

Tutorials Point, Simply Easy Learning

1 | P a g e

Python Tutorial

Tutorialspoint.com

Python is a general purpose interpreted, interactive, object-oriented and high-level
programming language.

Python was created by Guido van Rossum in the late eighties and early nineties. Like
Perl, Python source code is now available under the GNU General Public License
(GPL). This tutorial gives an initial push to start you with Python. For more detail
kindly check tutorialspoint.com/python

Python Overview:

Python is a high-level, interpreted, interactive and object oriented-scripting language.

 Python is Interpreted

 Python is Interactive

 Python is Object-Oriented

 Python is Beginner's Language

Python was developed by Guido van Rossum in the late eighties and early nineties at the
National Research Institute for Mathematics and Computer Science in the Netherlands.

Python's feature highlights include:

 Easy-to-learn

 Easy-to-read

 Easy-to-maintain

 A broad standard library

 Interactive Mode

 Portable

 Extendable

 Databases

 GUI Programming

 Scalable

Getting Python:

The most up-to-date and current source code, binaries, documentation, news, etc. is available
at the official website of Python:

Python Official Website : http://www.python.org/

You can download the Python documentation from the following site. The documentation is
available in HTML, PDF, and PostScript formats.

Python Documentation Website : www.python.org/doc/

First Python Program:

Interactive Mode Programming:

http://www.tutorialspoint.com/jsp
http://www.tutorialspoint.com/python
http://www.python.org/
http://www.python.org/doc/

Tutorials Point, Simply Easy Learning

2 | P a g e

Invoking the interpreter without passing a script file as a parameter brings up the following
prompt:

root# python

Python 2.5 (r25:51908, Nov 6 2007, 16:54:01)

[GCC 4.1.2 20070925 (Red Hat 4.1.2-27)] on linux2

Type "help", "copyright", "credits" or "license" for more info.

>>>

Type the following text to the right of the Python prompt and press the Enter key:

>>> print "Hello, Python!";

This will produce following result:

Hello, Python!

Python Identifiers:

A Python identifier is a name used to identify a variable, function, class, module, or other

object. An identifier starts with a letter A to Z or a to z or an underscore (_) followed by zero or
more letters, underscores, and digits (0 to 9).

Python does not allow punctuation characters such as @, $, and % within identifiers. Python is a

case sensitive programming language. Thus Manpower and manpower are two different
identifiers in Python.

Here are following identifier naming convention for Python:

 Class names start with an uppercase letter and all other identifiers with a lowercase

letter.

 Starting an identifier with a single leading underscore indicates by convention that the

identifier is meant to be private.

 Starting an identifier with two leading underscores indicates a strongly private
identifier.

 If the identifier also ends with two trailing underscores, the identifier is a language-
defined special name.

Reserved Words:

The following list shows the reserved words in Python. These reserved words may not be used
as constant or variable or any other identifier names.

Keywords contain lowercase letters only.

and exec not

assert finally or

break for pass

Tutorials Point, Simply Easy Learning

3 | P a g e

class from print

continue global raise

def if return

del import try

elif in while

else is with

except lambda yield

Lines and Indentation:

One of the first caveats programmers encounter when learning Python is the fact that there are

no braces to indicate blocks of code for class and function definitions or flow control. Blocks of
code are denoted by line indentation, which is rigidly enforced.

The number of spaces in the indentation is variable, but all statements within the block must be
indented the same amount. Both blocks in this example are fine:

if True:

 print "True"

else:

 print "False"

However, the second block in this example will generate an error:

if True:

 print "Answer"

 print "True"

else:

 print "Answer"

 print "False"

Multi-Line Statements:

Statements in Python typically end with a new line. Python does, however, allow the use of the
line continuation character (\) to denote that the line should continue. For example:

total = item_one + \

 item_two + \

 item_three

Statements contained within the [], {}, or () brackets do not need to use the line continuation
character. For example:

Tutorials Point, Simply Easy Learning

4 | P a g e

days = ['Monday', 'Tuesday', 'Wednesday',

 'Thursday', 'Friday']

Quotation in Python:

Python accepts single ('), double (") and triple (''' or """) quotes to denote string literals, as long
as the same type of quote starts and ends the string.

The triple quotes can be used to span the string across multiple lines. For example, all the
following are legal:

word = 'word'

sentence = "This is a sentence."

paragraph = """This is a paragraph. It is

made up of multiple lines and sentences."""

Comments in Python:

A hash sign (#) that is not inside a string literal begins a comment. All characters after the #

and up to the physical line end are part of the comment, and the Python interpreter ignores
them.

#!/usr/bin/python

First comment

print "Hello, Python!"; # second comment

This will produce following result:

Hello, Python!

A comment may be on the same line after a statement or expression:

name = "Madisetti" # This is again comment

You can comment multiple lines as follows:

This is a comment.

This is a comment, too.

This is a comment, too.

I said that already.

Using Blank Lines:

A line containing only whitespace, possibly with a comment, is known as a blank line, and
Python totally ignores it.

In an interactive interpreter session, you must enter an empty physical line to terminate a
multiline statement.

Multiple Statements on a Single Line:

Tutorials Point, Simply Easy Learning

5 | P a g e

The semicolon (;) allows multiple statements on the single line given that neither statement
starts a new code block. Here is a sample snip using the semicolon:

import sys; x = 'foo'; sys.stdout.write(x + '\n')

Multiple Statement Groups as Suites:

Groups of individual statements making up a single code block are called suites in Python.

Compound or complex statements, such as if, while, def, and class, are those which require a
header line and a suite.

Header lines begin the statement (with the keyword) and terminate with a colon (:) and are
followed by one or more lines which make up the suite.

Example:

if expression :

 suite

elif expression :

 suite

else :

 suite

Python - Variable Types:

Variables are nothing but reserved memory locations to store values. This means that when you
create a variable you reserve some space in memory.

Based on the data type of a variable, the interpreter allocates memory and decides what can be
stored in the reserved memory. Therefore, by assigning different data types to variables, you
can store integers, decimals, or characters in these variables.

Assigning Values to Variables:

The operand to the left of the = operator is the name of the variable, and the operand to the
right of the = operator is the value stored in the variable. For example:

counter = 100 # An integer assignment

miles = 1000.0 # A floating point

name = "John" # A string

print counter

print miles

print name

Standard Data Types:

Python has five standard data types:

 Numbers

 String

 List

 Tuple

Tutorials Point, Simply Easy Learning

6 | P a g e

 Dictionary

Python Numbers:

Number objects are created when you assign a value to them. For example:

var1 = 1

var2 = 10

Python supports four different numerical types:

 int (signed integers)

 long (long integers [can also be represented in octal and hexadecimal])

 float (floating point real values)

 complex (complex numbers)

Here are some examples of numbers:

int long float complex

10 51924361L 0.0 3.14j

100 -0x19323L 15.20 45.j

-786 0122L -21.9 9.322e-36j

080 0xDEFABCECBDAECBFBAEl 32.3+e18 .876j

-0490 535633629843L -90. -.6545+0J

-0x260 -052318172735L -32.54e100 3e+26J

0x69 -4721885298529L 70.2-E12 4.53e-7j

Python Strings:

Strings in Python are identified as a contiguous set of characters in between quotation marks.

Example:

str = 'Hello World!'

print str # Prints complete string

print str[0] # Prints first character of the string

print str[2:5] # Prints characters starting from 3rd to 6th

print str[2:] # Prints string starting from 3rd character

print str * 2 # Prints string two times

print str + "TEST" # Prints concatenated string

Tutorials Point, Simply Easy Learning

7 | P a g e

Python Lists:

Lists are the most versatile of Python's compound data types. A list contains items separated by
commas and enclosed within square brackets ([]).

#!/usr/bin/python

list = ['abcd', 786 , 2.23, 'john', 70.2]

tinylist = [123, 'john']

print list # Prints complete list

print list[0] # Prints first element of the list

print list[1:3] # Prints elements starting from 2nd to 4th

print list[2:] # Prints elements starting from 3rd element

print tinylist * 2 # Prints list two times

print list + tinylist # Prints concatenated lists

Python Tuples:

A tuple is another sequence data type that is similar to the list. A tuple consists of a number of
values separated by commas. Unlike lists, however, tuples are enclosed within parentheses.

Tuples can be thought of as read-only lists.

tuple = ('abcd', 786 , 2.23, 'john', 70.2)

tinytuple = (123, 'john')

print tuple # Prints complete list

print tuple[0] # Prints first element of the list

print tuple[1:3] # Prints elements starting from 2nd to 4th

print tuple[2:] # Prints elements starting from 3rd element

print tinytuple * 2 # Prints list two times

print tuple + tinytuple # Prints concatenated lists

Python Dictionary:

Python 's dictionaries are hash table type. They work like associative arrays or hashes found in
Perl and consist of key-value pairs.

tinydict = {'name': 'john','code':6734, 'dept': 'sales'}

print dict['one'] # Prints value for 'one' key

print dict[2] # Prints value for 2 key

print tinydict # Prints complete dictionary

print tinydict.keys() # Prints all the keys

print tinydict.values() # Prints all the values

Python - Basic Operators:

Operator Description Example

+ Addition - Adds values on either side of

the operator

a + b will give 30

Tutorials Point, Simply Easy Learning

8 | P a g e

- Subtraction - Subtracts right hand

operand from left hand operand

a - b will give -10

* Multiplication - Multiplies values on either

side of the operator

a * b will give 200

/ Division - Divides left hand operand by

right hand operand

b / a will give 2

% Modulus - Divides left hand operand by

right hand operand and returns

remainder

b % a will give 0

** Exponent - Performs exponential (power)

calculation on operators

a**b will give 10 to the power 20

// Floor Division - The division of operands

where the result is the quotient in which

the digits after the decimal point are

removed.

