#### Q.1 - Q.20 Carry One Mark Each

| 1.  | lim - | x – sin x | equals     |
|-----|-------|-----------|------------|
| • • | X→∞   | COS X     | 0 <b>4</b> |

- (A) 1
- (B)
- (C)
- (D)

2. If P, Q, R are subsets of the universal set U, then

 $(P \cap Q \cap R) \cup (P^c \cap Q \cap R) \cup Q^c \cup R^c$  is

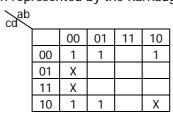
- (A)  $Q^{c} \cup R^{c}$
- $P \cup Q^C \cup R^C$ (B)
- (C)  $P^c \cup Q^c \cup R^c$

The following system of equations 3.

$$x_1 + x_2 + 2x_3 = 1$$

$$x_1 + 2x_2 + 3x_3 = 2$$

$$\mathbf{x}_1 + 4\mathbf{x}_2 + \alpha\mathbf{x}_3 = 4$$


has a unique solution. The only possible value(s) for  $\alpha$  is/are

(A)

(B) either 0 or 1

(C) one of 0, 1 or -1

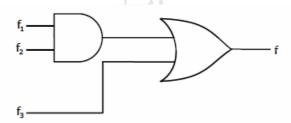
- (D) any real number
- In the IEEE floating point representation the hexadecimal value 0x00000000 corresponds to 4.
  - The normalized value  $2^{-127}$ (A)
- The normalized value  $2^{-126}$ (B)
- The normalized value +0 (C)
- The special value +0 (D)
- 5. In the Karnaugh map shown below, X denotes a don't care term. What is the minimal form of the function represented by the Karnaugh map?



 $\overline{b}.\overline{d} + \overline{a}.\overline{d}$ (A)

 $\overline{a}.\overline{b} + \overline{b}.\overline{d} + \overline{a}b.\overline{d}$ (B)

 $\overline{b}.\overline{d} + \overline{a}.b.\overline{d}$ (C)


- $\overline{a}.\overline{b} + \overline{b}.\overline{d} + \overline{a}.\overline{d}$
- Let r denote number system radix. The only value(s) of r that satisfy the equation  $\sqrt{121_r} = 11_r$  is / 6. are
  - (A) decimal 10

(B) decimal 11

(C) decimal 10 and 11

- (D) any value >2
- The most efficient algorithm for finding the number of connected components in an undirected graph 7. on n vertices and m edges has time complexity
  - (A)  $\Theta(n)$
- (B)  $\Theta(m)$
- (C)  $\Theta(m+n)$
- Θ(mn) (D)

8. Given f<sub>1</sub>, f<sub>3</sub> and f in canonical sum of products form (in decimal) for the circuit



 $f_1 = \sum m (4, 5, 6, 7, 8)$ 

$$f_3 = \sum m (1, 6, 15)$$

 $f = \sum m (1, 6, 8, 15)$ 

then f2 is

- (A)  $\sum m (4, 6)$
- (B)  $\sum m (4, 8)$
- (C)  $\sum m (6, 8)$
- (D)  $\sum m (4, 6, 8)$
- 9. Which of the following is true for the language {a<sup>p</sup> | p is a prime}?
  - (A) It is not accepted by a Turing Machine
  - (B) It is regular but not context-free
  - (C) It is context-free but not regular
  - (D) It is neither regular nor context-free, but accepted by a Turing machine
- 10. Which of the following are decidable?
  - I. Whether the intersection of two regular languages is infinite
  - II. Whether a given context-free language is regular
  - III. Whether two push-down automata accept the same language
  - IV. Whether a given grammar is context-free
  - (A) I and II
- (B) I and IV
- (C) II and III
- (D) II and IV
- 11. Which of the following describes a handle (as applicable to LR-parsing) appropriately?
  - (A) It is the position in a sentential form where the next shift or reduce operation will occur
  - (B) It is non-terminal whose production will be used for reduction in the next step
  - (C) It is a production that may be used for reduction in a future step along with a position in the sentential form where the next shift or reduce operation will occur
  - (D) It is the production p that will be used for reduction in the next step along with a position in the sentential form where the right hand side of the production may be found
- 12. Some code optimizations are carried out on the intermediate code because
  - (A) They enhance the portability of the compiler to other target processors
  - (B) Program analysis is more accurate on intermediate code than on machine code
  - (C) The information from dataflow analysis cannot otherwise be used for optimization
  - (D) The information from the front end cannot otherwise be used for optimization
- 13. If L and  $\overline{L}$  are recursively enumerable then L is
  - (A) regular

- (B) context-free
- (C) context-sensitive
- (D) recursive
- 14. What is the maximum size of data that the application layer can pass on to the TCP layer below?
  - (A) Any size

(B) 2<sup>16</sup> bytes-size of TCP header

(C)  $2^{16}$  bytes

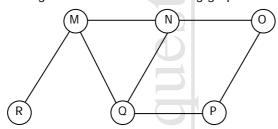
(D) 1500 bytes

- 15. Which of the following tuple relational calculus expression(s) is/are equivalent to
  - Ι.  $\neg \exists t \in r(P(t))$
  - $\exists t \notin r (P(t))$ П.
  - $\neg \exists t \in r(\neg P(t))$ Ш.
  - $\exists t \notin r (\neg P(t))$ IV.
  - (A) I only
- (B) II only
- III only
- (D) III and IV only
- 16. A clustering index is defined on the fields which are of type
  - non-key and ordering
- non-key and non-ordering

(C) key and ordering

- (D) key and non-ordering
- 17. Which of the following system calls results in the sending of SYN packets?
  - socket

(C) listen


- connect
- 18. Which combination of the integer variables x, y and z makes the variable a get the value 4 in the following expression?

$$a = (x > y)$$
?  $((x > z) ? x : z) : ((y > z) ? y : z)$ 

x = 3, y = 4, z = 2 x = 6, y = 3, z = 5

(C)

- 19. The Breadth First Search algorithm has been implemented using the queue data structure. One possible order of visiting the nodes of the following graph is



- (A) **MNOPQR**
- (B) **NQMPOR**
- (C) QMNPR O
- (D) **QMNPOR**
- 20. The data blocks of a very large file in the Unix file system are allocated using
  - contiguous allocation (A)
  - (B) linked allocation
  - (C) indexed allocation
  - an extension of indexed allocation (D)

#### Q.21 - Q.75 Carry Two Marks Each

The minimum number of equal length subintervals needed to approximate  $\int xe^x dx$  to an accuracy of 21.

