressure and constant volume respectively and R is gas constant for 1 mole, then the correct relation is :
1) $C_{p}-C_{v}=R$
2) $C_{p}-C_{v}<R$
3) $C_{p}-C_{v}>R$
4) $C_{p}-C_{v}=0$
3. The value of acceleration due to gravity g at distance r from earth's centre such that $r<\mathrm{R}$ depend on r according to relation: ($R=$ radius of earth)
1) $g \propto\left(1 / r^{2}\right)$
2) $g \propto(1 / r)$
3) $g \propto r$
4) $g \propto r^{2}$
4. In a system of units, the units of mass, length and time are 1 quintal, 1 km and 1 h respectively. In this system 1 N force will be equal to:
1) 50 new unit
2) 129.6 new unit
3) 100.7 new unit
4) 10^{4} new unit
5. If $F_{p p} F_{n n}$ and $F_{p n}$ represent nuclear forces between proton-proton, neutron-neutron and proton-neutron respectively, then the correct relation is :
1) $F_{p p}>F_{p n}=F_{n n}$
2) $F_{p p}=F_{n n}=F_{p n}$
3) $F_{p p}>F_{p n}>F_{n n}$
4) $F_{p p}<F_{p n}<F_{n n}$
6. When ordinary light is made incident on a quarter wave plate, the emergent light is :
1) linearly polarised
2) circularly polarised
3) elliptically polarised
4) unpolarised
7. The ratio of masses of three wires is $1: 2: 3$ and that of their lengths is $3: 2: 1$. If the wires are made of same material, the ratio of their resistances will be :
1) $1: 1: 1$
2) $1: 4: 3$
3) $9: 4: 1$
4) $27: 6: 1$
8. Two dielectrics of dielectric constants K_{1} and K_{2} are filled in the gap of parallel plate capacitor as shown in figure. The capacitor has plate each of area A and separation d. The capacitance of the capacitor is :