9//2 is equal to 4 and 9.0//2.0 is equal

to 4.0

== Checks if the value of two operands are

equal or not, if yes then condition

becomes true.

(a == b) is not true.

!= Checks if the value of two operands are

equal or not, if values are not equal then

condition becomes true.

(a != b) is true.

<> Checks if the value of two operands are

equal or not, if values are not equal then

condition becomes true.

(a <> b) is true. This is similar to !=

operator.

> Checks if the value of left operand is

greater than the value of right operand,

if yes then condition becomes true.

(a > b) is not true.

< Checks if the value of left operand is less

than the value of right operand, if yes

then condition becomes true.

(a < b) is true.

>= Checks if the value of left operand is

greater than or equal to the value of

right operand, if yes then condition

becomes true.

(a >= b) is not true.

<= Checks if the value of left operand is less

than or equal to the value of right

operand, if yes then condition becomes

(a <= b) is true.

Tutorials Point, Simply Easy Learning

9 | P a g e

true.

= Simple assignment operator, Assigns

values from right side operands to left

side operand

c = a + b will assigne value of a + b into

c

+= Add AND assignment operator, It adds

right operand to the left operand and

assign the result to left operand

c += a is equivalent to c = c + a

-= Subtract AND assignment operator, It

subtracts right operand from the left

operand and assign the result to left

operand

c -= a is equivalent to c = c - a

*= Multiply AND assignment operator, It

multiplies right operand with the left

operand and assign the result to left

operand

c *= a is equivalent to c = c * a

/= Divide AND assignment operator, It

divides left operand with the right

operand and assign the result to left

operand

c /= a is equivalent to c = c / a

%= Modulus AND assignment operator, It

takes modulus using two operands and

assign the result to left operand

c %= a is equivalent to c = c % a

**= Exponent AND assignment operator,

Performs exponential (power) calculation

on operators and assign value to the left

operand

c **= a is equivalent to c = c ** a

//= Floor Dividion and assigns a value,

Performs floor division on operators and

assign value to the left operand

c //= a is equivalent to c = c // a

& Binary AND Operator copies a bit to the

result if it exists in both operands.

(a & b) will give 12 which is 0000 1100

| Binary OR Operator copies a bit if it

exists in eather operand.

(a | b) will give 61 which is 0011 1101

^ Binary XOR Operator copies the bit if it is

set in one operand but not both.

(a ^ b) will give 49 which is 0011 0001

~ Binary Ones Complement Operator is (~a) will give -60 which is 1100 0011

Tutorials Point, Simply Easy Learning

10 | P a g e

unary and has the efect of 'flipping' bits.

<< Binary Left Shift Operator. The left

operands value is moved left by the

number of bits specified by the right

operand.

a << 2 will give 240 which is 1111 0000

>> Binary Right Shift Operator. The left

operands value is moved right by the

number of bits specified by the right

operand.

a >> 2 will give 15 which is 0000 1111

and Called Logical AND operator. If both the

operands are true then then condition

becomes true.

(a and b) is true.

or Called Logical OR Operator. If any of the

two operands are non zero then then

condition becomes true.

(a or b) is true.

not Called Logical NOT Operator. Use to

reverses the logical state of its operand.

If a condition is true then Logical NOT

operator will make false.

not(a && b) is false.

in Evaluates to true if it finds a variable in

the specified sequence and false

otherwise.

x in y, here in results in a 1 if x is a

member of sequence y.

not in Evaluates to true if it finds a variable in

the specified sequence and false

otherwise.

x not in y, here not in results in a 1 if x

is a member of sequence y.

is Evaluates to true if the variables on

either side of the operator point to the

same object and false otherwise.

x is y, here is results in 1 if id(x) equals

id(y).

is not Evaluates to false if the variables on

either side of the operator point to the

same object and true otherwise.

x is not y, here is not results in 1 if id(x)

is not equal to id(y).

Python Operators Precedence

The following table lists all operators from highest precedence to lowest.

Operator Description

Tutorials Point, Simply Easy Learning

11 | P a g e

** Exponentiation (raise to the power)

~ + - Ccomplement, unary plus and minus (method names for the

last two are +@ and -@)

* / % // Multiply, divide, modulo and floor division

+ - Addition and subtraction

>> << Right and left bitwise shift

& Bitwise 'AND'

^ | Bitwise exclusive `OR' and regular `OR'

<= < > >= Comparison operators

<> == != Equality operators

= %= /= //= -= += |= &= >>=

<<= *= **=

Assignment operators

is is not Identity operators

in not in Membership operators

note or and Logical operators

The if statement:

The syntax of the if statement is:

if expression:

 statement(s)

The else Statement:

The syntax of the if...else statement is:

if expression:

 statement(s)

else:

 statement(s)

The elif Statement

Tutorials Point, Simply Easy Learning

12 | P a g e

The syntax of the if...elif statement is:

if expression1:

 statement(s)

elif expression2:

 statement(s)

elif expression3:

 statement(s)

else:

 statement(s)

This will produce following result:

3 - Got a true expression value

100

Good bye!

The Nested if...elif...else Construct

The syntax of the nested if...elif...else construct may be:

if expression1:

 statement(s)

 if expression2:

 statement(s)

 elif expression3:

 statement(s)

 else

 statement(s)

elif expression4:

 statement(s)

else:

 statement(s)

The while Loop:

The syntax of the while look is:

while expression:

 statement(s)

The Infinite Loops:

You must use caution when using while loops because of the possibility that this condition never
resolves to a false value. This results in a loop that never ends. Such a loop is called an infinite
loop.

An infinite loop might be useful in client/server programming where the server needs to run
continuously so that client programs can communicate with it as and when required.

Single Statement Suites:

Tutorials Point, Simply Easy Learning

13 | P a g e

Similar to the if statement syntax, if your while clause consists only of a single statement, it
may be placed on the same line as the while header.

Here is an example of a one-line while clause:

while expression : statement

The for Loop:

The syntax of the loop look is:

for iterating_var in sequence:

 statements(s)

Iterating by Sequence Index:

An alternative way of iterating through each item is by index offset into the sequence itself:

fruits = ['banana', 'apple', 'mango']

for index in range(len(fruits)):

 print 'Current fruit :', fruits[index]

print "Good bye!"

The break Statement:

The break statement in Python terminates the current loop and resumes execution at the next
statement, just like the traditional break found in C.

The most common use for break is when some external condition is triggered requiring a hasty
exit from a loop. The break statement can be used in both while and for loops.

for letter in 'Python': # First Example

 if letter == 'h':

 break

 print 'Current Letter :', letter

var = 10 # Second Example

while var > 0:

 print 'Current variable value :', var

 var = var -1

 if var == 5:

 break

print "Good bye!"

The continue Statement:

The continue statement in Python returns the control to the beginning of the while loop. The
continue statement rejects all the remaining statements in the current iteration of the loop and
moves the control back to the top of the loop.

The continue statement can be used in both while and for loops.

Tutorials Point, Simply Easy Learning

14 | P a g e

for letter in 'Python': # First Example

 if letter == 'h':

 continue

 print 'Current Letter :', letter

var = 10 # Second Example

while var > 0:

 print 'Current variable value :', var

 var = var -1

 if var == 5:

 continue

print "Good bye!"

The else Statement Used with Loops

Python supports to have an else statement associated with a loop statements.

 If the else statement is used with a for loop, the else statement is executed when the
loop has exhausted iterating the list.

 If the else statement is used with a while loop, the else statement is executed when
the condition becomes false.

The pass Statement:

The pass statement in Python is used when a statement is required syntactically but you do not
want any command or code to execute.

The pass statement is a null operation; nothing happens when it executes. The pass is also
useful in places where your code will eventually go, but has not been written yet (e.g., in stubs
for example):

#!/usr/bin/python

for letter in 'Python':

 if letter == 'h':

 pass

 print 'This is pass block'

 print 'Current Letter :', letter

print "Good bye!"

Defining a Function

You can define functions to provide the required functionality. Here are simple rules to define a
function in Python:

 Function blocks begin with the keyword def followed by the function name and

parentheses (()).

 Any input parameters or arguments should be placed within these parentheses. You can

also define parameters inside these parentheses.

 The first statement of a function can be an optional statement - the documentation
string of the function or docstring.

 The code block within every function starts with a colon (:) and is indented.