at least  $\frac{1}{3} \times 10^{-6}$  using the trapezoidal rule is

- (A) 1000e
- (B) 1000
- (C) 100e
- 100 (D)
- The Newton-Raphson iteration  $x_{n+1} = \frac{1}{2} \left( x_n + \frac{R}{x_n} \right)$  can be used to compute the 22.
  - (A) square of R

reciprocal of R (B)

(C) square root of R (D) logarithm of R

| 23. | Which of the following statements is true for every planar graph on n vertices?  (A) The graph is connected |                                                                                                                                                   |                                    |                                          |                                      |                                 |                                            |                       |                                                                                                   |
|-----|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------------|--------------------------------------|---------------------------------|--------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------|
|     | (A)<br>(B)                                                                                                  | The graph is Eu                                                                                                                                   |                                    |                                          | +                                    |                                 |                                            |                       |                                                                                                   |
|     | (C)                                                                                                         | The graph has a                                                                                                                                   |                                    | -cover of s                              | size at m                            | nost 3n/                        | /4                                         |                       |                                                                                                   |
|     | (D)                                                                                                         | The graph has a                                                                                                                                   |                                    |                                          |                                      |                                 |                                            |                       |                                                                                                   |
|     | (5)                                                                                                         | riio grapii nas (                                                                                                                                 | arr maop                           | ondone se                                | 31 01 3123                           | ou loud                         |                                            |                       |                                                                                                   |
| 24. | Let P =                                                                                                     | $\sum_{\substack{1 \le i \le 2k \\ i \text{ odd}}} i \text{ and } Q =$                                                                            | ∑i,<br>1≤i≤2k<br>i even            |                                          | is a posi                            | tive inte                       | eger. Then                                 |                       |                                                                                                   |
|     | (A)                                                                                                         | P = Q - K                                                                                                                                         | (B)                                | P = Q +                                  | K                                    | (C)                             | P = Q                                      | (D)                   | P = Q + 2K                                                                                        |
| 25. | A point number                                                                                              | on a curve is sa<br>r of distinct extre                                                                                                           | id to be<br>ema for t              | an extrem                                | num if it<br>3x <sup>4</sup> – 16    | is a loc<br>6x <sup>3</sup> + 2 | al minimum or a<br>4x <sup>2</sup> + 37 is | local m               | aximum. The                                                                                       |
|     | (A)                                                                                                         | 0                                                                                                                                                 | (B)                                | 1                                        | 0                                    | (C)                             | 2                                          | (D)                   | 3                                                                                                 |
| 26. |                                                                                                             | R are Boolean v<br>( $P.\overline{Q} + P.R$ ) ( $\overline{P}.\overline{R}$                                                                       |                                    | , then                                   |                                      |                                 |                                            |                       |                                                                                                   |
|     | Simplifi                                                                                                    | es to                                                                                                                                             |                                    |                                          |                                      |                                 |                                            |                       |                                                                                                   |
|     | (A) P. C                                                                                                    | , i                                                                                                                                               | (B)                                | $P.\overline{R}$                         |                                      | (C)                             | $P.\overline{Q} + R$                       | (D)                   | $P.\overline{R} + Q$                                                                              |
| 27. | on a da<br>mathen<br>Given t                                                                                | y, then the prob<br>natics on a day,                                                                                                              | ability th<br>then the<br>udies co | nat the stue<br>probabilit<br>pmputer so | udies ma<br>ty that the<br>cience or | athemat<br>he stud              | ics the next day<br>ies computer sci       | is 0.6. I<br>ence the | ies computer science If she studies In next day is 0.4. It is that she studies In next day is 0.6 |
|     | (1)                                                                                                         | 0.21                                                                                                                                              | (5)                                | 0.00                                     |                                      | (0)                             | 0.1                                        | (D)                   | 0.0                                                                                               |
| 28. |                                                                                                             | any of the follow $\begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \end{bmatrix}$ and one |                                    |                                          |                                      | envalue<br>(C)                  | 1?<br>three                                | (D)                   | four                                                                                              |
| 29. | anothe                                                                                                      | e a random varia<br>r normal variable<br>on of Y is                                                                                               | able follo<br>with me              | owing norr<br>ean -1 and                 | mal distr<br>d variand               | ibution<br>ce unkn              | with mean +1 a nown. If P $(X \le -1)$     | nd varia<br>1) = P (  | ince 4. Let Y be $Y \ge 2$ ), the standard                                                        |
|     | (A)                                                                                                         | 3                                                                                                                                                 | (B)                                | 2                                        |                                      | (C)                             | 2                                          | (D)                   | 1                                                                                                 |
| 30. | means<br>b) mea                                                                                             | that y is a pushons a and b are e                                                                                                                 | lown aut<br>quivalen               | tomaton. I<br>it.                        | Let equiv                            | valent b                        | e another predi                            | cate suc              | maton, and pda(y)<br>h that equivalent (a,                                                        |
|     |                                                                                                             | of the following f                                                                                                                                |                                    | •                                        |                                      |                                 |                                            | ng:                   |                                                                                                   |
|     |                                                                                                             | nite state automa                                                                                                                                 |                                    | •                                        |                                      |                                 | automaton                                  |                       |                                                                                                   |
|     | (A)                                                                                                         | $(\forall x \text{ fsa}(x)) \Rightarrow ($                                                                                                        |                                    |                                          |                                      |                                 |                                            |                       |                                                                                                   |
|     | (B)                                                                                                         | ~ ∀y (∃x fsa(x)                                                                                                                                   | -                                  |                                          |                                      | -                               |                                            |                       |                                                                                                   |
|     | (C)                                                                                                         | ∀x ∃y (fsa(x) ∧                                                                                                                                   | pda(y)                             | ∧ equivale                               | ent (x, y)                           | ))                              |                                            |                       |                                                                                                   |
|     | (D)                                                                                                         | ∀x ∃y (fsa(y) ∧                                                                                                                                   | pda(x)                             | ∧ equivale                               | ent (x, y)                           | ))                              |                                            |                       |                                                                                                   |
|     |                                                                                                             |                                                                                                                                                   |                                    |                                          |                                      |                                 |                                            |                       |                                                                                                   |

