ELECTRONICS \& COMMUNICATION ENGINEERING

ONE MARK QUESTIONS

1. The dependent current source shown in the figure

(a.) delivers 80W
(b.) absorbs 80 W
(c.) delivers 40W
(d.)absorbs 40W
2. In the figure, the switch was closed for a long time before opening at $t=0$. The voltage $V x$ at $t=0^{+}$ is

(a.) 25 V
(b.) 50 V
(c.) -50 V
(d.) 0 V
3. In the figure, silicon diode is carrying a constant current of 1 mA . When the temperature of the diode is $20^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{D}}$ is found to be 700 mV . If the temperature rises to $40^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{D}}$ becomes approximately equal to

(a.) 740 mV
(b.) 660 mV
(c.) 680 mV
(d.) 700 mV
4. If the transistor in the figure is in saturation, then

(a.) I_{C} is always equal to $\beta_{d c} I_{B}$
(b.) I_{C} is always equal to $-\beta_{\mathrm{dc}} \mathrm{I}_{\mathrm{B}}$
(c.) I_{C} is greater than or equal to $\beta_{\mathrm{dc}} \mathrm{I}_{\mathrm{B}}$
(d.) I_{C} is less than or equal to $\beta_{d c} I_{B}$
5. In a negative feedback amplifier using voltage-series (i.e. voltage-sampling, series mixing) feedback.
(R_{i} and R_{0} denote the input and outp ut resistances resp ectively)
(a.) R_{i} decreases and R_{0} decreases
(b.) R_{i} decreases and R_{0} increases
(c.) R_{i} increases and R_{0} decreases
(d.) R_{i} increases and R_{0} increases
6. A 741-type opamp has a gain-bandwidth product of 1 MHz . A non-inverting amplifier using this op amp and having a voltage gain of 20 dB will exhibit a -3-dB bandwidth of
(a.) 50 KHz
(b.) 100 KHz
(c.) $\frac{1000}{17} \mathrm{KHz}$
(d.) $\frac{1000}{7.07} \mathrm{KHz}$
7. Three identical RC-coupled transistor amplifiers are cascaded. If each of the amplifiers has a frequency resp onse as shown in the figure, the overall frequency response is as given in

(a.)

(b.)

(c.)

(d.)

8. -bit 2's complement representation of a decimal number is 1000 . The number is
(a.) +8
(b.) 0
(c.) -7
(d.) 8
9. If the input to the digital circuit (in the figure) consisting of a cascade of 20 XOR-gates is X , then the output Y is equal to