Tutorials Point, Simply Easy Learning

15 | P a g e

 The statement return [expression] exits a function, optionally passing back an

expression to the caller. A return statement with no arguments is the same as return
None.

Syntax:

def functionname(parameters):

 "function_docstring"

 function_suite

 return [expression]

By default, parameters have a positional behavior, and you need to inform them in the same
order that they were defined.

Example:

Here is the simplest form of a Python function. This function takes a string as input parameter
and prints it on standard screen.

def printme(str):

 "This prints a passed string into this function"

 print str

 return

Calling a Function

Defining a function only gives it a name, specifies the parameters that are to be included in the
function, and structures the blocks of code.

Once the basic structure of a function is finalized, you can execute it by calling it from another
function or directly from the Python prompt.

Following is the example to call printme() function:

#!/usr/bin/python

Function definition is here

def printme(str):

 "This prints a passed string into this function"

 print str;

 return;

Now you can call printme function

printme("I'm first call to user defined function!");

printme("Again second call to the same function");

This would produce following result:

I'm first call to user defined function!

Again second call to the same function

Python - Modules:

Tutorials Point, Simply Easy Learning

16 | P a g e

A module allows you to logically organize your Python code. Grouping related code into a
module makes the code easier to understand and use.

A module is a Python object with arbitrarily named attributes that you can bind and reference.

Simply, a module is a file consisting of Python code. A module can define functions, classes, and
variables. A module can also include runnable code.

Example:

The Python code for a module named aname normally resides in a file named aname.py. Here's
an example of a simple module, hello.py

def print_func(par):

 print "Hello : ", par

 return

The import Statement:

You can use any Python source file as a module by executing an import statement in some other
Python source file. import has the following syntax:

import module1[, module2[,... moduleN]

When the interpreter encounters an import statement, it imports the module if the module is

present in the search path. Asearch path is a list of directories that the interpreter searches
before importing a module.

Example:

To import the module hello.py, you need to put the following command at the top of the script:

#!/usr/bin/python

Import module hello

import hello

Now you can call defined function that module as follows

hellp.print_func("Zara")

This would produce following result:

Hello : Zara

A module is loaded only once, regardless of the number of times it is imported. This prevents
the module execution from happening over and over again if multiple imports occur.

Opening and Closing Files:

The open Function:

Tutorials Point, Simply Easy Learning

17 | P a g e

Before you can read or write a file, you have to open it using Python's built-in open() function.
This function creates a file object which would be utilized to call other support methods
associated with it.

Syntax:

file object = open(file_name [, access_mode][, buffering])

Here is paramters detail:

 file_name: The file_name argument is a string value that contains the name of the file
that you want to access.

 access_mode: The access_mode determines the mode in which the file has to be

opened ie. read, write append etc. A complete list of possible values is given below in
the table. This is optional parameter and the default file access mode is read (r)

 buffering: If the buffering value is set to 0, no buffering will take place. If the buffering

value is 1, line buffering will be performed while accessing a file. If you specify the
buffering value as an integer greater than 1, then buffering action will be performed
with the indicated buffer size. This is optional paramter.

Here is a list of the different modes of opening a file:

Modes Description

r Opens a file for reading only. The file pointer is placed at the beginning of the file. This

is the default mode.

rb Opens a file for reading only in binary format. The file pointer is placed at the beginning

of the file. This is the default mode.

r+ Opens a file for both reading and writing. The file pointer will be at the beginning of the

file.

rb+ Opens a file for both reading and writing in binary format. The file pointer will be at the

beginning of the file.

w Opens a file for writing only. Overwrites the file if the file exists. If the file does not

exist, creates a new file for writing.

wb Opens a file for writing only in binary format. Overwrites the file if the file exists. If the

file does not exist, creates a new file for writing.

w+ Opens a file for both writing and reading. Overwrites the existing file if the file exists. If

the file does not exist, creates a new file for reading and writing.

wb+ Opens a file for both writing and reading in binary format. Overwrites the existing file if

the file exists. If the file does not exist, creates a new file for reading and writing.

a Opens a file for appending. The file pointer is at the end of the file if the file exists.

That is, the file is in the append mode. If the file does not exist, it creates a new file for

Tutorials Point, Simply Easy Learning

18 | P a g e

writing.

ab Opens a file for appending in binary format. The file pointer is at the end of the file if

the file exists. That is, the file is in the append mode. If the file does not exist, it

creates a new file for writing.

a+ Opens a file for both appending and reading. The file pointer is at the end of the file if

the file exists. The file opens in the append mode. If the file does not exist, it creates a

new file for reading and writing.

ab+ Opens a file for both appending and reading in binary format. The file pointer is at the

end of the file if the file exists. The file opens in the append mode. If the file does not

exist, it creates a new file for reading and writing.

The file object atrributes:

Once a file is opened and you have one file object, you can get various information related to
that file.

Here is a list of all attributes related to file object:

Attribute Description

file.closed Returns true if file is closed, false otherwise.

file.mode Returns access mode with which file was opened.

file.name Returns name of the file.

file.softspace Returns false if space explicitly required with print, true otherwise.

The close() Method:

The close() method of a file object flushes any unwritten information and closes the file object,
after which no more writing can be done.

fileObject.close();

Reading and Writing Files:

The write() Method:

Syntax:

fileObject.write(string);

The read() Method:

Syntax:

Tutorials Point, Simply Easy Learning

19 | P a g e

fileObject.read([count]);

File Positions:

The tell() method tells you the current position within the file in other words, the next read or
write will occur at that many bytes from the beginning of the file:

The seek(offset[, from]) method changes the current file position. The offset argument indicates
the number of bytes to be moved. The fromargument specifies the reference position from
where the bytes are to be moved.

If from is set to 0, it means use the beginning of the file as the reference position and 1 means
use the current position as the reference position and if it is set to 2 then the end of the file
would be taken as the reference position.

Renaming and Deleting Files:

Syntax:

os.rename(current_file_name, new_file_name)

The remove() Method:

Syntax:

os.delete(file_name)

Directories in Python:

The mkdir() Method:

You can use the mkdir() method of the os module to create directories in the current directory.
You need to supply an argument to this method, which contains the name of the directory to be
created.

Syntax:

os.mkdir("newdir")

The chdir() Method:

You can use the chdir() method to change the current directory. The chdir() method takes an
argument, which is the name of the directory that you want to make the current directory.

Syntax:

os.chdir("newdir")

The getcwd() Method:

The getcwd() method displays the current working directory.

Syntax:

Tutorials Point, Simply Easy Learning

20 | P a g e

os.getcwd()

The rmdir() Method:

The rmdir() method deletes the directory, which is passed as an argument in the method.

Before removing a directory, all the contents in it should be removed.

Syntax:

os.rmdir('dirname')

Handling an exception:

If you have some suspicious code that may raise an exception, you can defend your program by
placing the suspicious code in a try: block. After the try: block, include an except: statement,
followed by a block of code which handles the problem as elegantly as possible.

Syntax:

Here is simple syntax of try....except...else blocks:

try:

 Do you operations here;

except ExceptionI:

 If there is ExceptionI, then execute this block.

except ExceptionII:

 If there is ExceptionII, then execute this block.

else:

 If there is no exception then execute this block.

Here are few important points above the above mentioned syntax:

 A single try statement can have multiple except statements. This is useful when the try
block contains statements that may throw different types of exceptions.

 You can also provide a generic except clause, which handles any exception.

 After the except clause(s), you can include an else-clause. The code in the else-block

executes if the code in the try: block does not raise an exception.

 The else-block is a good place for code that does not need the try: block's protection.

The except clause with no exceptions:

You can also use the except statement with no exceptions defined as follows:

try:

 Do you operations here;

except:

 If there is any exception, then execute this block.

else:

 If there is no exception then execute this block.

Tutorials Point, Simply Easy Learning

21 | P a g e

The except clause with multiple exceptions:

You can also use the same except statement to handle multiple exceptions as follows:

try:

 Do you operations here;

except(Exception1[, Exception2[,...ExceptionN]]]):

 If there is any exception from the given exception list,

 then execute this block.

else:

 If there is no exception then execute this block.

Standard Exceptions:

Here is a list standard Exceptions available in Python: Standard Exceptions

The try-finally clause:

You can use a finally: block along with a try: block. The finally block is a place to put any code

that must execute, whether the try-block raised an exception or not. The syntax of the try-
finally statement is this:

try:

 Do you operations here;

 Due to any exception, this may be skipped.

finally:

 This would always be executed.

Argument of an Exception:

An exception can have an argument, which is a value that gives additional information about the
problem. The contents of the argument vary by exception. You capture an exception's argument
by supplying a variable in the except clause as follows:

try:

 Do you operations here;

except ExceptionType, Argument:

 You can print value of Argument here...

Raising an exceptions:

You can raise exceptions in several ways by using the raise statement. The general syntax for
the raise statement.

Syntax:

raise [Exception [, args [, traceback]]]

http://www.tutorialspoint.com/python/standard_exceptions.htm

Tutorials Point, Simply Easy Learning

22 | P a g e

User-Defined Exceptions:

Python also allows you to create your own exceptions by deriving classes from the standard
built-in exceptions.