| 31. | P and Q are two propositions. Which of the following logical expressions are equivalent?                                                                                                                                                                                             |                                                                                                                                         |                                                          |                                          |                          |                 |               |                     |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------|--------------------------|-----------------|---------------|---------------------|--|--|
|     | l.                                                                                                                                                                                                                                                                                   | $P \vee Q$                                                                                                                              |                                                          |                                          |                          |                 |               |                     |  |  |
|     | II.                                                                                                                                                                                                                                                                                  | ~ (~ P \land Q)                                                                                                                         | ٥)                                                       | , ,                                      | .(1)                     |                 |               |                     |  |  |
|     | Ш.                                                                                                                                                                                                                                                                                   | $(P \land Q) \lor (P \land Q)$                                                                                                          |                                                          |                                          | 1)                       |                 |               |                     |  |  |
|     | IV.                                                                                                                                                                                                                                                                                  | $(P \land Q) \lor (P \land Q)$                                                                                                          | ~ Q) ∨                                                   | (~ P ∧ Q)                                |                          |                 |               |                     |  |  |
|     | (A)                                                                                                                                                                                                                                                                                  | Only I and II                                                                                                                           |                                                          |                                          | (B)                      | Only I, II ar   |               |                     |  |  |
|     | (C)                                                                                                                                                                                                                                                                                  | Only I, II and                                                                                                                          | IV                                                       |                                          | (D)                      | All of I, II I  | II and IV     |                     |  |  |
| 32. | For a magnetic disk with concentric circular tracks, the seek latency is not linearly proportional to the seek distance due t o                                                                                                                                                      |                                                                                                                                         |                                                          |                                          |                          |                 |               |                     |  |  |
|     | (A)                                                                                                                                                                                                                                                                                  | non-uniform distribution of requests                                                                                                    |                                                          |                                          |                          |                 |               |                     |  |  |
|     | (B)                                                                                                                                                                                                                                                                                  | arm starting a                                                                                                                          | nd stopp                                                 | ing inertia                              |                          |                 |               |                     |  |  |
|     | (C)                                                                                                                                                                                                                                                                                  | higher capacit                                                                                                                          | y of trac                                                | ks on the p                              | eriphery of th           | ne platter      |               |                     |  |  |
|     | (D)                                                                                                                                                                                                                                                                                  | use of unfair a                                                                                                                         | ırm sche                                                 | duling polic                             | cies                     |                 |               |                     |  |  |
| 33. | Which                                                                                                                                                                                                                                                                                | of the following                                                                                                                        | is/are ti                                                | rue of the a                             | uto-incremer             | it addressing r | mode?         |                     |  |  |
|     | <ol> <li>It is useful in creating self-relocating code</li> <li>If it is included in an Instruction Set Architecture, then an additional ALU is required for effective address calculation</li> <li>The amount of increment depends on the size of the data item accessed</li> </ol> |                                                                                                                                         |                                                          |                                          |                          |                 |               |                     |  |  |
|     | (A)                                                                                                                                                                                                                                                                                  | I only                                                                                                                                  | (B)                                                      | II only                                  | (C)                      | III only        | (D)           | II and III only     |  |  |
|     | (//)                                                                                                                                                                                                                                                                                 | 1 Offiny                                                                                                                                | (D)                                                      | ii Oilly                                 | (0)                      | III Olliy       | (D)           | if and iff only     |  |  |
| 34. | Which of the following must be true for the RFE (Return From Exception) instruction on a general purpose processor?  I. It must be a trap instruction II. It must be a privileged instruction III. An exception cannot be allowed to occur during execution of an RFE instruction    |                                                                                                                                         |                                                          |                                          |                          |                 |               |                     |  |  |
|     |                                                                                                                                                                                                                                                                                      | •                                                                                                                                       |                                                          |                                          | ( ) (                    |                 |               |                     |  |  |
|     | (A)                                                                                                                                                                                                                                                                                  | I only                                                                                                                                  | (B)                                                      | II only                                  | (C)                      | I and II only   | y (D)         | I, II and III only  |  |  |
| 35. |                                                                                                                                                                                                                                                                                      | lusion to hold b<br>lowing are nece<br>L1 must be a v<br>L2 must be a v<br>The associativ<br>The L2 cache<br>IV only<br>I, II and IV or | ssary?<br>write-thr<br>write-thr<br>ity of L2<br>must be | ough cache<br>ough cache<br>must be gr   | e<br>e<br>reater than th | at of L1        | ly            | hierarchy, which of |  |  |
| 36. | Which I. II. III. (A)                                                                                                                                                                                                                                                                | of the following<br>Bypassing can<br>Register renar<br>Control hazard<br>I and II only                                                  | handle<br>ning can                                       | all RAW ha<br>eliminate a<br>es can be e | zards<br>all register ca | ried WAR haz    | ch prediction | on<br>I, II and III |  |  |
| 37. | The us accessed. II. III. (A)                                                                                                                                                                                                                                                        | •                                                                                                                                       | s and pa<br>s and res                                    | rameters \                               | overlap caus             | es a reductior  | n in the nui  | mber of memory      |  |  |

Before effective address calculation has started

During effective address calculation

38.

be accessed is

(A)

(B)

In an instruction execution pipeline, the earliest that the data TLB (Translation Lookaside Buffer) can