1) $\left(\varepsilon_{0}\left(K_{1}+K_{2}\right) / 2 d\right)$
2) $\left(\left(\varepsilon_{0} A / 2 d\right)\left(K_{1}+K_{2}\right) /\left(K_{1} K_{2}\right)\right)$
3) $\left(\left(\varepsilon_{0} A / d\right)\left(K_{1} K_{2}\right) /\left(K_{1}+K_{2}\right)\right)$
4) $\left(\left(2 \varepsilon_{0} A / d\right)\left(K_{1} K_{2}\right) /\left(K_{1}+K_{2}\right)\right)$
9. The triple point of water is:
1) $273.16^{\circ} \mathrm{C}$
2) 273.16 K
3) $273.16^{\circ} \mathrm{F}$
4) 373 K
10. The similar magnets of magnetic moments M_{1} and M_{2} are taken and vibrate in a vibration magnetometer with their (i) like poles together (ii) unlike poles together. If the ratio of the time periods is (1/2), then the ration of M_{1} and M_{2} (i.e., $\left(M_{1} / M_{2}\right)$) is :
1) 0.5
2) $4 / 3$
3) $5 / 3$
4) $2 / 3$
11. If the first one-third of a journey is traveled at $20 \mathrm{~km} / \mathrm{h}$, next one-third at $40 \mathrm{~km} / \mathrm{h}$ and the last one-third at $60 \mathrm{~km} / \mathrm{h}$. The average speed of whole journey will be :
1) $32.7 \mathrm{~km} / \mathrm{h}$
2) $35.7 \mathrm{~km} / \mathrm{h}$
3) $40.7 \mathrm{~km} / \mathrm{h}$
4) $43.7 \mathrm{~km} / \mathrm{h}$
12. If force F, length L and time T are taken as fundamental units, the dimensional formula for mass will be :
1) $\left[\mathrm{FL}^{-1} \mathrm{~T}^{2}\right]$
2) $\left[\mathrm{FL}^{-1} \mathrm{~T}^{-1}\right]$
3) $\left[F L^{-1} \mathrm{~T}^{-3}\right]$
4) $\left[\mathrm{ML}^{2} \mathrm{~T}^{2}\right]$
13. Which of the following is wrongly matched?
1) Raman effect-scattering of light
2) Thomson effect-thermoelectricity
3) Hall effect-work function
4) Photoelectric effect-quantum nature of light
14. A circular disc of mass M and radius R is rotating with an angular velocity ω about an axis passing through its cantre and perpendicular to the plane of the disc. A small point like part of mass m detaches from the rim of the disc and continues to move with same angular speed. The angular velocity of remaining disc just after detaching will become :
1) $((M-1 / 2 m) /(M+m)) \omega$
2) $((M+1 / 2 m) /(M+m)) \omega$
3) $((M-2 m) /(M-m)) \omega$
4) $((M+2 m) /(M-m)) \omega$
15. Two identical metallic balls, whose temperatures are $200^{\circ} \mathrm{C}$ and $400^{\circ} \mathrm{C}$ respectively, are placed in an enclosure at $27^{\circ} \mathrm{C}$. The ratio of heat-loss of the balls will be :
1) $1: 1$
2) $1: 3$
3) $\frac{(473)^{4}-(300)^{4}}{(673)^{4}-(300)^{4}}$
4) $\frac{(200)^{4}-(27)^{4}}{(400)^{4}-(27)^{4}}$
16. A point source of light is placed at a distance of 0.5 m from a caesium photocell and under saturation conditions the number of emitted photoelectrons is n. If the source is now placed 1 m from the cell, the number of emitted electrons will be :
1) $2 n$
2) $4 n$
3) $n / 2$
4) $n / 4$
17. The radius of a spherical drop of water is 1 mm . If surface tension of water be 70×10^{-3} N / m, the pressure difference inside and outside the drop will be :
1) $35 \mathrm{~N} / \mathrm{m}^{2}$
2) $210 \mathrm{~N} / \mathrm{m}^{2}$
3) $280 \mathrm{~N} / \mathrm{m}^{2}$
4) zero
18. For coulomb force to be operative the least side of atom will be :
1) $10^{-18} \mathrm{~m}$
2) $10^{-15} \mathrm{~m}$
3) $10^{-12} \mathrm{~m}$
4) $10^{-9} \mathrm{~m}$
19. The energy of stars is due to :
1) combustion of coal
2) nuclear fission
3) nuclear fusion
4) gravitational contraction
20. The universal property among all substances is :
1) diamagnetism
2) paramagnetism
3) ferromagnetism
4) non-magnetism
21. The frequency of vibrating air column in closed organ pipe is n. If its length be doubled and radius halved, its frequency will be nearly :
1) $n / 4$
2) $n / 2$
3) $2 n$
4) $4 n$
22. In a sample of radioactive substance, what percentage decays in one mean life time ?
1) 32%
2) 64%
3) 70%
4) 72%
23. Doppler's effect in sound takes place when source and observer are :
1) stationary
2) moving with same velocity
3) in relative motion
4) none of the above
24. When a body of mass M is hung from a spring, the spring extends by 1 cm . If the body of mass 2 M be hung from the same spring, the extension of spring will be :
1) 1 cm
2) 2 cm
3) 3 cm
4) 5 cm
25. The current in a $A B$ is increasing in magnitude. The direction of current induced in the loop (in any) will be :

1) clockwise
2) anticlockwise
3) arbitrary
4) no current
26. The magnet in figure rotates as shown on a pivot through its centre. At the instant shown, what are the directions of the induced currents ?

1) A to B and C to D
2) B to A and C to D
3) A to B and D to C
4) B to A and D to C
27. The temperatures of cold and hot junctions of a thermocouple are 0° and $\mathrm{T}{ }^{\circ} \mathrm{C}$ respectively. The thermo emf produced is
$\mathrm{E}=\mathrm{AT}-(1 / 2) \mathrm{BT}^{2}$
If $A=16, B=0.08$, the temperature inversion will be :
1) $100^{\circ} \mathrm{C}$
2) $200^{\circ} \mathrm{C}$
3) $400^{\circ} \mathrm{C}$
4) $600^{\circ} \mathrm{C}$
28. The graph of pressure P and ($1 /$ Volume, (V)) of 1 mole of an ideal gas at constant temperature is :

2)

3)

4)

29. The correct graph representing the relation between energy (E) of photoelectrons and frequency (v) of incident light is :
1)

2)

3)

4)