Here is an example related to RuntimeError. Here a class is created that is subclassed from
RuntimeError. This is useful when you need to display more specific information when an
exception is caught.

In the try block, the user-defined exception is raised and caught in the except block. The
variable e is used to create an instance of the class Networkerror.

class Networkerror(RuntimeError):

 def __init__(self, arg):

 self.args = arg

So once you defined above class, you can raise your exception as follows:

try:

 raise Networkerror("Bad hostname")

except Networkerror,e:

 print e.args

Creating Classes:

The class statement creates a new class definition. The name of the class immediately follows
the keyword class followed by a colon as follows:

class ClassName:

 'Optional class documentation string'

 class_suite

 The class has a documentation string which can be access via ClassName.__doc__.

 The class_suite consists of all the component statements, defining class members, data
attributes, and functions.

Creating instance objects:

To create instances of a class, you call the class using class name and pass in whatever
arguments its __init__ method accepts.

"This would create first object of Employee class"

emp1 = Employee("Zara", 2000)

"This would create second object of Employee class"

emp2 = Employee("Manni", 5000)

Accessing attributes:

You access the object's attributes using the dot operator with object. Class variable would be
accessed using class name as follows:

emp1.displayEmployee()

Tutorials Point, Simply Easy Learning

23 | P a g e

emp2.displayEmployee()

print "Total Employee %d" % Employee.empCount

Built-In Class Attributes:

Every Python class keeps following built-in attributes and they can be accessed using dot
operator like any other attribute:

 __dict__ : Dictionary containing the class's namespace.

 __doc__ : Class documentation string, or None if undefined.

 __name__: Class name.

 __module__: Module name in which the class is defined. This attribute is "__main__"

in interactive mode.

 __bases__ : A possibly empty tuple containing the base classes, in the order of their
occurrence in the base class list.

Destroying Objects (Garbage Collection):

Python deletes unneeded objects (built-in types or class instances) automatically to free

memory space. The process by which Python periodically reclaims blocks of memory that no
longer are in use is termed garbage collection.

Python's garbage collector runs during program execution and is triggered when an object's
reference count reaches zero. An object's reference count changes as the number of aliases that
point to it changes:

An object's reference count increases when it's assigned a new name or placed in a container
(list, tuple, or dictionary). The object's reference count decreases when it's deleted with del, its
reference is reassigned, or its reference goes out of scope. When an object's reference count
reaches zero, Python collects it automatically.

Class Inheritance:

Instead of starting from scratch, you can create a class by deriving it from a preexisting class by
listing the parent class in parentheses after the new class name:

The child class inherits the attributes of its parent class, and you can use those attributes as if
they were defined in the child class. A child class can also override data members and methods
from the parent.

Syntax:

Derived classes are declared much like their parent class; however, a list of base classes to
inherit from are given after the class name:

class SubClassName (ParentClass1[, ParentClass2, ...]):

 'Optional class documentation string'

 class_suite

Overriding Methods:

You can always override your parent class methods. One reason for overriding parent's methods
is because you may want special or different functionality in your subclass.

Tutorials Point, Simply Easy Learning

24 | P a g e

class Parent: # define parent class

 def myMethod(self):

 print 'Calling parent method'

class Child(Parent): # define child class

 def myMethod(self):

 print 'Calling child method'

c = Child() # instance of child

c.myMethod() # child calls overridden method

Base Overloading Methods:

Following table lists some generic functionality that you can override in your own classes:

SN Method, Description & Sample Call

1 __init__ (self [,args...])

Constructor (with any optional arguments)

Sample Call : obj = className(args)

2 __del__(self)

Destructor, deletes an object

Sample Call : dell obj

3 __repr__(self)

Evaluatable string representation

Sample Call : repr(obj)

4 __str__(self)

Printable string representation

Sample Call : str(obj)

5 __cmp__ (self, x)

Object comparison

Sample Call : cmp(obj, x)

Overloading Operators:

Suppose you've created a Vector class to represent two-dimensional vectors. What happens
when you use the plus operator to add them? Most likely Python will yell at you.

You could, however, define the __add__ method in your class to perform vector addition, and
then the plus operator would behave as per expectation:

#!/usr/bin/python

class Vector:

 def __init__(self, a, b):

 self.a = a

 self.b = b

Tutorials Point, Simply Easy Learning

25 | P a g e

 def __str__(self):

 return 'Vector (%d, %d)' % (self.a, self.b)

 def __add__(self,other):

 return Vector(self.a + other.a, self.b + other.b)

v1 = Vector(2,10)

v2 = Vector(5,-2)

print v1 + v2

Data Hiding:

An object's attributes may or may not be visible outside the class definition. For these cases,

you can name attributes with a double underscore prefix, and those attributes will not be
directly visible to outsiders:

#!/usr/bin/python

class JustCounter:

 __secretCount = 0

 def count(self):

 self.__secretCount += 1

 print self.__secretCount

counter = JustCounter()

counter.count()

counter.count()

print counter.__secretCount

A regular expression is a special sequence of characters that helps you match or find other
strings or sets of strings, using a specialized syntax held in a pattern. Regular expressions are
widely used in UNIX world.

The module re provides full support for Perl-like regular expressions in Python. The re module
raises the exception re.error if an error occurs while compiling or using a regular expression.

We would cover two important functions which would be used to handle regular expressions.
But a small thing first: There are various characters which would have special meaning when
they are used in regular expression. To avoid any confusion while dealing with regular
expressions we would use Raw Strings as r'expression'.

The match Function

This function attempts to match RE pattern to string with optional flags.

Here is the syntax for this function:

re.match(pattern, string, flags=0)

Here is the description of the parameters:

Parameter Description

Tutorials Point, Simply Easy Learning

26 | P a g e

pattern This is the regular expression to be matched.

string This is the string which would be searched to match the pattern

flags You can specifiy different flags using exclusive OR (|). These are

modifiers which are listed in the table below.

The re.match function returns a match object on success, None on failure. We would use
group(num) or groups() function of match object to get matched expression.

Match Object Methods Description

group(num=0) This methods returns entire match (or specific subgroup num)

groups() This method return all matching subgroups in a tuple (empty if

there weren't any)

The search Function

This function search for first occurrence of RE pattern within string with optional flags.

Here is the syntax for this function:

re.string(pattern, string, flags=0)

Here is the description of the parameters:

Parameter Description

pattern This is the regular expression to be matched.

string This is the string which would be searched to match the pattern

flags You can specifiy different flags using exclusive OR (|). These are

modifiers which are listed in the table below.

The re.search function returns a match object on success, None on failure. We would use
group(num) or groups() function of match object to get matched expression.

Match Object Methods Description

group(num=0) This methods returns entire match (or specific subgroup num)

Tutorials Point, Simply Easy Learning

27 | P a g e

groups() This method return all matching subgroups in a tuple (empty if

there weren't any)

Matching vs Searching:

Python offers two different primitive operations based on regular expressions: match checks for

a match only at the beginning of the string, while search checks for a match anywhere in the
string (this is what Perl does by default).

Search and Replace:

Some of the most important re methods that use regular expressions is sub.

Syntax:

sub(pattern, repl, string, max=0)

This method replace all occurrences of the RE pattern in string with repl, substituting all
occurrences unless max provided. This method would return modified string.

Regular-expression Modifiers - Option Flags

Regular expression literals may include an optional modifier to control various aspects of

matching. The modifier are specified as an optional flag. You can provide multiple modified
using exclusive OR (|), as shown previously and may be represented by one of these:

Modifier Description

re.I Performs case-insensitive matching.

re.L Interprets words according to the current locale.This interpretation

affects the alphabetic group (\w and \W), as well as word boundary

behavior (\b and \B).

re.M Makes $ match the end of a line (not just the end of the string) and

makes ^ match the start of any line (not just the start of the string).

re.S Makes a period (dot) match any character, including a newline.

re.U Interprets letters according to the Unicode character set. This flag

affects the behavior of \w, \W, \b, \B.

re.X Permits "cuter" regular expression syntax. It ignores whitespace

(except inside a set [] or when escaped by a backslash), and treats

unescaped # as a comment marker.

Regular-expression patterns:

Tutorials Point, Simply Easy Learning

28 | P a g e

Except for control characters, (+ ? . * ^ $ () [] { } | \), all characters match themselves.
You can escape a control character by preceding it with a backslash.

Following table lists the regular expression syntax that is available in Python.

Pattern Description

^ Matches beginning of line.

$ Matches end of line.

. Matches any single character except newline. Using m option allows it

to match newline as well.

[...] Matches any single character in brackets.

[^...] Matches any single character not in brackets

re* Matches 0 or more occurrences of preceding expression.

re+ Matches 0 or 1 occurrence of preceding expression.

re{ n} Matches exactly n number of occurrences of preceding expression.

re{ n,} Matches n or more occurrences of preceding expression.

re{ n, m} Matches at least n and at most m occurrences of preceding expression.

a| b Matches either a or b.

(re) Groups regular expressions and remembers matched text.

