B. Tech Degree IV Semester Examination, April 2010

CE 403 ANALYSIS OF STRUCTURES I

(2002 Scheme)
I.
(a) Calculate the vertical deflection at B of the cantilever shown. Use strain energy method.

$$
\begin{equation*}
\left.A / A_{\infty} \quad\right)_{B}^{i \cos \sin } \quad(E I=\text { constant }) \tag{10}
\end{equation*}
$$

(b) Calculate the vertical deflection at C of the frame shown. Use strain energy method.

$$
\begin{equation*}
(E I=\text { constant }) \tag{10}
\end{equation*}
$$

$$
A \geqslant
$$

OR
Compute the horizontal deflection at the joint D of the truss shown. The load 10 kN at D is vertical.

$$
\begin{equation*}
(\mathrm{AE}=\text { constant }) \tag{20}
\end{equation*}
$$

10 kN
Compute the maximum SF and maximum BM at the section D of the beam, when a set of moving loads is moving from the left end to the right end of the beam.

Draw influence line diagram for the members marked as (1), (2) \& (3), on the truss shown.

V. Draw ILD for support reaction R_{B} of a fixed beam shown, when a unit load moves from end B to support A.

VI. Draw influence line diagram for the reaction R_{4} when a unit load moves from the end A to the end C of the continuous beam shown.

Compute the following for the cable shown in figure:
(i) Support reaction $\mathrm{R}_{\mathrm{A}}, \mathrm{R}_{\mathrm{B}}, \mathrm{H}_{\mathrm{A}}$ and H_{B}
(ii) Maximum and minimum tension in the cable
(iii) Length of the cable profile.

OR
VIII. Compute the uniformly distributed load experienced by the cable and the girder, when a vehicular load of $10 t$ occupies the girder at a distance of 4 m from the left end of the girder. Also compute the reactions $\mathrm{R}_{\mathrm{A}}, \mathrm{R}_{\mathrm{B}}, \mathrm{H}_{\mathrm{A}}$ and H_{B} of the cable. Compute the length of the cable profile.

IX

Two hinged parabolic arch compute the radial shear and normal thrust at section D of the two hinged parabolic arch shown above.
X. Draw BMD for the arch shown in question No.IX. Obtain the maximum Bm and its location also.