(a.) 0
(b.) 1
(c.) \bar{X}
(d.) X
10. The number of comparators required in a 3-bit comparator type ADC is
(a.) 2
(b.) 3
(c.) 7
(d.) 8
11. Convolution of $x(t+5)$ with impulse function $\delta(t-7)$ is equal to
(a.) $x(t-12)$
(b.) $\mathrm{x}(\mathrm{t}+12)$
(c.) $x(t-2)$
(d.) $x(t+2)$
12. Which of the following cannot be the Fourier series expansion of a periodic signal?
(a.) $\mathrm{x}(\mathrm{t})=2 \cos \mathrm{t}+3 \cos 3 \mathrm{t}$
(b.) $\mathrm{x}(\mathrm{t})=2 \cos \pi \mathrm{t}+7 \cos \mathrm{t}$
(c.) $x(t)=\operatorname{cost}+0.5$
(d.) $\mathrm{x}(\mathrm{t})=2 \cos 1.5 \pi \mathrm{t}+\sin 3.5 \pi \mathrm{t}$
13. The Fourier transform $F\left\{e^{-1} u(t)\right\}$ is equal to $\frac{1}{1+j 2 \pi f}$. Therefore, $F\left\{\frac{1}{1+j 2 \pi t}\right\}$ is
(a.) $e^{f} u(f)$
(b.) $e^{-f} u(f)$
(c.) $e^{f} u(-f)$
(d.) $e^{-f} u(-f)$
14. A linear phase channel with phase delay T_{p} and group delay T_{g} must have (f denotes frequency)
(a.) $\mathrm{T}_{\mathrm{p}}=\mathrm{T}_{\mathrm{g}}=$ constant
(b.) $\mathrm{T}_{\mathrm{p}} \propto \mathrm{f}$ and $\mathrm{T}_{\mathrm{g}} \propto \mathrm{f}$
(c.) $\mathrm{T}_{\mathrm{p}}=$ constant and $\mathrm{T}_{\mathrm{g}} \propto \mathrm{f}$
(d.) $\mathrm{T}_{\mathrm{p}} \propto \mathrm{f}$ and $\mathrm{t}_{\mathrm{g}}=$ constant
15. Consider a system with the transfer function $G(s)=\frac{s+6}{K s^{2}+s+6}$. Its damping ratio will be 0.5 when the value of k is
(a.) $2 / 6$
(b.) 3
(c.) $1 / 6$
(d.) 6
16. Which of the following points is NOT on the root locus of a system with the open-loop transfer function $G(s) H(s)=\frac{k}{s(s+1)(s+3)}$
(a.) $s=-j \sqrt{3}$
(b.) $\mathrm{s}=-1.5$
(c.) $\mathrm{s}=-3$
(d.) $s-\infty$
17. The phase margin of a system with the open-loop transfer function $G(s) H(s)=\frac{(1-s)}{(1+s)(2+s)}$
(a.) 0°
(b.) 63.4°
(c.) 90°
(d.) ∞
18. The transfer function $\mathrm{Y}(\mathrm{s}) / \mathrm{U}(\mathrm{s})$ of a system described by the state equations $\dot{x}(t)=-2 x(t)+2 u(t)$ and $y(t)=0.5 x(t)$ is
(a.) $0.5 /(\mathrm{s}-2)$
(b.) $1 /(\mathrm{s}-2)$
(c.) $0.5 /(\mathrm{s}+2)$
(d.) $1 /(\mathrm{s}+2)$
19. A 1 MHz sinusoidal carrier is amplitude modulated by a symmetrical square wave of period 100μ sec. Which of the following frequencies will NOT be present in the modulated signal?
(a.) 990 KHz
(b.) 1010 KHz
(c.) 1020 KHz
(d.) 1030 KHz
20. Consider a sample signal $y(t)=5 \times 10^{-6} x(t) \sum_{n=-\infty}^{+\infty} \delta\left(t-n T_{s}\right)$ where $x(t)=10 \cos \left(8 \pi \times 10^{3}\right) t$ and $T_{s}=100 \mu \mathrm{sec}$. Which $\mathrm{y}(\mathrm{t})$ is passed through an ideal low pass filter with a cutoff frequency of 5 KHz , the output o the filter is
(a.) $5 \times 10^{-6} \cos \left(8 \pi \times 10^{3}\right) t$
(b.) $5 \times 10^{-5} \cos \left(8 \pi \times 10^{3}\right) t$
(c.) $5 \times 10^{-1} \cos \left(8 \pi \times 10^{3}\right) t$
(d.) $10 \cos \left(8 \pi \times 10^{3}\right) t$
21. For a bit-rate of 8 Kbps , the best possible values of the transmitted frequencies in a coherent binary FSK system are
(a.) 16 KHz and 20 KHz
(b.) 20 KHz and 32 KHz
(c.) 20 KHz and 40 KHz
(d.) 32 KHz and 40 KHz
22. The line-of-sight communication requires the transmit and receive antennas to face each other. If the transmit antenna is vertically polarized, for best reception the receiver antenna should be
(a.) horizontally polarized
(b.) vertically polarized
(c.) at 450 with respect to horizontal polarization
(d.) at 45° with respect to vertical polarization
23. The VSWR can have any value between
(a.) 0 and 1
(b.) -1 and +1
(c.) 0 and ∞
(d.) 1 and ∞
24. In an impedance Smith chart, a clockwise movement along a constant resistance circle gives rise to
(a.) a decrease in the value of reactance
(b.)an increase in the value of reactance
(c.) no change in the reactance value
(d.)no change in the impedance value
25. The phase velocity for the TE_{10}-mode in an air-filled rectangular waveguide is
(a.) less than c
(b.) equal to c
(c.) greater than c
(d.) none of the above
(c is the velocity of plane waves in free space)