(?imx) Temporarily toggles on i, m, or x options within a regular expression. If

in parentheses, only that area is affected.

(?-imx) Temporarily toggles off i, m, or x options within a regular expression. If

in parentheses, only that area is affected.

(?: re) Groups regular expressions without remembering matched text.

(?imx: re) Temporarily toggles on i, m, or x options within parentheses.

(?-imx: re) Temporarily toggles off i, m, or x options within parentheses.

(?#...) Comment.

Tutorials Point, Simply Easy Learning

29 | P a g e

(?= re) Specifies position using a pattern. Doesn't have a range.

(?! re) Specifies position using pattern negation. Doesn't have a range.

(?> re) Matches independent pattern without backtracking.

\w Matches word characters.

\W Matches nonword characters.

\s Matches whitespace. Equivalent to [\t\n\r\f].

\S Matches nonwhitespace.

\d Matches digits. Equivalent to [0-9].

\D Matches nondigits.

\A Matches beginning of string.

\Z Matches end of string. If a newline exists, it matches just before

newline.

\z Matches end of string.

\G Matches point where last match finished.

\b Matches word boundaries when outside brackets. Matches backspace

(0x08) when inside brackets.

\B Matches nonword boundaries.

\n, \t, etc. Matches newlines, carriage returns, tabs, etc.

\1...\9 Matches nth grouped subexpression.

\10 Matches nth grouped subexpression if it matched already. Otherwise

refers to the octal representation of a character code.

Regular-expression Examples:

Literal characters:

Example Description

Tutorials Point, Simply Easy Learning

30 | P a g e

python Match "python".

Character classes:

Example Description

[Pp]ython Match "Python" or "python"

rub[ye] Match "ruby" or "rube"

[aeiou] Match any one lowercase vowel

[0-9] Match any digit; same as [0123456789]

[a-z] Match any lowercase ASCII letter

[A-Z] Match any uppercase ASCII letter

[a-zA-Z0-9] Match any of the above

[^aeiou] Match anything other than a lowercase vowel

[^0-9] Match anything other than a digit

Special Character Classes:

Example Description

. Match any character except newline

\d Match a digit: [0-9]

\D Match a nondigit: [^0-9]

\s Match a whitespace character: [\t\r\n\f]

\S Match nonwhitespace: [^ \t\r\n\f]

\w Match a single word character: [A-Za-z0-9_]

\W Match a nonword character: [^A-Za-z0-9_]

Repetition Cases:

Tutorials Point, Simply Easy Learning

31 | P a g e

Example Description

ruby? Match "rub" or "ruby": the y is optional

ruby* Match "rub" plus 0 or more ys

ruby+ Match "rub" plus 1 or more ys

\d{3} Match exactly 3 digits

\d{3,} Match 3 or more digits

\d{3,5} Match 3, 4, or 5 digits

Nongreedy repetition:

This matches the smallest number of repetitions:

Example Description

<.*> Greedy repetition: matches "<python>perl>"

<.*?> Nongreedy: matches "<python>" in "<python>perl>"

Grouping with parentheses:

Example Description

\D\d+ No group: + repeats \d

(\D\d)+ Grouped: + repeats \D\d pair

([Pp]ython(,)?)+ Match "Python", "Python, python, python", etc.

Backreferences:

This matches a previously matched group again:

Example Description

([Pp])ython&\1ails Match python&rails or Python&Rails

(['"])[^\1]*\1 Single or double-quoted string. \1 matches whatever the 1st group

Tutorials Point, Simply Easy Learning

32 | P a g e

matched . \2 matches whatever the 2nd group matched, etc.

Alternatives:

Example Description

python|perl Match "python" or "perl"

rub(y|le)) Match "ruby" or "ruble"

Python(!+|\?) "Python" followed by one or more ! or one ?

Anchors:

This need to specify match position

Example Description

^Python Match "Python" at the start of a string or internal line

Python$ Match "Python" at the end of a string or line

\APython Match "Python" at the start of a string

Python\Z Match "Python" at the end of a string

\bPython\b Match "Python" at a word boundary

\brub\B \B is nonword boundary: match "rub" in "rube" and "ruby" but not

alone

Python(?=!) Match "Python", if followed by an exclamation point

Python(?!!) Match "Python", if not followed by an exclamation point

Special syntax with parentheses:

Example Description

R(?#comment) Matches "R". All the rest is a comment

R(?i)uby Case-insensitive while matching "uby"

Tutorials Point, Simply Easy Learning

33 | P a g e

R(?i:uby) Same as above

rub(?:y|le)) Group only without creating \1 backreference

MySQL Database Access

The Python standard for database interfaces is the Python DB-API. Most Python database
interfaces adhere to this standard.

You can choose the right database for your application. Python Database API supports a wide
range of database servers:

 GadFly

 mSQL

 MySQL

 PostgreSQL

 Microsoft SQL Server 2000

 Informix

 Interbase

 Oracle

 Sybase

Here is the list of available Python databases interfaces:

Python Database Interfaces and APIs

You must download a separate DB API module for each database you need to access. For

example, if you need to access an Oracle database as well as a MySQL database, you must
download both the Oracle and the MySQL database modules.

The DB API provides a minimal standard for working with databases, using Python structures
and syntax wherever possible. This API includes the following:

 Importing the api module.

 Acquiring a connection with the database.

 Issuing SQL statements and stored procedures.

 Closing the connection

We would learn all the concepts using MySQL so let's talk about MySQLdb module only.

What is MySQLdb?

MySQLdb is an interface for connecting to a MySQL database server from Python. It implements
the Python Database API v2.0, and is built on top of the MySQL C API.

How do I install the MySQLdb?

Before proceeding you make sure you have MySQLdb installed on your machine. Just type the
following in your Python script and execute it:

#!/usr/bin/python

http://wiki.python.org/moin/DatabaseInterfaces

Tutorials Point, Simply Easy Learning

34 | P a g e

import MySQLdb

If it produces following result then it means MySQLdb module is not installed:

Traceback (most recent call last):

 File "test.py", line 3, in <module>

 import MySQLdb

ImportError: No module named MySQLdb

To install MySQLdb module, download it from MySQLdb Download page and proceed as follows:

$ gunzip MySQL-python-1.2.2.tar.gz

$ tar -xvf MySQL-python-1.2.2.tar

$ cd MySQL-python-1.2.2

$ python setup.py build

$ python setup.py install

Note: Make sure you have root privilege to install above module.

Database Connection:

Before connecting to a MySQL database make sure followings:

 You have created a database TESTDB.

 You have created a table EMPLOYEE in TESTDB.

 This table is having fields FIRST_NAME, LAST_NAME, AGE, SEX and INCOME.

 User ID "testuser" and password "test123" are set to access TESTDB

 Python module MySQLdb is installed properly on your machine.

 You have gone through MySQL tutorial to understand MySQL Basics.

Example:

Following is the example of connecting with MySQL database "TESTDB"

#!/usr/bin/python

import MySQLdb

Open database connection

db = MySQLdb.connect("localhost","testuser","test123","TESTDB")

prepare a cursor object using cursor() method

cursor = db.cursor()

execute SQL query using execute() method.

cursor.execute("SELECT VERSION()")

Fetch a single row using fetchone() method.

data = cursor.fetchone()

print "Database version : %s " % data

disconnect from server

http://sourceforge.net/projects/mysql-python
http://www.tutorialspoint.com/mysql/index.htm

Tutorials Point, Simply Easy Learning

35 | P a g e

db.close()

While running this script, its producing following result at my Linux machine.

Database version : 5.0.45

If a connection is established with the datasource then a Connection Object is returned and

saved into db for further use otherwise db is set to None. Next db object is used to create a
cursor object which in turn is used to execute SQL queries.

Finally before coming out it ensures that database connection is closed and resources are
released.

Creating Database Table:

Once a database connection is established, we are ready to create tables or records into the
database tables using execute method of the created cursor.

Example:

First let's create Database table EMPLOYEE:

#!/usr/bin/python

import MySQLdb

Open database connection

db = MySQLdb.connect("localhost","testuser","test123","TESTDB")

prepare a cursor object using cursor() method

cursor = db.cursor()

Drop table if it already exist using execute() method.

cursor.execute("DROP TABLE IF EXISTS EMPLOYEE")

Create table as per requirement

sql = """CREATE TABLE EMPLOYEE (

 FIRST_NAME CHAR(20) NOT NULL,

 LAST_NAME CHAR(20),

 AGE INT,

 SEX CHAR(1),

 INCOME FLOAT)"""

cursor.execute(sql)

disconnect from server

db.close()

INSERT Operation:

INSERT operation is required when you want to create your records into a database table.

Example:

Tutorials Point, Simply Easy Learning

36 | P a g e

Following is the example which executes SQL INSERT statement to create a record into
EMPLOYEE table.