|     | (C) After effective address calculation has completed                                                                                                         |                                      |            |                    |              |              |                    |          |                                         |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------|--------------------|--------------|--------------|--------------------|----------|-----------------------------------------|--|
|     | (D)                                                                                                                                                           | After data cach                      | e lookup   | has comp           | oleted       |              |                    |          |                                         |  |
|     |                                                                                                                                                               |                                      |            |                    |              |              |                    |          |                                         |  |
| 39. |                                                                                                                                                               | er the following f                   | unctions   | <b>S</b> :         |              |              |                    |          |                                         |  |
|     | f(n) =                                                                                                                                                        |                                      |            |                    | 3            |              |                    |          |                                         |  |
|     | g(n) =                                                                                                                                                        |                                      |            |                    |              |              |                    |          |                                         |  |
|     | h(n) =                                                                                                                                                        |                                      |            |                    |              |              |                    |          |                                         |  |
|     |                                                                                                                                                               | -                                    |            |                    |              |              |                    | _        | and h(n) is true?                       |  |
|     | (A)                                                                                                                                                           | f(n) = O(g(n))                       | •          |                    | (B)          |              | = $\Omega(g(n))$ ; |          |                                         |  |
|     | (C)                                                                                                                                                           | g(n) = O(f(n))                       | ; h(n) =   | O(f (n))           | (D)          | h(n) =       | = O(f (n));        | g(n) =   | $\Omega(f(n))$                          |  |
| 40. |                                                                                                                                                               | nimum number on a sorted array o     |            |                    | juired to de | termine if   | an integer         | appea    | rs more than n/2                        |  |
|     | (A)                                                                                                                                                           | $\Theta(n)$                          | (B)        | gers is<br>Θ(logn) | (c)          | Θ(log³       | *n)                | (D)      | ⊕(1)                                    |  |
|     | ` '                                                                                                                                                           | - ( )                                | ( )        | • ( • 5 )          |              | - ( - 3      | ,                  | ` '      | - ( )                                   |  |
| 41. |                                                                                                                                                               | e of order 4 is buplitting operation |            |                    |              | sive inserti | ions. What         | is the   | maximum number of                       |  |
|     | (A)                                                                                                                                                           | 3                                    | (B)        | 4                  | (C)          | 5            |                    | (D)      | 6                                       |  |
| 42. | G is a graph on n vertices and 2n-2 edges. The edges of G can be partitioned into two edge-disjoint spanning trees. Which of the following is NOT true for G? |                                      |            |                    |              |              |                    |          |                                         |  |
|     | (A)                                                                                                                                                           |                                      |            |                    |              |              |                    |          |                                         |  |
|     | (B)                                                                                                                                                           | The minimum o                        | ut in G h  | nas at leas        | t two edge   | S            |                    |          |                                         |  |
|     | (C)                                                                                                                                                           |                                      |            |                    |              |              |                    |          |                                         |  |
|     | (D)                                                                                                                                                           |                                      |            |                    |              |              |                    |          |                                         |  |
|     |                                                                                                                                                               |                                      |            | _                  |              |              |                    |          |                                         |  |
| 43. | splits t                                                                                                                                                      |                                      | ub-lists e | each of wh         | ich contain  | s at least o |                    |          | ot element which<br>ements. Let T(n) be |  |
|     | (A)                                                                                                                                                           | T (n) $\leq$ 2T (n /                 | 5) + n     |                    | (B)          | T (n) :      | ≤ T (n / 5)        | + T (4   | n / 5) + n                              |  |
|     | (C)                                                                                                                                                           | T (n) $\leq$ 2T (4n /                | / 5) + n   |                    | (D)          | T (n) :      | ≤ 2T (n / 2        | 2) + n   |                                         |  |
| 4.4 | Th                                                                                                                                                            |                                      | ! ! . 6!   |                    |              | 6 6          |                    |          |                                         |  |
| 44. | integer                                                                                                                                                       | bset-sum probler<br>W, determine w   | hether t   | here is a s        | subset of S  | whose eler   | ments sum          | to W.    | ·                                       |  |
|     | •                                                                                                                                                             | orithm Q solves t                    | •          | -                  |              |              |                    |          |                                         |  |
|     | (A)                                                                                                                                                           |                                      |            | -                  |              |              |                    |          | ncoded in unary                         |  |
|     | (B)                                                                                                                                                           |                                      |            | •                  |              |              | hen the in         | put is e | ncoded in binary                        |  |
|     | (C)                                                                                                                                                           | The subset sum                       | •          | •                  |              | s NP         |                    |          |                                         |  |
|     | (D)                                                                                                                                                           | The subset sum                       | n probler  | n is NP-ha         | rd           |              |                    |          |                                         |  |

45.



Dijkstra's single source shortest path algorithm when run from vertex a in the above graph, computes the correct shortest path distance to

(A) only vertex a

- (B) only vertices a, e, f, g, h
- (C) only vertices a, b, c, d
- (D) all the vertices
- 46. You are given the postorder traversal, P, of a binary search tree on the n elements 1, 2,....,n. You have to determine the unique binary search tree that has P as its postorder traversal. What is the time complexity of the most efficient algorithm for doing this?
  - (A)  $\Theta(\log n)$
  - (B)  $\Theta(n)$
  - (C)  $\Theta(n \log n)$
  - (D) None of the above, as the tree cannot be uniquely determined
- 47. We have a binary heap on n elements and wish to insert n more elements (not necessarily one after another) into this heap. The total time required for this is
  - (A)  $\Theta(\log n)$
- (B)  $\Theta(n)$
- (C)  $\Theta(n \log n)$
- (D)  $\Theta(n^2)$

- 48. Which of the following statements is false?
  - (A) Every NFA can be converted to an equivalent DFA
  - (B) Every non-deterministic Turing machine can be converted to an equivalent deterministic Turing machine
  - (C) Every regular language is also a context-free language
  - (D) Every subset of a recursively enumerable set is recursive
- 49. Given below are two finite state automata (→ indicates the start state and F indicates a final state)

|    |      | а | b |
|----|------|---|---|
| Y: | →1   | 1 | 2 |
|    | 2(F) | 2 | 1 |

|    |      | a | ۵ |
|----|------|---|---|
| Z: | →1   | 2 | 2 |
|    | 2(F) | 1 | 7 |

Which of the following represents the product automaton Z×Y?

|     |      | а | b |
|-----|------|---|---|
| (A) | →P   | S | R |
|     | Q    | R | S |
|     | R(F) | R | S |
|     | S    | Q | Р |

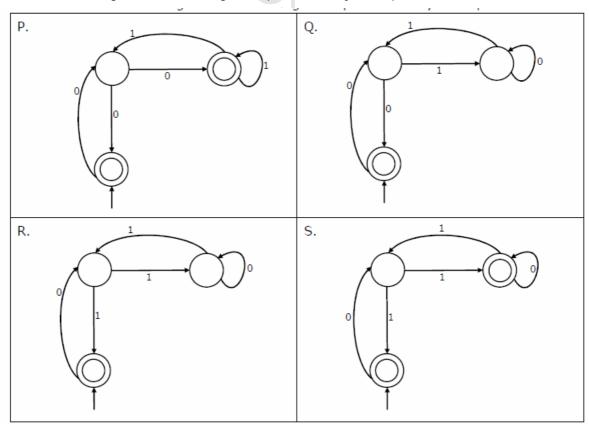
|     |                 | a | b |
|-----|-----------------|---|---|
| (B) | $\rightarrow$ P | s | R |
|     | Q               | R | S |
|     | R(F)            | Q | Р |
|     | S               | Р | Q |

|     |      | а | b |
|-----|------|---|---|
|     | →P   | Q | S |
| (C) | Q    | R | S |
| 1   | R(F) | Q | Р |
|     | S    | Q | Р |

|     |                 | а | b |
|-----|-----------------|---|---|
| (D) | $\rightarrow$ P | S | O |
|     | O               | S | R |
|     | R(F)            | Q | Р |
|     | S               | Q | Р |