TWO MARKS QUESTIONS

26. In the network of the figure, the maximum power is delivered to RL if its value is

(a.) 16Ω
(b.) $\frac{40}{3} \Omega$
(c.) 60Ω
(d.) 20Ω
27. If the 3-phase balanced source in the figure delivers 1500 W at a leading power factor 0.844 , then the value of Z_{L} (in ohm) is approximately

(a.) $90<32.44^{\circ}$
(b.) $80 \angle 32.44^{\circ}$
(c.) $80 \angle-32.44^{\circ}$
(d.) $90 \angle-32.44^{\circ}$
28. An amplifier using an opamp with a slew-rate $\mathrm{SR}=1 \mathrm{~V} / \mu \mathrm{sec}$ has a gain of 40 dB . If this amplifier has to faithfully amplify sinusoidal signals from dc to 20 KHz without introducing any slew-rate induced distortion, then the input signal level must not exceed.
(a.) 795 mV
(b.) 395 mV
(c.) 79.5 mV
(d.) 39.5 mV
29. The circuit in the figure employ s positive feedback and is intended to gener ate sinusoidal oscillation. If at a frequency $f_{0,} B(f)=\Delta \frac{V_{f}(f)}{V_{0}(f)}=\frac{1}{6} \angle 0^{0}$, then to sustain oscillation at this frequency

(a.) $\mathrm{R}_{2}=5 \mathrm{R}_{1}$
(b.) $R_{2}=6 R_{1}$
(c.) $R_{2}=\frac{R_{1}}{6}$
(d.) $R_{2}=\frac{R_{1}}{5}$
30. A zener diode regulator in the figure is to be designed to meet the specifications: $\mathrm{I}_{\mathrm{L}}=10 \mathrm{~mA}, \mathrm{~V}_{0}=$ 10 V and V_{in} varies from 30 V to 50 V . The zener diode has $\mathrm{V}_{\mathrm{z}}=10 \mathrm{~V}$ and I_{zk} (knee current) $=1 \mathrm{~mA}$. For satisfactory operation

(a.) $\mathrm{R} \leq 1800 \Omega$
(b.) $2000 \Omega \leq \mathrm{R} \leq 2200 \Omega$
(c.) $3700 \Omega \leq \mathrm{R} \leq 4000 \Omega$
(d.) $\mathrm{R}>4000 \Omega$
31. The voltage gain $A_{v}=\frac{v_{0}}{v_{t}}$ of the JFET amplifier shown in the figure is

$\mathrm{I}_{\mathrm{DSS}}=10 \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{p}}=-5 \mathrm{~V}$
(Assume $\mathrm{C}_{1}, \mathrm{C}_{2}$, and C_{s} to be very large)
(a.) +18
(b.) -18
(c.) $6+$
(d.) -6
32. Consider the following statements in connection with the CMOS inverter in the figure, where both the MOSFETs are of enhancement type and both have a thresh old voltage of 2 V .
Statement 1: T_{1} conducts when $\mathrm{Vi} \geq 0 \mathrm{~V}$.
Statement 2 : T_{1} is always in saturation when $\mathrm{V}_{0}=0 \mathrm{~V}$.