#!/usr/bin/python

import MySQLdb

Open database connection

db = MySQLdb.connect("localhost","testuser","test123","TESTDB")

prepare a cursor object using cursor() method

cursor = db.cursor()

Prepare SQL query to INSERT a record into the database.

sql = """INSERT INTO EMPLOYEE(FIRST_NAME,

 LAST_NAME, AGE, SEX, INCOME)

 VALUES ('Mac', 'Mohan', 20, 'M', 2000)"""

try:

 # Execute the SQL command

 cursor.execute(sql)

 # Commit your changes in the database

 db.commit()

except:

 # Rollback in case there is any error

 db.rollback()

disconnect from server

db.close()

Above example can be written as follows to create SQL queries dynamically:

#!/usr/bin/python

import MySQLdb

Open database connection

db = MySQLdb.connect("localhost","testuser","test123","TESTDB")

prepare a cursor object using cursor() method

cursor = db.cursor()

Prepare SQL query to INSERT a record into the database.

sql = "INSERT INTO EMPLOYEE(FIRST_NAME, \

 LAST_NAME, AGE, SEX, INCOME) \

 VALUES ('%s', '%s', '%d', '%c', '%d')" % \

 ('Mac', 'Mohan', 20, 'M', 2000)

try:

 # Execute the SQL command

 cursor.execute(sql)

 # Commit your changes in the database

 db.commit()

except:

 # Rollback in case there is any error

 db.rollback()

disconnect from server

db.close()

Example:

Tutorials Point, Simply Easy Learning

37 | P a g e

Following code segment is another form of execute where you can pass parameters directly:

..................................

user_id = "test123"

password = "password"

con.execute('insert into Login values("%s", "%s")' % \

 (user_id, password))

..................................

READ Operation:

READ Operation on any databasse means to fetch some useful information from the database.

Once our database connection is established, we are ready to make a query into this database.
We can use either fetchone() method to fetch single record or fetchall method to fetech
multiple values from a database table.

 fetchone(): This method fetches the next row of a query result set. A result set is an

object that is returned when a cursor object is used to query a table.

 fetchall(): This method fetches all the rows in a result set. If some rows have already

been extracted from the result set, the fetchall() method retrieves the remaining rows
from the result set.

 rowcount: This is a read-only attribute and returns the number of rows that were
affected by an execute() method.

Example:

Following is the procedure to query all the records from EMPLOYEE table having salary more
than 1000.

#!/usr/bin/python

import MySQLdb

Open database connection

db = MySQLdb.connect("localhost","testuser","test123","TESTDB")

prepare a cursor object using cursor() method

cursor = db.cursor()

Prepare SQL query to INSERT a record into the database.

sql = "SELECT * FROM EMPLOYEE \

 WHERE INCOME > '%d'" % (1000)

try:

 # Execute the SQL command

 cursor.execute(sql)

 # Fetch all the rows in a list of lists.

 results = cursor.fetchall()

 for row in results:

 fname = row[0]

 lname = row[1]

 age = row[2]

 sex = row[3]

 income = row[4]

 # Now print fetched result

 print "fname=%s,lname=%s,age=%d,sex=%s,income=%d" % \

Tutorials Point, Simply Easy Learning

38 | P a g e

 (fname, lname, age, sex, income)

except:

 print "Error: unable to fecth data"

disconnect from server

db.close()

This will produce following result:

fname=Mac, lname=Mohan, age=20, sex=M, income=2000

Update Operation:

UPDATE Operation on any databasse means to update one or more records which are already
available in the database. Following is the procedure to update all the records having SEX as 'M'.
Here we will increase AGE of all the males by one year.

Example:

#!/usr/bin/python

import MySQLdb

Open database connection

db = MySQLdb.connect("localhost","testuser","test123","TESTDB")

prepare a cursor object using cursor() method

cursor = db.cursor()

Prepare SQL query to UPDATE required records

sql = "UPDATE EMPLOYEE SET AGE = AGE + 1

 WHERE SEX = '%c'" % ('M')

try:

 # Execute the SQL command

 cursor.execute(sql)

 # Commit your changes in the database

 db.commit()

except:

 # Rollback in case there is any error

 db.rollback()

disconnect from server

db.close()

DELETE Operation:

DELETE operation is required when you want to delete some records from your database.
Following is the procedure to delete all the records from EMPLOYEE where AGE is more than 20.

Example:

#!/usr/bin/python

import MySQLdb

Open database connection

Tutorials Point, Simply Easy Learning

39 | P a g e

db = MySQLdb.connect("localhost","testuser","test123","TESTDB")

prepare a cursor object using cursor() method

cursor = db.cursor()

Prepare SQL query to DELETE required records

sql = "DELETE FROM EMPLOYEE WHERE AGE > '%d'" % (20)

try:

 # Execute the SQL command

 cursor.execute(sql)

 # Commit your changes in the database

 db.commit()

except:

 # Rollback in case there is any error

 db.rollback()

disconnect from server

db.close()

Performing Transactions:

Transactions are a mechanism that ensures data consistency. Transactions should have the
following four properties:

 Atomicity: Either a transaction completes or nothing happens at all.

 Consistency: A transaction must start in a consistent state and leave the system is a
consistent state.

 Isolation: Intermediate results of a transaction are not visible outside the current
transaction.

 Durability: Once a transaction was committed, the effects are persistent, even after a
system failure.

The Python DB API 2.0 provides two methods to either commit or rollback a transaction.

Example:

You already have seen how we have implemented transations. Here is again similar example:

Prepare SQL query to DELETE required records

sql = "DELETE FROM EMPLOYEE WHERE AGE > '%d'" % (20)

try:

 # Execute the SQL command

 cursor.execute(sql)

 # Commit your changes in the database

 db.commit()

except:

 # Rollback in case there is any error

 db.rollback()

COMMIT Operation:

Commit is the operation which gives a green signal to database to finalize the changes and after
this operation no change can be reverted back.

Here is a simple example to call commit method.

Tutorials Point, Simply Easy Learning

40 | P a g e

 db.commit()

ROLLBACK Operation:

If you are not satisfied with one or more of the changes and you want to revert back those
changes completely then use rollback method.

Here is a simple example to call rollback metho.

 db.rollback()

Disconnecting Database:

To disconnect Database connection, use close() method.

 db.close()

If the connection to a database is closed by the user with the close() method, any outstanding

transactions are rolled back by the DB. However, instead of depending on any of DB lower level
implementation details, your application would be better off calling commit or rollback explicitly.

Handling Errors:

There are many sources of errors. A few examples are a syntax error in an executed SQL

statement, a connection failure, or calling the fetch method for an already canceled or finished
statement handle.

The DB API defines a number of errors that must exist in each database module. The following
table lists these exceptions.

Exception Description

Warning Used for non-fatal issues. Must subclass StandardError.

Error Base class for errors. Must subclass StandardError.

InterfaceError Used for errors in the database module, not the database itself. Must

subclass Error.

DatabaseError Used for errors in the database. Must subclass Error.

DataError Subclass of DatabaseError that refers to errors in the data.

OperationalError Subclass of DatabaseError that refers to errors such as the loss of a

connection to the database. These errors are generally outside of the

control of the Python scripter.

Tutorials Point, Simply Easy Learning

41 | P a g e

IntegrityError Subclass of DatabaseError for situations that would damage the relational

integrity, such as uniqueness constraints or foreign keys.

InternalError Subclass of DatabaseError that refers to errors internal to the database

module, such as a cursor no longer being active.

ProgrammingError Subclass of DatabaseError that refers to errors such as a bad table name

and other things that can safely be blamed on you.

NotSupportedError Subclass of DatabaseError that refers to trying to call unsupported

functionality.

Your Python scripts should handle these errors but before using any of the above exceptions,

make sure your MySQLdb has support for that exception. You can get more information about
them by reading the DB API 2.0 specification.

Sending Email using SMTP

Simple Mail Transfer Protocol (SMTP) is a protocol which handles sending e-mail and routing e-
mail between mail servers.

Python provides smtplib module which defines an SMTP client session object that can be used
to send mail to any Internet machine with an SMTP or ESMTP listener daemon.

Here is a simple syntax to create one SMTP object which can later be used to send an email:

import smtplib

smtpObj = smtplib.SMTP([host [, port [, local_hostname]]])

Here is the detail of the parameters:

 host: This is the host running your SMTP server. You can specifiy IP address of the host

or a domain name like tutorialspoint.com. This is optional argument.

 port: If you are providing host argument then you need to specifiy a port where SMTP

server is listening. Usually this port would be 25.

 local_hostname: If your SMTP server is running on your local machine then you can
specify just localhost as of this option.

An SMTP object has an instance method called sendmail, which will typically be used to do the
work of mailing a message. It takes three parameters:

 The sender - A string with the address of the sender.

 The receivers - A list of strings, one for each recipient.

 The message - A message as a string formatted as specified in the various RFCs.

Example:

Here is a simple way to send one email using Python script. Try it once:

Tutorials Point, Simply Easy Learning

42 | P a g e

#!/usr/bin/python

import smtplib

sender = 'from@fromdomain.com'

receivers = ['to@todomain.com']

message = """From: From Person <from@fromdomain.com>

To: To Person <to@todomain.com>

Subject: SMTP e-mail test

This is a test e-mail message.