30. The emissive power of a black body is proportional to : $(\mathrm{T}=$ absolute temperature)

1) $E \propto T^{0}$
2) $E \propto T^{2}$
3) $E \propto T^{4}$
4) $E \propto T^{6}$
31. An object is placed at a distance of 0.5 m in front of a plane mirror. The distance between object and image will be :
1) 0.25 m
2) 0.5 m
3) 1.0 m
4) 4.0 m
32. A laser beam is coherent because it contains :
1) waves of several wavelengths
2) incoherent waves of a single wavelength
3) coherent waves of several wavelength
4) coherent waves a single wavelength
33. A particle executes SHM of amplitude A . If T_{1} and T_{2} are the times taken by the particle to traverse from 0 to ($\mathrm{A} / 2$) and from ($\mathrm{A} / 2$) to A respectively, then $\left(\mathrm{T}_{1} / \mathrm{T}_{2}\right)$ will be equal to :
1) 1
2) $1 / 2$
3) $1 / 4$
4) 4
34. When high energetic cathode rays strike a heavy target of high melting point, then the rays produced are :
1) X-rays
2) γ-rays
3) α-rays
4) β-rays
35. The currents and voltage in AC circuit are given by $\mathrm{I}=5 \sin (100 \mathrm{t}-(\pi / 2)) \mathrm{amp}, \mathrm{V}=200 \sin$ (100t) volt. The power dissipated in the circuit will be :
1) 20 W
2) 50 W
3) 100 W
4) zero
36. When a ray of light enters from one medium to another, its velocity is doubled. The critical angle for the ray for total internal reflection will be :
1) 30°
2) 45°
3) 90°
4) information is incomplete
37. The dimensional formula for emf e in MKS system will be :
1) $\left[M L^{2} T^{-2} Q^{-1}\right]$
2) $\left[M L^{2} T^{-1} Q\right]$
3) $\left[M L^{-2} Q^{-2}\right]$
4) $\left[M L^{2} T^{-2} Q^{-2}\right]$
38. A stone tied at one end of a long string is rotated in a vertical circle about the other end. The minimum speed of the stone at the lowest point so, as to complete the circular path will be :
1) $\sqrt{ } 7 \mathrm{gr}$
2) $\sqrt{ } 10 \mathrm{gr}$
3) $\sqrt{3} g r$
4) $\sqrt{ } 5 \mathrm{gr}$
39. If a capillary tube of radius R is immersed in water, the mass of water risen in capillary is M. If the radius of capillary be doubled, the mass of water risen in the capillary will be :
1) $M / 2$
2) $M / 4$
3) 2 M
4) 4 M
40. When a triode valve is used as an amplifier the phase difference between input and output voltages is :
1) zero
2) $\pi / 6$
3) $\pi / 3$
4) π
41. An X-ray tube is operated at 50 kV . The minimum wavelength of X-rays produced is :
1) $0.25 \AA$
2) $0.225 \AA$
3) $2.25 \AA$
4) $1 \AA$
42. The distance between the successive nodes is:
1) N 4
2) N 2
3) 2λ
4) 4λ
43. The tension in vibrating streched piano wire is 10 N . To double the frequency, the tension in wire must be :
1) 10 N
2) 25 N
3) 40 N
4) 90 N
44. Two polarising sheets are placed parallel with their polarising axes. The instensity of emergent light is I_{m}. Now, one of the sheets is rotated through an ang保, the intensity varies according to relation $I=I_{m} \cos ^{2} \theta$. If the intensity of emergent light is reduced to half (i.e., $\left(I_{m} / 2\right)$) then the angle θ will be :
1) $\pm 60^{\circ}$ and $\pm 135^{\circ}$
2) $\pm 45^{\circ}$ and $\pm 120^{\circ}$
3) $\pm 30^{\circ}$ and $\pm 120^{\circ}$
4) $\pm 45^{\circ}$ and $\pm 135^{\circ}$
45. Two batteries of emf 4 V and 8 V with internal resistances Ω and 2Ω respectively are connected to an external resistance $R=9 \Omega$ as shown in figure. The current in circuit and the potential difference between P and Q respectively will be :

1) $(1 / 27) A, 27 V$
2) $(1 / 12) A, 12 V$
3) $(1 / 3) \mathrm{A}, 3 \mathrm{~V}$
4) $(1 / 4) A, 4 V$
46. In lithium vapour two lithium nuclei do not fuse to form a carbon nucleus at room temperature because :
1) carbon nuclei are unstable
2) it in contrary to energy conservation
3) lithium nuclei are bound with stronger forces than carbon nuclei
4) lithium cannot come too close due to coulomb repulsion
47. The temperature of sink of a Carnot engine is $27^{\circ} \mathrm{C}$. If the efficiency of engine be 25%, then the temperature of source must be :
1) $27^{\circ} \mathrm{C}$
2) $127^{\circ} \mathrm{C}$
3) $154^{\circ} \mathrm{C}$
4) $224^{\circ} \mathrm{C}$
48. Cathode rays are passed between the poles of a magnet as shown in figure. The effect of magnetic field is :