- 50. Which of the following statements are true?
  - I. Every left-recursive grammar can be converted to a right-recursive grammar and vice-versa
  - II. All  $\varepsilon$ -productions can be removed from any context-free grammar by suitable transformations
  - III. The language generated by a context-free grammar all of whose productions are of the form  $X \to w$  or  $X \to wY$  (where, w is a string of terminals and Y is a non-terminal), is always regular
  - IV. The derivation trees of strings generated by a context-free grammar in Chomsky Normal Form are always binary trees
  - (A) I, II, III and IV

(B) II, III and IV only


(C) I, III and IV only

(D) I, II and IV only

51. Match the following:

| E. | Checking that identifiers are declared before their use                                                                          | Р. | $L = \{a^{n}b^{m}c^{n}d^{m} n \ge 1, m \ge 1 \}$ |
|----|----------------------------------------------------------------------------------------------------------------------------------|----|--------------------------------------------------|
| F. | Number of formal parameters in the declaration of a function agrees with the number of actual parameters in use of that function | Q. | $X \rightarrow XbX \mid XcX \mid dXf \mid g$     |
| G. | Arithmetic expressions with matched pairs of parentheses                                                                         | R. | $L = \{wcw w\in(a b)^*\} $                       |
| H. | Palindromes                                                                                                                      | S. | $X \rightarrow bXb \mid cXc \mid \epsilon$       |

- (A) E P, F R, G Q, H S
- (B) E R, F P, G S, H Q
- (C) E R, F P, G Q, H S
- (D) E P, F R, G S, H Q
- 52. Match the following NFAs with the regular expressions they correspond to



53.

54.

55.

56.

57.

58.

| 1.         | ε + 0(01*1 + 0                            | 00) * 01*  |            |          |            |                                           |             |                                     |        |
|------------|-------------------------------------------|------------|------------|----------|------------|-------------------------------------------|-------------|-------------------------------------|--------|
| 2.         | ε + 0(10 *1 +                             |            |            | نب       |            |                                           |             |                                     |        |
| 3.         | ε + 0(10 *1 +                             | ,          | *          |          |            |                                           |             |                                     |        |
| 4.         | $\varepsilon$ + 0(10 *1 + P - 2, Q - 1, R | •          |            |          | (D)        | D 1 O 2 D                                 | 2.5         | 4                                   |        |
| (A)        | P - 2, $Q - 1$ , $RP - 1$ , $Q - 2$ , $R$ |            |            |          | (B)<br>(D) | P - 1, $Q - 3$ , $RP - 3$ , $Q - 2$ , $R$ |             |                                     |        |
| (C)        | P = 1, Q = 2, R                           | - 3, 5 -   | 4          |          | (D)        | P = 3, $Q = 2$ , $R$                      | - I, S -    | 4                                   |        |
| Which      | of the following                          | are regu   | lar sets?  |          |            |                                           |             |                                     |        |
| l.         | $\{a^nb^{2m} n\geq 0,$                    | $m \ge 0$  |            |          |            |                                           |             |                                     |        |
| П.         | ${a^nb^m n=2m}$                           | }          |            | 7        |            |                                           |             |                                     |        |
| III.       | $\{a^nb^m n\neq m\}$                      |            |            |          |            |                                           |             |                                     |        |
| IV.        | $\{xcy x, y, \in \{a\}\}$                 | , b} *}    |            |          | 4.         |                                           |             |                                     |        |
| (A)        | I and IV only                             |            |            |          | (B)<br>(D) | I and III only<br>IV only                 |             |                                     |        |
| (C)        | I only                                    |            |            |          | (D)        | TV Offig                                  |             |                                     |        |
| Which      | of the following                          | are true?  | ?          |          |            |                                           |             |                                     |        |
| I.         |                                           | edures/f   |            |          |            | global variables<br>ursion can be in      |             | kind and has no<br>ited with static |        |
| II.        |                                           |            |            |          |            | s needed to arra                          |             | tivation records on<br>es/functions | ıly if |
| Ш.         | Recursion in pr                           | ogramm     | ing langua | iges ca  | nnot be    | implemented wi                            | ith dyna    | mic storage alloca                  | ition  |
| IV.        | 0 1                                       |            |            |          |            | iire a dynamic h<br>ation scheme fo       | •           | cation scheme and tion records      | d      |
| V.         |                                           |            | •          |          |            | n to return a fundon scheme for a         |             | its result cannot b<br>n records    | Эе     |
| (A)        | II and V only                             |            |            |          | (B)        | I, III and IV on                          | ıly         |                                     |        |
| (C)        | I, II and V only                          | /          |            |          | (D)        | II, III and V on                          | ıly         |                                     |        |
| ا ۸ ا ۸ ا  | D(1) parsor for a                         | aramm      | or Coon b  | olyo ob  | ift radiu  | o (C.D.) conflicts                        | o if and    | only if                             |        |
| (A)        | R(1) parser for a<br>The SLR(1) par       | -          |            |          |            | e (3-k) connicts                          | s II allu I | Offig II                            |        |
| (A)<br>(B) | The LR(1) pars                            |            |            |          | 3          |                                           |             |                                     |        |
| (C)        | The LR(1) pars                            |            |            |          |            |                                           |             |                                     |        |
| (C)<br>(D) | The LR(0) pars                            |            |            |          | Huca cor   | oflicts                                   |             |                                     |        |
| (D)        | THE LALK(T) Po                            | ai 30i 10i | G Has Teu  | uce-rec  | iuce coi   | iiiicts                                   |             |                                     |        |
| In the     | slow start phase                          | of the T   | CP conges  | stion co | ntrol ald  | orithm, the size                          | of the      | congestion windov                   | N      |
| (A)        | does not increa                           |            | J          |          | (B)        | increases linear                          |             | 3                                   |        |
| (C)        | increases quad                            | ratically  |            |          | (D)        | increases expoi                           | •           | ,                                   |        |
|            | ss B network on<br>r of host s per si     |            | rnet has a | subne    | t mask (   | of 255.255.248.0                          | O, what     | is the maximum                      |        |
| (A)        | 1022                                      | (B)        | 1023       | +        | (C)        | 2046                                      | (D)         | 2047                                |        |
|            |                                           |            |            | +        |            |                                           |             |                                     |        |
|            |                                           |            |            |          |            |                                           | oken bu     | cket is filled at a ra              | ate    |
|            | ps. It is initially t                     |            |            |          |            |                                           | المقاداة    | OMb mo2                             |        |
|            | the maximum (                             |            |            |          | •          |                                           |             | •                                   |        |
| (A)        | 1.6 seconds                               | (B)        | 2 second   | S        | (C)        | 5 seconds                                 | (D)         | 8 seconds                           |        |

59. A client process P needs to make a TCP connection to a server process S. Consider the following situation: the server process S executes a socket (), a bind () and a listen () system call in that order, following which it is preempted.