Which of the following is correct?
(a.) Only Statement 1 is TRUE
(b.)Only Statement 2 is TRUE
(c.) Both the statements are TRUE
(d.)Both the statements are FALSE
33. The gates G_{1} and G_{2} in the figure have propagation delays of 10 nsec and 20 nsec respectively. if the input V_{i} makes an abrupt change from logic 0 to 1 at time $t=t_{0}$. then the outp ut waveform V_{0} is

$y=A B$
(a.)

(b.)

(c.)

(d.)

34. The circuit in the figure has two CMOS NOR-gates. This circuit functions as a:

(a.) flip-flop
(b.) Schmitt trigger
(c.) monostable multivibrator
(d.) astable multivibrator
35. If the input $X_{3}, X_{2}, X_{1}, X_{0}$ to the ROM in the figure are 8-4-2.1 BCD numbers, then the outp uts Y_{3} $\mathrm{Y}_{2} \mathrm{Y}_{1} \mathrm{Y}_{0}$ are

(a.) gray code numbers
(b.) 2-4-2-1 BCD numbers
(c.) excess-3 code numbers
(d.) none of the above
36. The Laplace transform of a continuous-time signal $\mathrm{x}(\mathrm{t})$ is $X(s)=\frac{5-s}{s^{2}-s-2}$. If the Fourier transform of this signal exists, then $\mathrm{x}(\mathrm{t})$ is
(a.) $e^{2 t} u(t)-2 e^{-t} u(t)$
(b.) $-e^{2 t} u(-t)+2 e^{t} u(t)$
(c.) $-e^{2 t} u(-t)-2 e^{-t} u(t)$
(d.) $e^{2 t} u(-t)-2 e^{-t} u(t)$
37. If the impulse response of adiscrete-time system is $h[n]=-5^{n} u[-n-1]$, then the system function $\mathrm{H}(\mathrm{z})$ is equal to
(a.) $\frac{-z}{z-5}$ and the system is stable
(b.) $\frac{Z}{Z-5}$ and the system is stable
(c.) $\frac{-z}{z-5}$ and the system is unstable
(d.) $\frac{z}{z-5}$ and the system is unstable
38. The system shown in the figure remains stable when

(a.) $k<-1$
(b.) $-1<\mathrm{k}<1$
(c.) $1<\mathrm{k}<3$
(d.) $\mathrm{k}<-3$
39. The transfer function of a system is $G(s)=\frac{100}{(s+1)(s+100)}$. For a unit-step input to the system the approximate settling time for 2% criterion is
(a.) 100 sec
(b.) 4 sec
(c.) 1 sec
(d.) 0.01 sec
40. The characteristic polynomial of a system is $q(s)=2 s^{5}+s^{4}+4 s^{3}+2 s^{2}+2 s+1$. The system is
(a.) Stable
(b.) M arginally stable
(c.) Unstable
(d.) oscillatory
41. The system with the open loop transfer function $G(s) H(s)=\frac{1}{s\left(s^{2}+s+1\right)}$ has a gain margin of
(a.) -6 dB
(b.) 0 dB
(c.) 3.5 dB
(d.) 6 dB
42. An angle-modulated signal is given by
$\mathrm{s}(\mathrm{t})=\cos 2 \pi\left(2 \times 10^{6} \mathrm{t}+30 \sin 150 \mathrm{t}+40 \cos 150 \mathrm{t}\right)$
The maximum frequency and phase deviations of $s(t)$ are
(a.) $10.5 \mathrm{KHz}, 140 \pi \mathrm{rad}$
(b.) $6 \mathrm{KHz}, 80 \pi \mathrm{rad}$
(c.) $10.5 \mathrm{KHz}, 100 \pi \mathrm{rad}$
(d.) $7.5 \mathrm{KHz}, 100 \pi \mathrm{rad}$
43. In the Figure $m(t)=\frac{2 \sin 2 \pi t}{t}, s(t)=\cos 200 \pi t$ and $n(t)=\frac{\sin 199 \pi t}{t}$. The output $\mathrm{y}(\mathrm{t})$ will be