1) to increase velocity of rays
2) to deflect the rays towards S-pole
3) to deflect the rays towards N -pole
4) to deflect the rays perpendicular to the plane of paper, upwards
49. Two soap bubbles surface tension (T) coalesce to form a big bubble under isothermal
conditions. If in this process the change in volume be V and change in surface area be S , then the correct relation is :
(where P is atmospheric pressure)
1) $\mathrm{PV}+2 \mathrm{TS}=0$
2) $3 P V+4 T S=0$
3) $3 P V+T S=0$
4) $4 P V+3 T S=0$
50. The mass number of a nucleus is equal to number of :
1) neutrons in nucleus
2) protons in nucleus
3) electrons in nucleus
4) nucleons in nucleus

Chemistry

51. The relation of ΔH and ΔE is represented as :
1) $\Delta H=\Delta E-P \Delta V$
2) $\Delta \mathrm{E}=\Delta \mathrm{H}-\mathrm{P} \Delta V$
3) $\Delta H=\Delta E+\Delta n R T$
4) $\Delta E=\Delta V+\Delta H$
52. The reagent used for Friedel-Craft's reaction is :
1) dry ether
2) AlCl_{3}
3) anhydrous AlCl_{3}
4) $\mathrm{P}_{2} \mathrm{O}_{5}$
53. The carboxylic acid which reduces Tollen's reagent is :
1) HCOOH
2) $\mathrm{CH}_{3} \mathrm{COOH}$
3) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$
4) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
54. The dissociation constant of two acids HA_{1} and HA_{2} are 3.0×10^{-4} and 1.8×10^{-5} respectively. The relative strengths of the acids is :
1) $1: 2$
2) $1: 4$
3) $4: 1$
4) $2: 1$
55. The oil of winter green is:
1) ethyl salicylate
2) methyl salicylate
3) benzaldehyde
4) phenyl salicylate
56. The equivalent weight of KMnO_{4} in acidic medium is :
1) 158
2) 48.65
3) 31.6
4) 72
57. The correct one for d-orbital is :
1) $(n-1) d^{1-8} n s^{1}$
2) $(n-1) d^{1-10} n s^{1-2}$
3) $(n-1) d^{1-7}$
4) $(n-1) d^{1-10} n s^{2}$
58. Butter is a colloidal solution of :
1) solid-solid
2) liquid-solid
3) solid-liquid
4) gas-solid
59. A compound (60 g) on analysis produce carbon, hydrogen and oxygen $24 \mathrm{~g}, 4 \mathrm{~g}$ and 32 g respectively. The empirical formula is :
1) $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{2}$
2) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
3) $\mathrm{CH}_{2} \mathrm{O}$
4) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{6}$
60. Carbogen is a mixture of :
1) $\mathrm{CO}_{2}+\mathrm{N}_{2}$
2) $\mathrm{CO}+\mathrm{O}_{2}$
3) $\mathrm{CO}_{2}+\mathrm{O}_{2}$
4) $\mathrm{C}+\mathrm{H}_{2}+\mathrm{N}_{2}$
61. The electron affinity of Be is similar to :
1) He
2) B
3) Li
4) Na
62. The lightest gas is :
1) N_{2}
2) Ar
3) Rn
4) He
63. One mole of CH_{4} contains :
1) $4 g$ atoms of hydrogen
2) 6.0 g atoms of carbon
3) 6.02×10^{23} atoms of hydrogen
4) 2.81×10^{23} molecules of CH_{4}
64. The oxidation state of M^{3+} after removing three electrons is :
1) zero
2) +3
3) +6
4) -3
65. Atom bomb is based on the principle of :
1) nuclear fusion
2) nuclear fission
3) nuclear transformation
4) carbon dating
66. The claisen condensation reaction is given by :
1) $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$
2) $\mathrm{CH}_{3} \mathrm{CHO}$
3) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$
4) HCHO
67. The osmotic pressure of 5% solution of cane-sugar at $150^{\circ} \mathrm{C}$ is :
1) 2.47 atm
2) 5.07 atm
3) 3.09 atm
4) 8.03 atm
68. Formalin is :
1) HCHO
2) $\mathrm{CH}_{3} \mathrm{CHO}$
3) HCOOH
4) $\mathrm{CH}_{3} \mathrm{COOH}$
69. Nessler's reagent is :
1) NaHgCl_{4}
2) $\mathrm{K}_{2} \mathrm{Hgl}_{4}$
3) $\mathrm{Hg}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}$
4) $\mathrm{K}_{2} \mathrm{Hgl}_{4}+\mathrm{KOH}$
70. The oxidation number of sulphur in $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ is :
1) +1
2) +2
3) +3
4) -1
71. ${ }_{90} \mathrm{Th}^{232} \rightarrow{ }_{82} \mathrm{~Pb}^{208}$ The number of α and β particles emitted during the above reaction is :
1) 3α and 2β
2) 2α and 3β
3) 4α and 2β
4) 6α and 4β
72. For converting a solution of 100 mL KCl of 0.4 M concentration into a solution of KCl 0.05 M concentration. The quantity of water added is :
1) 1000 mL
2) 700 mL
3) 400 mL
4) 100 mL
73. The IUPAC name of
$\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$