Subsequently, the client process P executes a socket () system call followed by connect () system call to connect to the server process S. The server process has not executed any accept () system call. Which one of the following events could take place?

- (A) connect () system call returns successfully
- (B) connect () system call blocks
- (C) connect () system call returns an error
- (D) connect () system call results in a core dump
- 60. What is printed by the following C program?

```
{
                                                int c. *b. **a:
        int y,
                Ζ;
        **ppz + = 1; z = *ppz;
                                                c = 4; b = &c; a = &b;
        *py + = 2; y = *py;
                                                print f("%d", f(c, b, a));
        x + = 3;
        return x + y + z:
}
(A)
                                                 (C)
        18
                        (B)
                                19
                                                        21
                                                                         (D)
                                                                                 22
```

61. Choose the correct option to fill ? 1 and ? 2 so that the program below prints an input string in reverse order. Assume that the input string is terminated by a newline character.

```
void recerse void {
                 int c;
                 if (?1) reverse ();
                 ?2
        }
        main () {
                 print f ("Enter Text"); print f ("\ n");
                 reverse (); print f ("\ n");
        }
(A)
        ?1 is (getchar ()! = '\ n')
        ?2 is getchar (c);
(B)
        ?1 is (c = getchar())! = '\ n')
        ?2 is getchar (c);
        ?1 is (c! = '\ n')
(C)
        ?2 is putchar (c);
        ?1 is ((c = getchar ())! = ' n')
(D)
        ?2 is putchar (c);
```

62. The following C function takes a single-linked list of integers as a parameter and rearranges the elements of the list. The function is called with the list containing the integers 1,2,3,4,5,6,7 in the given order. What will be the contents of the list after the function completes execution?

```
struct node {
     int value;
     struct node * next;
};
Void rearrange (struct node * list) {
struct node * p, * q;
int temp;
if (!list || !list - > next) return;
p = list; q = list -> next;
while q {
     temp = p - > value; p - > value = q - > value;
     q - > value = temp; p = q - > next
     q = p? p -   next : 0;
}
                                 2.1.4.3.6.5.7
(A)
        1,2,3,4,5,6,7
                         (B)
                                                          1.3.2.5.4.7.6
                                                                                   2,3,4,5,6,7,1
                                                                           (D)
```

63. The P and V operations on counting semaphores, where s is a counting semaphore, are defined as follows:

```
P(s): s = s - 1;
if s < 0 then wait;
V(s): s = s + 1;
if s <= 0 then wakeup a process waiting on s;
```

Assume that  $P_b$  and  $V_b$  the wait and signal operations on binary semaphores are provided. Two binary semaphores  $x_b$  and  $y_b$  are used to implement the semaphore operations P(s) and V(s) as follows:

```
P(s): P_{b}(x_{b});
s = s - 1;
if (s < 0) \{
V_{b}(x_{b});
P_{b}(y_{b});
\}
else V_{b}(x_{b});
V(s): P_{b}(x_{b});
s = s + 1;
if (s <=0) V_{b}(y_{b});
V_{b}(x_{b});
The initial values of x_{b} and y_{b} are res
```

The initial values of  $x_b$  and  $y_b$  are respectively

- (A) 0 and 0
- (B) 0 and 1
- (C) 1 and 0 (D) 1 and 1
- 64. Which of the following statements about synchronous and asynchronous I/O is NOT true?
  - (A) An ISR is invoked on completion of I/O in synchronous I/O but not in asynchronous I/O
  - (B) In both synchronous and asynchronous I/O, an ISR (Interrupt Service Routine) is invoked after completion of the I/O
  - (C) A process making a synchronous I/O call waits until I/O is complete, but a process making an asynchronous I/O call does not wait for completion of the I/O
  - (D) In the case of synchronous I/O, the process waiting for the completion of I/O is woken up by the ISR that is invoked after the completion of I/O

- 65. Which of the following is NOT true of deadlock prevention and deadlock avoidance schemes?
  - (A) In deadlock prevention, the request for resources is always granted if the resulting state is safe
  - (B) In deadlock avoidance, the request for resources is always granted if the result state is safe
  - (C) Deadlock avoidance is less restrictive than deadlock prevention
  - (D) Deadlock avoidance requires knowledge of resource requirements a priori
- 66. A process executes the following code

for 
$$(i = 0; i < n; i + +)$$
 for ();

The total number of child processes created is

- (A)
- (B) 2<sup>n</sup> 1
- (C) 2<sup>n</sup>
- (D)  $2^{n+1} 1$
- 67. A processor uses 36 bit physical addresses and 32 bit virtual addresses, with a page frame size of 4 Kbytes. Each page table entry is of size 4 bytes. A three level page table is used for virtual to physical address translation, where the virtual address is used as follows
  - Bits 30-31 are used to index into the first level page table
  - Bits 21-29 are used to index into the second level page table
  - Bits 12-20 are used to index into the third level page table, and
  - Bits 0-11 are used as offset within the page

The number of bits required for addressing the next level page table (or page frame) in the page table entry of the first, second and third level page tables are respectively

(A) 20, 20 and 20

(B) 24, 24 and 24

(C) 24, 24 and 20

- (D) 25, 25 and 24
- 68. Let R and S be two relations with the following schema

 $R (\underline{P}, \underline{Q}, R1, R2, R3)$ 

S (<u>P,Q</u>,S1,S2)

Where {P, Q} is the key for both schemas. Which of the following gueries are equivalent?

- I.  $\prod_{D} (R \bowtie S)$
- II.  $\prod_{p} (R) \triangleright \prod_{p} (S)$
- III.  $\prod_{p} (\prod_{p_i Q} (R) \cap \prod_{p_i Q} (S))$
- IV.  $\prod_{p} (\prod_{p,Q} (R) (\prod_{p,Q} (R) \prod_{p,Q} (S)))$
- (A) Only I and II

(B) Only I and III

(C) Only I, II and III

- (D) Only I, III and IV
- 69. Consider the following relational schemes for a library database:

Book (Title, Author, Catalog\_no, Publisher, Year, Price)

Collection (Title, Author, Catalog\_no)

with in the following functional dependencies:

- I. Title Author  $\rightarrow$  Catalog\_no
- II. Catalog\_no → Title Author Publisher Year
- III. Publisher Title Year → Price

Assume {Author, Title} is the key for both schemes. Which of the following statements is true?