"""

try:

 smtpObj = smtplib.SMTP('localhost')

 smtpObj.sendmail(sender, receivers, message)

 print "Successfully sent email"

except SMTPException:

 print "Error: unable to send email"

Here you have placed a basic e-mail in message, using a triple quote, taking care to format the

headers correctly. An e-mails requires a From, To, and Subject header, separated from the
body of the e-mail with a blank line.

To send the mail you use smtpObj to connect to the SMTP server on the local machine and then
use the sendmail method along with the message, the from address, and the destination
address as parameters (even though the from and to addresses are within the e-mail itself,
these aren't always used to route mail).

If you're not running an SMTP server on your local machine, you can use smtplib client to
communicate with a remote SMTP server. Unless you're using a webmail service (such as
Hotmail or Yahoo! Mail), your e-mail provider will have provided you with outgoing mail server
details that you can supply them, as follows:

smtplib.SMTP('mail.your-domain.com', 25)

Sending an HTML email using Python:

When you send a text message using Python then all the content will be treated as simple text.

Even if you will include HTML tags in a text message, it will be displayed as simple text and
HTML tags will not be formatted according to HTML syntax. But Python provides option to send
an HTML message as actual HTML message.

While sending an email message you can specify a Mime version, content type and character set
to send an HTML email.

Example:

Following is the example to send HTML content as an email. Try it once:

#!/usr/bin/python

import smtplib

message = """From: From Person <from@fromdomain.com>

To: To Person <to@todomain.com>

Tutorials Point, Simply Easy Learning

43 | P a g e

MIME-Version: 1.0

Content-type: text/html

Subject: SMTP HTML e-mail test

This is an e-mail message to be sent in HTML format

This is HTML message.

<h1>This is headline.</h1>

"""

try:

 smtpObj = smtplib.SMTP('localhost')

 smtpObj.sendmail(sender, receivers, message)

 print "Successfully sent email"

except SMTPException:

 print "Error: unable to send email"

Sending Attachements as an e-mail:

To send an email with mixed content requires to set Content-type header to
multipart/mixed. Then text and attachment sections can be specified within boundaries.

A boundary is started with two hyphens followed by a unique number which can not appear in
the message part of the email. A final boundary denoting the email's final section must also end
with two hyphens.

Attached files should be encoded with the pack("m") function to have base64 encoding before
transmission.

Example:

Following is the example which will send a file /tmp/test.txt as an attachment. Try it once:

#!/usr/bin/python

import smtplib

import base64

filename = "/tmp/test.txt"

Read a file and encode it into base64 format

fo = open(filename, "rb")

filecontent = fo.read()

encodedcontent = base64.b64encode(filecontent) # base64

sender = 'webmaster@tutorialpoint.com'

reciever = 'amrood.admin@gmail.com'

marker = "AUNIQUEMARKER"

body ="""

This is a test email to send an attachement.

"""

Define the main headers.

part1 = """From: From Person <me@fromdomain.net>

To: To Person <amrood.admin@gmail.com>

Subject: Sending Attachement

MIME-Version: 1.0

Tutorials Point, Simply Easy Learning

44 | P a g e

Content-Type: multipart/mixed; boundary=%s

--%s

""" % (marker, marker)

Define the message action

part2 = """Content-Type: text/plain

Content-Transfer-Encoding:8bit

%s

--%s

""" % (body,marker)

Define the attachment section

part3 = """Content-Type: multipart/mixed; name=\"%s\"

Content-Transfer-Encoding:base64

Content-Disposition: attachment; filename=%s

%s

--%s--

""" %(filename, filename, encodedcontent, marker)

message = part1 + part2 + part3

try:

 smtpObj = smtplib.SMTP('localhost')

 smtpObj.sendmail(sender, reciever, message)

 print "Successfully sent email"

except Exception:

 print "Error: unable to send email"

Multithreaded Programming

Running several threads is similar to running several different programs concurrently, but with
the following benefits:

 Multiple threads within a process share the same data space with the main thread and

can therefore share information or communicate with each other more easily than if
they were separate processes.

 Threads sometimes called light-weight processes and they do not require much memory
overhead; theycare cheaper than processes.

A thread has a beginning, an execution sequence, and a conclusion. It has an instruction pointer
that keeps track of where within its context it is currently running.

 It can be pre-empted (interrupted)

 It can temporarily be put on hold (also known as sleeping) while other threads are
running - this is called yielding.

Starting a New Thread:

To spawn another thread, you need to call following method available in thread module:

thread.start_new_thread (function, args[, kwargs])

This method call enables a fast and efficient way to create new threads in both Linux and
Windows.

Tutorials Point, Simply Easy Learning

45 | P a g e

The method call returns immediately and the child thread starts and calls function with the
passed list of agrs. When function returns, the thread terminates.

Here args is a tuple of arguments; use an empty tuple to call function without passing any
arguments. kwargs is an optional dictionary of keyword arguments.

Example:

#!/usr/bin/python

import thread

import time

Define a function for the thread

def print_time(threadName, delay):

 count = 0

 while count < 5:

 time.sleep(delay)

 count += 1

 print "%s: %s" % (threadName, time.ctime(time.time()))

Create two threads as follows

try:

 thread.start_new_thread(print_time, ("Thread-1", 2,))

 thread.start_new_thread(print_time, ("Thread-2", 4,))

except:

 print "Error: unable to start thread"

while 1:

 pass

This would produce following result:

Thread-1: Thu Jan 22 15:42:17 2009

Thread-1: Thu Jan 22 15:42:19 2009

Thread-2: Thu Jan 22 15:42:19 2009

Thread-1: Thu Jan 22 15:42:21 2009

Thread-2: Thu Jan 22 15:42:23 2009

Thread-1: Thu Jan 22 15:42:23 2009

Thread-1: Thu Jan 22 15:42:25 2009

Thread-2: Thu Jan 22 15:42:27 2009

Thread-2: Thu Jan 22 15:42:31 2009

Thread-2: Thu Jan 22 15:42:35 2009

Although it is very effective for low-level threading, but the thread module is very limited
compared to the newer threading module.

The Threading Module:

The newer threading module included with Python 2.4 provides much more powerful, high-level
support for threads than the thread module discussed in the previous section.

The threading module exposes all the methods of the thread module and provides some
additional methods:

 threading.activeCount(): Returns the number of thread objects that are active.

 threading.currentThread(): Returns the number of thread objects in the caller's

thread control.

Tutorials Point, Simply Easy Learning

46 | P a g e

 threading.enumerate(): Returns a list of all thread objects that are currently active.

In addition to the methods, the threading module has the Thread class that implements
threading. The methods provided by the Thread class are as follows:

 run(): The run() method is the entry point for a thread.

 start(): The start() method starts a thread by calling the run method.

 join([time]): The join() waits for threads to terminate.

 isAlive(): The isAlive() method checks whether a thread is still executing.

 getName(): The getName() method returns the name of a thread.

 setName(): The setName() method sets the name of a thread.

Creating Thread using Threading Module:

To implement a new thread using the threading module, you have to do the following:

 Define a new subclass of the Thread class.

 Override the __init__(self [,args]) method to add additional arguments.

 Then override the run(self [,args]) method to implement what the thread should do
when started.

Once you have created the new Thread subclass, you can create an instance of it and then start
a new thread by invoking the start() or run() methods.

Example:

#!/usr/bin/python

import threading

import time

exitFlag = 0

class myThread (threading.Thread):

 def __init__(self, threadID, name, counter):

 self.threadID = threadID

 self.name = name

 self.counter = counter

 threading.Thread.__init__(self)

 def run(self):

 print "Starting " + self.name

 print_time(self.name, self.counter, 5)

 print "Exiting " + self.name

def print_time(threadName, delay, counter):

 while counter:

 if exitFlag:

 thread.exit()

 time.sleep(delay)

 print "%s: %s" % (threadName, time.ctime(time.time()))

 counter -= 1

Create new threads

thread1 = myThread(1, "Thread-1", 1)

thread2 = myThread(2, "Thread-2", 2)

Start new Threads

thread1.start()

Tutorials Point, Simply Easy Learning

47 | P a g e

thread2.run()

while thread2.isAlive():

 if not thread1.isAlive():

 exitFlag = 1

 pass

print "Exiting Main Thread"

This would produce following result:

Starting Thread-2

Starting Thread-1

Thread-1: Thu Jan 22 15:53:05 2009

Thread-2: Thu Jan 22 15:53:06 2009

Thread-1: Thu Jan 22 15:53:06 2009

Thread-1: Thu Jan 22 15:53:07 2009

Thread-2: Thu Jan 22 15:53:08 2009

Thread-1: Thu Jan 22 15:53:08 2009

Thread-1: Thu Jan 22 15:53:09 2009

Exiting Thread-1

Thread-2: Thu Jan 22 15:53:10 2009

Thread-2: Thu Jan 22 15:53:12 2009

Thread-2: Thu Jan 22 15:53:14 2009

Exiting Thread-2

Exiting Main Thread

Synchronizing Threads:

The threading module provided with Python includes a simple-to-implement locking mechanism

that will allow you to synchronize threads. A new lock is created by calling the Lock() method,
which returns the new lock.