(a.) $\frac{\sin 2 \pi t}{t}$
(b.) $\frac{\sin 2 \pi t}{t}+\frac{\sin \pi t}{t} \cos 3 \pi t$
(c.) $\frac{\sin 2 \pi t}{t}+\frac{\sin 0.5 \pi t}{t} \cos 1.5 \pi t$
(d.) $\frac{\sin 2 \pi t}{t}+\frac{\sin \pi t}{t} \cos 0.75 \pi t$
44. A signal $x(t)=100 \cos \left(24 \pi \times 10^{3}\right) t$ is ideally sampled with a sampling period of 50μ sec and then passed through an ideal low pass filter with cutoff frequency of 15 KHz . Which of the following frequencies is/are present at the filter output?
(a.) 12 KHz only
(b.) 8 KHz only
(c.) 12 KHz and 9 KHz
(d.) 12 KHz and 8 KHz
45. If the variance σ_{x}^{2} of $\mathrm{d}(\mathrm{n})=\mathrm{x}(\mathrm{n})-\mathrm{x}(\mathrm{n}-1)$ is one-tenth the variance σ_{x}^{2} of a stationary zero-mean discrete-time signal $\mathrm{x}(\mathrm{n})$, then the normalized autocorrelation function $R_{x x}(k) / \sigma_{x}^{2}$ at $\mathrm{k}=1$ is
(a.) 0.95
(b.) 0.90
(c.) 0.10
(d.) 0.05
46. A plane wave is characterized by $\vec{E}=\left(0.5 \hat{x}+\hat{y} e^{j \pi / 2}\right) e^{j \omega t-j k z}$.

This wave is
(a.) linearly polarized
(b.)circularly polarized
(c.) elliptically polarized
(d.) unpolarized
47. Distilled water at $25^{\circ} \mathrm{C}$ is characterized by $\sigma=1.7 \times 10^{-4} \mathrm{mho} / \mathrm{m}$ and $\in=78 \epsilon_{0}$ at a frequency of 3 GHz . Its loss tangent $\tan \delta$ is
(a.) 1.3×10^{-5}
(b.) 1.3×10^{-3}
(c.) $1.7 \times 10^{-4} / 78$
(d.) $1.7 \times 10^{-4} /\left(78 \epsilon_{0}\right)$
$\left(\epsilon_{0}=10^{-9} /(36 \pi) \mathrm{F} / \mathrm{m}\right)$
48. The electric field on the surface of a perfect conductor is $2 \mathrm{~V} / \mathrm{m}$. The conductor is immersed in water with $\in=80 \epsilon_{0}$. The surface charge density on the conductor is
(a.) $0 \mathrm{C} / \mathrm{m}^{2}$
(b.) $2 \mathrm{C} / \mathrm{m}^{2}$
(c.) $1.8 \times 10^{-11} / \mathrm{C} / \mathrm{m}^{2}$
(d.) $1.41 \times 10^{-9} / \mathrm{C} / \mathrm{m}^{2}$
$\left(\epsilon_{0}=10^{-9} /(36 \pi) \mathrm{F} / \mathrm{m}\right)$
49. A person with a receiver is 5 Km away from the transmitter. What is the distance that this person must move further to detect a $3-\mathrm{dB}$ decrease in signal strength?
(a.) 942 m
(b.) 2070 m
(c.) 4978 m
(d.) 5320 m
50. Consider the following assembly language program.

	MVI	B, 87H
START:	MOV	A, B
	JMP	NEXT
	MVI	B, 00H
	XRA	B
NEXT:	OUT	PORTI
	HLT	
	JPA	B
	OUT	START
	HLT	

The execution of the above program in an 8085 microprocessor will result in
(a.) an output 87 H at PORT 1
(b.) an output of 87 H at PORT2
(c.) Infinite looping of the program execution with accumulator data remaining at 00 H .
(d.)infinite looping of the program execution with accumulator data alternating between 00 H and 87H