is:
1) 3-propyl pentene-1
2) 3-ethyl penten-1
3) 4-ethyl hexene-1
4) 3-ethyl hexene-1
74. The moderator used in nuclear reactor is :
1) TEL
2) $\mathrm{D}_{2} \mathrm{O}$
3) $\mathrm{H}_{2} \mathrm{O}_{2}$
4) $\mathrm{R}-\mathrm{O}-\mathrm{R}$
75. Acetone and chloroform reacts to produce :
1) $\mathrm{CH}_{3} \mathrm{COOH}$
2) $\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{3}$
3) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}(\mathrm{OH}) \mathrm{CCl}_{3}$
4) $\mathrm{CH}_{3} \mathrm{CHO}$
76. The most polar bond is:
1) $\mathrm{O}-\mathrm{F}$
2) $\mathrm{N}-\mathrm{Cl}$
3) $\mathrm{N}-\mathrm{F}$
4) $\mathrm{N}-\mathrm{N}$
77. Picric acid is :
1) trinitrotoluene
2) trinitrobenzene
3) trinitrophenol
4) trinitroaniline
78. The cis and trans isomers are represented by :
1) pent-1-ene
2) but-2-ene
3) prop-1-ene
4) but-1-ene
79. ${ }_{19} \mathrm{~K}^{40}$ and ${ }_{20} \mathrm{Ca}^{40}$ are known as :
1) isotopes
2) isobars
3) isotones
4) isodiaphers
80. The species responsible for nitration is :
1) $\mathrm{NO}_{2}{ }^{+}$
2) NO_{3}
3) NO_{2}
4) all of these
81. Glycerol on oxidation with bismuth nitrate produce :
1) glyceric acid
2) glyoxalic acid
3) oxalic acid
4) meso-oxalic acid
82. The incorrect statement for d-block element is :
1) It shows magnetic property
2) It has variable valency
3) It has tendency for formation of coloured ions
4) It has complete d-orbitals
83. The phenomenon of mutation is:
1) chemical change in DNA molecule
2) production of antibodies
3) synthesis of macromolecules
4) invasion of foreign micro-organism
84. The number of double bonds in gammexane is:
1) 0
2) 1
3) 2
4) 3
85. Bronze is a mixture of :
1) $\mathrm{Pb}+\mathrm{Sn}$
2) $\mathrm{Cu}+\mathrm{Sn}$
3) $\mathrm{Cu}+\mathrm{Zn}$
4) $\mathrm{Pb}+\mathrm{Zn}$
86. Benzaldehyde is converted to benzyl alcohol by:
1) Wurtz reaction
2) Cannizaro reaction
3) Fittig reaction
4) Wurtz-Fittig reaction
87. The hybridisation present in IF_{3} is :
1) $s p^{3} d$
2) sp^{3}
3) $s p^{3} d^{2}$
4) $s p^{3} d^{3}$
88. The ore of aluminium is :
1) carnallite
2) malachite
3) galena
4) bauxite
89. The number of σ and π bonds present in $\mathrm{CH} \equiv \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}$ is :
1) $10 \sigma, 3 \pi$
2) $10 \sigma, 2 \pi$
3) $8 \sigma, 2 \pi$
4) $12 \sigma, 3 \pi$
90. The incorrect statement for 14 g of CO is :
1) It occupies 2.24 L at NTP
2) It corresponds to $(1 / 2)$ mole of CO
3) It corresponds to same mole of CO and N_{2}
4) It corresponds to 6.01×10^{23} molecules of CO
91. The process of zinc-plating on iron sheet is known as:
1) annealing
2) roasting
3) galvanization
4) smelting
92. The correct order of relative acidity is :
1) $\mathrm{HClO}>\mathrm{HClO}_{2}>\mathrm{HClO}_{3}>\mathrm{HClO}_{4}$
2) $\mathrm{HClO}_{4}>\mathrm{HClO}_{3}>\mathrm{HClO}_{2}>\mathrm{HClO}$
3) $\mathrm{HClO}>\mathrm{HClO}_{4}>\mathrm{HClO}_{2}>\mathrm{HClO}_{3}$
4) $\mathrm{HClO}_{3}>\mathrm{HClO}_{2}>\mathrm{HClO}_{4}>\mathrm{HClO}$
93. The half-life period of radium is 1580 yr . It remains $1 / 16$ after the years :
1) 1480 yr
2) 3260 yr
3) 4840 yr
4) 6320 yr
94. Aniline reacts with chloroform in presence of alcoholic KOH to produce bad smelling compound. The compound produced is :
1) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NC}$
2) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CN}$
3) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$
4) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NHC}_{6} \mathrm{H}_{5}$
95. $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s}) \rightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g})$