The acquire(blocking) method the new lock object would be used to force threads to run

synchronously. The optional blocking parameter enables you to control whether the thread will
wait to acquire the lock.

If blocking is set to 0, the thread will return immediately with a 0 value if the lock cannot be
acquired and with a 1 if the lock was acquired. If blocking is set to 1, the thread will block and
wait for the lock to be released.

The release() method of the the new lock object would be used to release the lock when it is no
longer required.

Example:

#!/usr/bin/python

import threading

import time

class myThread (threading.Thread):

 def __init__(self, threadID, name, counter):

 self.threadID = threadID

 self.name = name

 self.counter = counter

 threading.Thread.__init__(self)

 def run(self):

Tutorials Point, Simply Easy Learning

48 | P a g e

 print "Starting " + self.name

 # Get lock to synchronize threads

 threadLock.acquire()

 print_time(self.name, self.counter, 3)

 # Free lock to release next thread

 threadLock.release()

def print_time(threadName, delay, counter):

 while counter:

 time.sleep(delay)

 print "%s: %s" % (threadName, time.ctime(time.time()))

 counter -= 1

threadLock = threading.Lock()

threads = []

Create new threads

thread1 = myThread(1, "Thread-1", 1)

thread2 = myThread(2, "Thread-2", 2)

Start new Threads

thread1.start()

thread2.start()

Add threads to thread list

threads.append(thread1)

threads.append(thread2)

Wait for all threads to complete

for t in threads:

 t.join()

print "Exiting Main Thread"

This would produce following result:

Starting Thread-1

Starting Thread-2

Thread01: Thu Jan 22 16:04:38 2009

Thread01: Thu Jan 22 16:04:39 2009

Thread01: Thu Jan 22 16:04:40 2009

Thread02: Thu Jan 22 16:04:42 2009

Thread02: Thu Jan 22 16:04:44 2009

Thread02: Thu Jan 22 16:04:46 2009

Exiting Main Thread

Multithreaded Priority Queue:

The Queue module allows you to create a new queue object that can hold a specific number of
items. There are following methods to control the Queue:

 get(): The get() removes and returns an item from the queue.

 put(): The put adds item to a queue.

 qsize() : The qsize() returns the number of items that are currently in the queue.

 empty(): The empty() returns True if queue is empty; otherwise, False.

 full(): the full() returns True if queue is full; otherwise, False.

Example:

Tutorials Point, Simply Easy Learning

49 | P a g e

#!/usr/bin/python

import Queue

import threading

import time

exitFlag = 0

class myThread (threading.Thread):

 def __init__(self, threadID, name, q):

 self.threadID = threadID

 self.name = name

 self.q = q

 threading.Thread.__init__(self)

 def run(self):

 print "Starting " + self.name

 process_data(self.name, self.q)

 print "Exiting " + self.name

def process_data(threadName, q):

 while not exitFlag:

 queueLock.acquire()

 if not workQueue.empty():

 data = q.get()

 queueLock.release()

 print "%s processing %s" % (threadName, data)

 else:

 queueLock.release()

 time.sleep(1)

threadList = ["Thread-1", "Thread-2", "Thread-3"]

nameList = ["One", "Two", "Three", "Four", "Five"]

queueLock = threading.Lock()

workQueue = Queue.Queue(10)

threads = []

threadID = 1

Create new threads

for tName in threadList:

 thread = myThread(threadID, tName, workQueue)

 thread.start()

 threads.append(thread)

 threadID += 1

Fill the queue

queueLock.acquire()

for word in nameList:

 workQueue.put(word)

queueLock.release()

Wait for queue to empty

while not workQueue.empty():

 pass

Notify threads it's time to exit

exitFlag = 1

Wait for all threads to complete

for t in threads:

 t.join()

print "Exiting Main Thread"

Tutorials Point, Simply Easy Learning

50 | P a g e

This would produce following result:

Starting Thread-2

Starting Thread-1

Starting Thread-3

Thread-2 processing One

Thread-1 processing Two

Thread-3 processing Three

Thread-2 processing Four

Thread-1 processing Five

Exiting Thread-3

Exiting Thread-2

Exiting Thread-1

Exiting Main Thread

Further Detail:

Refer to the link http://www.tutorialspoint.com/python

List of Tutorials from TutorialsPoint.com
 Learn JSP

 Learn Servlets

 Learn log4j

 Learn iBATIS

 Learn Java

 Learn JDBC

 Java Examples

 Learn Best Practices

 Learn Python

 Learn Ruby

 Learn Ruby on Rails

 Learn SQL

 Learn MySQL

 Learn AJAX

 Learn C Programming

 Learn C++ Programming

 Learn CGI with PERL

 Learn DLL

 Learn ebXML

 Learn Euphoria

 Learn GDB Debugger

 Learn Makefile

 Learn Parrot

 Learn Perl Script

 Learn PHP Script

 Learn ASP.Net

 Learn HTML

 Learn HTML5

 Learn XHTML

 Learn CSS

 Learn HTTP

 Learn JavaScript

 Learn jQuery

 Learn Prototype

 Learn script.aculo.us

 Web Developer's Guide

 Learn RADIUS

 Learn RSS

 Learn SEO Techniques

 Learn SOAP

 Learn UDDI

 Learn Unix Sockets

 Learn Web Services

 Learn XML-RPC

 Learn UML

 Learn UNIX

 Learn WSDL

 Learn i-Mode

 Learn GPRS

 Learn GSM

http://www.tutorialspoint.com/python
http://www.tutorialspoint.com/
http://www.tutorialspoint.com/jsp
http://www.tutorialspoint.com/servlets/index.htm
http://www.tutorialspoint.com/log4j/index.htm
http://www.tutorialspoint.com/ibatis/index.htm
http://www.tutorialspoint.com/java/index.htm
http://www.tutorialspoint.com/jdbc/index.htm
http://www.tutorialspoint.com/javaexamples/index.htm
http://www.tutorialspoint.com/developers_best_practices/index.htm
http://www.tutorialspoint.com/python/index.htm
http://www.tutorialspoint.com/ruby/index.htm
http://www.tutorialspoint.com/ruby-on-rails-2.1/index.htm
http://www.tutorialspoint.com/sql/index.htm
http://www.tutorialspoint.com/mysql/index.htm
http://www.tutorialspoint.com/ajax/index.htm
http://www.tutorialspoint.com/ansi_c/index.htm
http://www.tutorialspoint.com/cplusplus/index.htm
http://www.tutorialspoint.com/perl/perl_cgi.htm
http://www.tutorialspoint.com/dll/index.htm
http://www.tutorialspoint.com/ebxml/index.htm
http://www.tutorialspoint.com/euphoria/index.htm
http://www.tutorialspoint.com/gnu_debugger/index.htm
http://www.tutorialspoint.com/makefile/index.htm
http://www.tutorialspoint.com/parrot/index.htm
http://www.tutorialspoint.com/perl/index.htm
http://www.tutorialspoint.com/php/index.htm
http://www.tutorialspoint.com/asp.net/index.htm
http://www.tutorialspoint.com/html/index.htm
http://www.tutorialspoint.com/html5/index.htm
http://www.tutorialspoint.com/xhtml/index.htm
http://www.tutorialspoint.com/css/index.htm
http://www.tutorialspoint.com/http/index.htm
http://www.tutorialspoint.com/javascript/index.htm
http://www.tutorialspoint.com/jquery/index.htm
http://www.tutorialspoint.com/prototype/index.htm
http://www.tutorialspoint.com/script.aculo.us/index.htm
http://www.tutorialspoint.com/web_developers_guide/index.htm
http://www.tutorialspoint.com/radius/index.htm
http://www.tutorialspoint.com/rss/index.htm
http://www.tutorialspoint.com/seo/index.htm
http://www.tutorialspoint.com/soap/index.htm
http://www.tutorialspoint.com/uddi/index.htm
http://www.tutorialspoint.com/unix_sockets/index.htm
http://www.tutorialspoint.com/webservices/index.htm
http://www.tutorialspoint.com/xml-rpc/index.htm
http://www.tutorialspoint.com/uml/index.htm
http://www.tutorialspoint.com/unix/index.htm
http://www.tutorialspoint.com/wsdl/index.htm
http://www.tutorialspoint.com/i-mode/index.htm
http://www.tutorialspoint.com/gprs/index.htm
http://www.tutorialspoint.com/gsm/index.htm

Tutorials Point, Simply Easy Learning

51 | P a g e

 Learn Six Sigma

 Learn SEI CMMI

 Learn WiMAX

 Learn Telecom Billing

 Learn WAP

 Learn WML

 Learn Wi-Fi

webmaster@TutorialsPoint.com

http://www.tutorialspoint.com/six_sigma/index.htm
http://www.tutorialspoint.com/cmmi/index.htm
http://www.tutorialspoint.com/wimax/index.htm
http://www.tutorialspoint.com/telecom-billing/index.htm
http://www.tutorialspoint.com/wap/index.htm
http://www.tutorialspoint.com/wml/index.htm
http://www.tutorialspoint.com/wi-fi/index.htm
http://www.tutorialspoint.com/