- (A) Both Book and Collection are in BCNF
- (B) Both Book and Collection are in 3NF only
- (C) Book is in 2NF and Collection is in 3NF
- (D) Both Book and Collection are in 2NF only

- 70. Consider a file of 16384 records. Each record is 32 bytes long and its key field is of size 6 bytes. The file is ordered on a non-key field, and the file organization is unspanned. The file is stored in a file system with block size 1024 bytes, and the size of a block pointer is 10 bytes. If the secondary index is built on the key field of the file, and a multi-level index scheme is used to store the secondary index, the number of first-level and second-level blocks in the multi-level index are respectively
  - (A) 8 and 0
- (B) 128 and 6 (C)
  - C) 256 and 4
- (D) 512 and 5

#### Common Data for Questions: 71 72 and 73

Consider a machine with a 2-way set associative data cache of size 64Kbytes and block size 16bytes. The cache is managed using 32 bit virtual addresses and the page size is 4Kbyts. A program to be run on this machine begins as follows:

```
double ARR 1024 1024 ; int i, j ; 

/* Initialize array ARR to 0.0 * / for (i = 0; i < 1024; i ++) 

for (j = 0; j < 1024; j ++) 

ARR [i] [j] = 0.0;
```

The size of double is 8Bytes. Array ARR is located in memory starting at the beginning of virtual page 0xFF000 and stored in row major order. The cache is initially empty and no pre-fetching is done. The only data memory references made by the program are those to array ARR

- 71. The total size of the tags in the cache directory is
  - (A) 32Kbits
- (B) 34Kbits
- (C) 64Kbits
- (D) 68Kbits
- 72. Which of the following array elements has the same cache index as ARR [0] [0]?
  - (A) ARR [0] [4]
- (B) ARR [4] [0]
- (C) ARR [0] [5]
- (D) ARR [5] [0]

- 73. The cache hit ratio for this initialization loop is
  - (A) 0%
- (B) 25%
- (C) 50%
- (D) 75%

#### Common Data for Questions: 74 and 75

Consider the following C functions:

```
int f1 (int n)
{
  if (n == 0 | | n == 1)
   return n:
else
 return (2* f1 (n - 1) + 3 * f1 (n - 2))
int f2 (int n)
 int i:
 int X[N], Y[N], Z[N];
 X[0] = Y[0] = Z[0] = 0;
 X[1] = 1; Y[1] = 2; Z[1] = 3;
 for (i = 2; i <= n; i ++) {
        X[i] = Y[i-1] + Z[i-2];
        Y[i] = 2 * X[i];
        Z[i] = 3 * X[i];
  }
return X[n];
}
```

 $\Theta$  (2<sup>n</sup>) and  $\Theta$  (n)

 $\Theta$  (2<sup>n</sup>) and  $\Theta$  (2<sup>n</sup>)

# **GATE Question Papers: Computer Science and Engineering 2008**

(B)

(D)

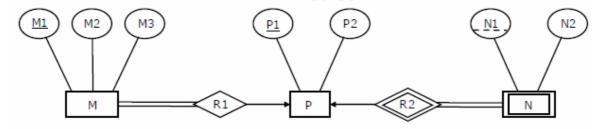
The running time of f1 (n) and f2 (n) are

 $\Theta$  (n) and  $\Theta$  (n)

 $\Theta$  (n) and  $\Theta$  (2<sup>n</sup>)

F1 (8) and f2 (8) return the values

74.


75.

(C)