When the above reaction occurs, the entropy :

1) remains same
2) decreases
3) increases
4) none of these
96. The laboratory method for the preparation of $\mathrm{H}_{2} \mathrm{O}_{2}$ is by :
1) $\mathrm{H}_{2} \mathrm{SO}_{4}$
2) $\mathrm{NH}_{4} \mathrm{HSO}_{4}$
3) $\mathrm{Na}_{2} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4}$
4) all of these
97. The indicator used for the filtration of weak base and strong acid is :
1) thymol blue
2) methyl orange
3) phenolphthalein
4) fluorescein
98. Sindoor is represented by :
1) $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$
2) $\mathrm{PbCO}_{3} \cdot \mathrm{~Pb}(\mathrm{OH})_{2}$
3) $\mathrm{Pb}(\mathrm{OH})_{2} \cdot 4 \mathrm{PbCO}_{3}$
4) $\mathrm{Pb}_{3} \mathrm{O}_{4}$
99. Duralumin is an alloy of :
1) $\mathrm{Al}+\mathrm{Mn}$
2) $\mathrm{Al}+\mathrm{Mg}+\mathrm{Ni}+\mathrm{Mn}$
3) $\mathrm{Al}+\mathrm{Mg}+\mathrm{Ni}$
4) $\mathrm{Al}+\mathrm{Mg}+\mathrm{Mn}+\mathrm{Cu}$
100. The oxygen obtained from 72 kg of water is:
1) 72 kg
2) 36 kg
3) 48 kg
4) 64 kg

Answer Key

1) 1	2) 1	3) 1	4) 2	5) 2	6) 4	7) 4	8) 1	9) 2	10) 3
11) 1	12) 1	13) 3	14) 3	15) 3	16) 4	17) 3	18) 2	19) 3	20) 1
21) 2	22) 2	23) 3	24) 2	25) 1	26) 1	27) 3	28) 2	29) 3	30) 3
31) 3	32) 4	33) 2	34) 1	35) 4	36) 1	37) 1	38) 4	39) 3	40) 4
41) 1	42) 2	43) 3	44) 4	45) 3	46) 4	47) 2	48) 4	49) 2	50) 4
51) 3	52) 3	53) 1	54) 3	55) 2	56) 3	57) 2	58) 2	59) 3	60) 3
61) 1	62) 4	63) 1	64) 3	65) 2	66) 1	67) 2	68) 1	69) 4	70) 2
71) 4	72) 2	73) 4	74) 2	75) 3	76) 3	77) 3	78) 2	79) 2	80) 1
81) 4	82) 4	83) 1	84) 1	85) 2	86) 2	87) 1	88) 4	89) 1	90) 1
91) 3	92) 2	93) 4	94) 1	95) 3	96) 3	97) 2	98) 4	99) 4	100) 4