|                                                                                                                                          | (A)<br>(C)                                                                                                                                       | 1661 and 1640<br>1640 and 1640           |                   |                         | (B)<br>(D)    | 59 and 59<br>1640 and 166               | 1                           |                                                                    |       |  |
|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------|-------------------------|---------------|-----------------------------------------|-----------------------------|--------------------------------------------------------------------|-------|--|
|                                                                                                                                          | (0)                                                                                                                                              |                                          |                   |                         |               |                                         |                             |                                                                    |       |  |
| Linked Answer Questions: Q.76 to 85 Carry Two Marks Each                                                                                 |                                                                                                                                                  |                                          |                   |                         |               |                                         |                             |                                                                    |       |  |
| Statement for Linked Answer Questions: 76 & 77                                                                                           |                                                                                                                                                  |                                          |                   |                         |               |                                         |                             |                                                                    |       |  |
| Delayed branching can help in the handling of control hazards                                                                            |                                                                                                                                                  |                                          |                   |                         |               |                                         |                             |                                                                    |       |  |
| 76.                                                                                                                                      | For all delayed conditional branch instructions, irrespective of whether the condition evaluates to true or false                                |                                          |                   |                         |               |                                         |                             |                                                                    |       |  |
|                                                                                                                                          | (A) The instruction following the conditional branch instruction in memory is executed                                                           |                                          |                   |                         |               |                                         |                             |                                                                    |       |  |
|                                                                                                                                          | <ul><li>(B) The first instruction in the fall through path is executed</li><li>(C) The first instruction in the taken path is executed</li></ul> |                                          |                   |                         |               |                                         |                             |                                                                    |       |  |
|                                                                                                                                          | (D) The branch takes longer to execute than any other instruction                                                                                |                                          |                   |                         |               |                                         |                             |                                                                    |       |  |
| 77.                                                                                                                                      | 7. The following code is to run on a pipelined processor with one branch delay slot:                                                             |                                          |                   |                         |               |                                         |                             |                                                                    |       |  |
| 77.                                                                                                                                      | In a ADD R2 $\leftarrow$ R7 + R8                                                                                                                 |                                          |                   |                         |               |                                         |                             |                                                                    |       |  |
|                                                                                                                                          | 12 : SUB R4 ← R5 − R6                                                                                                                            |                                          |                   |                         |               |                                         |                             |                                                                    |       |  |
|                                                                                                                                          | 13 :                                                                                                                                             | ADD R1 ← R2                              |                   |                         |               |                                         |                             |                                                                    |       |  |
|                                                                                                                                          | 14:                                                                                                                                              | STORE Memory                             |                   |                         |               |                                         |                             |                                                                    |       |  |
| BRANCH to Label if $R1 == 0$<br>Which of the instructions I1, I2, I3 or I4 can legitimately occupy the delay slot without any other      |                                                                                                                                                  |                                          |                   |                         |               |                                         |                             |                                                                    |       |  |
|                                                                                                                                          |                                                                                                                                                  | m modification?                          | •                 | ,                       |               | <b>y</b>   <b>y</b>                     | <b>,</b>                    | , <b>,</b>                                                         |       |  |
|                                                                                                                                          | (A)                                                                                                                                              | I1                                       | (B)               | 12                      | (C)           | 13                                      | (D)                         | 14                                                                 |       |  |
| Statement for Linked Answer Questions: 78 & 79                                                                                           |                                                                                                                                                  |                                          |                   |                         |               |                                         |                             |                                                                    |       |  |
| Let $x_n$ denote the number of binary strings of length $n$ that contain no consecutive 0s.                                              |                                                                                                                                                  |                                          |                   |                         |               |                                         |                             |                                                                    |       |  |
| 78.                                                                                                                                      | Which of the following recurrences does x satisfy?                                                                                               |                                          |                   |                         |               |                                         |                             |                                                                    |       |  |
|                                                                                                                                          | (A)                                                                                                                                              | $x_n = 2x_{n-1}$                         |                   |                         | (B)           | $x_n = x_{\lfloor n/2 \rfloor} + 1$     |                             |                                                                    |       |  |
|                                                                                                                                          | (C)                                                                                                                                              | $x_n = x_{ n/2 } + r$                    | า                 |                         | (D)           | $x_n = x_{n-1} + x_n$                   | <b>–</b> 2                  |                                                                    |       |  |
|                                                                                                                                          |                                                                                                                                                  |                                          |                   |                         |               |                                         |                             |                                                                    |       |  |
| 79.                                                                                                                                      |                                                                                                                                                  | lue of x <sub>5</sub> is                 |                   |                         |               |                                         |                             |                                                                    |       |  |
|                                                                                                                                          | (A)                                                                                                                                              | 5                                        | (B)               | 7                       | (C)           | 8                                       | (D) 16                      |                                                                    |       |  |
| Statement for Linked Answer Questions: 80 & 81                                                                                           |                                                                                                                                                  |                                          |                   |                         |               |                                         |                             |                                                                    |       |  |
| The su                                                                                                                                   | bset-sur                                                                                                                                         | n problem is defi                        | ned as t          | follows. Giv            | en a set of n | positive integers                       | s, S = {a                   | <sub>1</sub> , a <sub>2</sub> , a <sub>3</sub> ,, a <sub>n</sub> } | , and |  |
| positive integer W, is there a subset of S whose elements sum to W? A dynamic program for solving this                                   |                                                                                                                                                  |                                          |                   |                         |               |                                         |                             |                                                                    |       |  |
| problem uses a 2-dimensional Boolean array, X, with n rows and W+1 columns.                                                              |                                                                                                                                                  |                                          |                   |                         |               |                                         |                             |                                                                    |       |  |
| $X[i, j], 1 \le i \le n, 0 \le 0 \le j \le W$ , is TRUE if and only if there is a subset of $\{a_1, a_2, \dots a_i\}$ whose elements sum |                                                                                                                                                  |                                          |                   |                         |               |                                         |                             |                                                                    |       |  |
| to j.                                                                                                                                    |                                                                                                                                                  |                                          |                   |                         |               |                                         |                             |                                                                    |       |  |
| 80. Which of the following is valid for $2 \le i \le n$ and $a_i \le j \le W$ ?                                                          |                                                                                                                                                  |                                          |                   |                         |               |                                         |                             |                                                                    |       |  |
|                                                                                                                                          | (A)                                                                                                                                              | X[i, j] = X[i - 1]<br>X[i, j] = X[i - 1] | , ]] ∨ ∧[<br>, ïi | ı, j – a <sub>i</sub> j | (B)           | X[i, j] = X[i - 1] $X[i, j] = X[i - 1]$ | I, J] ∨ ∧ <br>1   i1  .  ∨I | [I - I, J -a¡]<br>[i - 1 i -a.]                                    |       |  |
|                                                                                                                                          | (C)                                                                                                                                              | $\lambda[i, j] = \lambda[i - i]$         | , ]] ^ <b>^</b> [ | ı, j — a <sub>i</sub> j | (D)           | X[I, J] = X[I -                         | ı, J] ^ <b>^</b> [          | [i – i, j –a¡j                                                     |       |  |
| 81.                                                                                                                                      | 81. Which entry of the array X, if TRUE, implies that there is a subset whose elements sum to W?                                                 |                                          |                   |                         |               |                                         |                             |                                                                    |       |  |
|                                                                                                                                          | (A)                                                                                                                                              | X[1, W]                                  | (B)               | X[n, 0]                 | (C)           | X[n, W]                                 | (D)                         | X[n – 1, n]                                                        |       |  |
|                                                                                                                                          |                                                                                                                                                  |                                          |                   |                         |               |                                         |                             |                                                                    |       |  |
|                                                                                                                                          |                                                                                                                                                  |                                          |                   |                         |               |                                         |                             |                                                                    |       |  |

#### Statement for Linked Answer Questions: 82 & 83

Consider the following ER diagram



- 82. The minimum number of tables needed to represent M, N, P, R1, R2 is
  - (A)
- 2
- (B)
- 3
- (C)
- (D) 5
- 83. Which of the following is a correct attribute set for one of the tables for the correct answer to the above question?
  - (A) {M1,M2,M3, P1}

(B) {M1,P1,N1,N2}

(C) {M1, P1, N1}

(D) {M1, P1}

#### Statement for Linked Answer Questions: 84 & 85

Consider the following C program that attempts to locate an element x in an array Y[] using binary search. The program is erroneous.

- f(int Y[10], int x) {
   int u, j, k;
- 3. i = 0; j = 9;
- 4. do {
- 5. k = (i + j) / 2;
- 6. if (Y[k] < x) i = k; else j = k;
- 7.  $\}$  while ((Y[k]! = x) && (i < j));
- 8. if (Y [k] == x) print f ("x is in the array");
- 9. else print f ("x is not in the array");
- 10. }
- 84. On which of the following contents of Y and x does the program fail?
  - (A) Y is [1 2 3 4 5 6 7 8 9 10] and x < 10
  - (B) Y is [1 3 5 7 9 11 13 15 17 19] and x < 1
  - (C) Y is [2 2 2 2 2 2 2 2 2 2] and x > 2
  - (D) Y is [2 4 6 8 10 12 14 16 18 20] and 2 < x < 20 and x is even
- 85. The correction needed in the program to make it work properly is
  - (A) Change line 6 to: if (Y[k] < x) i = k + 1; else j = k 1;
  - (B) Change line 6 to: if (Y[k] < x) i = k 1; else j = k + 1;
  - (C) Change line 6 to: if  $(Y[k] \le x) i = k$ ; else j = k;
  - (D) Change line 7 to:  $\{(Y[k] == x) \&\& (i < j)\}$ ;

#### **End of Question Paper**