Math Bank - 5

1. The value of $\cos \frac{2 \pi}{7}+\cos \frac{4 \pi}{7}+\cos \frac{6 \pi}{7}$ is
(a) 0
(b) 1
(c) $\frac{1}{2}$
(d) $-\frac{1}{2}$.
2. The value of $\left(1+\cos \frac{\pi}{8}\right)\left(1+\cos \frac{3 \pi}{8}\right)\left(1+\cos \frac{5 \pi}{8}\right)\left(1+\cos \frac{7 \pi}{8}\right)$ is
(a) $\frac{1}{4}$
(b) $\frac{1}{8}$
(c) $\frac{1}{16}$
(d) none of these
3. If $x+\frac{1}{x}=2 \cos \theta$ then $x^{n}+\frac{1}{x^{n}}$ is equal to
(a) $2 \sin n \theta$
(b) $\cos n \theta$
(c) $\sin n \theta$
(d) $2 \cos n \theta, n \in Z^{+}$
4. The ratio of the greatest value of $2-\cos x+\sin ^{2} x$ to its least value is
(a) $\frac{1}{4}$
(b) $\frac{9}{4}$
(c) $\frac{13}{4}$
(d) none of these
5. The value of $\cos \frac{2 \pi}{15} \cos \frac{4 \pi}{15} \cos \frac{8 \pi}{15} \cos \frac{14 \pi}{15}$ is
(a) $\frac{1}{4}$
(b) $\frac{1}{8}$
(c) $\frac{1}{16}$
(d) none of these
6. If $\tan \theta=n \tan \phi(n>0)$, then
(a) $\tan ^{2}(\theta-\phi)>\frac{(n-1)^{2}}{4 n}$
(b) $\tan ^{2}(\theta-\phi) \geq \frac{(n-1)^{2}}{4 n}$
(c) $\tan ^{2}(\theta-\phi) \leq \frac{(n-1)^{2}}{4 n}$
(d) none of these
7. Let n be a fixed positive integer such that $\sin \left(\frac{\pi}{2 n}\right)+\cos \left(\frac{\pi}{2 n}\right)=\frac{\sqrt{n}}{2}$, then
(a) $n=4$
(b) $n=5$
(c) $n=6$
(d) none of these
8. If $4 \cos ^{2} \theta+\sqrt{3}=2(\sqrt{3}+1) \cos \theta$, then $\theta=$
(a) $2 n \pi \pm \frac{\pi}{3}$
(b) $2 n \pi \pm \frac{\pi}{4}$
(c) $2 n \pi \pm \frac{\pi}{6}$
(d) none of these
9. From the identity $\sin 3 x=3 \sin x-4 \sin ^{3} x$, it follows that if x is real and $|x|<1$, then
(a) $\left(3 x-4 x^{3}\right)>1$
(b) $\left(3 x-4 x^{3}\right) \leq 1$
(c) $\left(3 x-4 x^{3}\right)<1$
(d) Nothing can be said about $3 x-4 x^{3}$
10. The set of all x in the interval $[0, \pi]$ for which $2 \sin ^{2} x-$ $3 \sin x+1 \geq 0$ is
(a) $\{\pi / 2\}$
(b) ϕ
(c) $\{x: 0 \leq x \leq \pi / 4\}$
(d) $\{x: 0 \leq x \leq \pi / 6, \pi / 2,5 \pi / 6 \leq x \leq \pi\}$
11. One root of the equation $\cos -x+\frac{1}{2}=0$ lies in the interval
(a) $\left[0, \frac{\pi}{2}\right]$
(b) $\left[-\frac{\pi}{2}, 0\right]$
(c) $\left[\frac{\pi}{2}, \pi\right]$
(d) $\left[\pi, \frac{3 \pi}{2}\right]$
12. $2\left(\tan ^{-1} 1+\sin ^{-1}\left(\frac{2}{\sqrt{5}}\right)+\tan ^{-1} 3\right)$ is equal to
(a) π
(b) 4π
(c) $\frac{\pi}{2}$
(d) none of these
13. The value of
$\tan ^{-1}\left(\frac{1}{2}(\tan 2 \mathrm{~A})+\tan ^{-1}(\cot \mathrm{~A})+\tan ^{-1}\left(\cot ^{3} \mathrm{~A}\right)\right)$ is
(a) 0 if $\frac{\pi}{4}<\mathrm{A}<\frac{\pi}{2}$
(b) p, if $0<\mathrm{A}<\frac{\pi}{4}$
(c) both (a) and (b)
(d) none of these
14. If $2 \tan ^{-1}\left[\sqrt{\frac{a-b}{a+b}} \tan \left(\frac{\theta}{2}\right)\right]=\cos ^{-1}\left[\frac{2 a+3 b}{3 a+2 b}\right]$, then $\cos \theta$ is equal to
(a) $\frac{1}{2}$
(b) $\frac{1}{3}$
(c) $\frac{2}{3}$
(d) $\frac{2 a}{3 b}$
15. If $\sin \left(\sin ^{-1} \frac{1}{5}+\cos ^{-1} x\right)=1$ then x is equal to
(a) 1
(b) 0
(c) $\frac{4}{5}$
(d) $\frac{1}{5}$
16. If the lengths of the sides of a triangle are 3,4 and 5 units then R is
(a) 3.5
(b) 3.0
(c) 2.0
(d) 2.5
17. In any $\triangle A B C, r r_{1}+r_{2} r_{3}=$
(a) $a b$
(b) $a c$
(c) $b c$
(d) none of these
18. If in a triangle $A B C, \tan \frac{A}{2}, \tan \frac{B}{2}, \tan \frac{C}{2}$ are in H.P., then the sides a, b, c are in
(a) A.P.
(b) G.P.
(c) H.P.
(d) None of these
19. The value $\frac{1}{r_{1}^{2}}+\frac{1}{r_{2}^{2}}+\frac{1}{r_{3}^{2}}+\frac{1}{r^{2}}$ is equal to
(a) 0
(b) $\frac{a^{2}+b^{2}+c^{2}}{\Delta^{2}}$
(c) $\frac{\Delta^{2}}{a^{2}+b^{2}+c^{2}}$
(d) $\frac{a^{2}+b^{2}+c^{2}}{\Delta}$
20. If upper part of a tree broken over by the wind makes an angle of 30° with the ground, and the distance from the root to the point where the top of the tree touches the ground is 10 m , the height of the tree is
(a) $20 \sqrt{3} \mathrm{~m}$
(b) $10 \sqrt{3} \mathrm{~m}$
(c) $15 \sqrt{3} \mathrm{~m}$
(d) none of these
21. A ballon is observed simultaneously from three points A, B and C on a straight road directly under it. The angular elevation at B is twice and at C is thrice that of A. If the distance between A and B is 200 metres and the distance between B and C is 100 metres, then the height of balloon between B and C is 100 meters, then the height of balloon is given by
(a) 50 metres
(b) $50 \sqrt{3}$ metres
(c) $50 \sqrt{2}$ metres
(d) none of these
22. A tower stands at the top of a hill whose height is 3 times the height of the tower. The tower is found to sutend at a point 3 km away on the horizontal through the foot of the hill, an angle θ where $\tan \theta$ $=\frac{1}{9}$. The height of the tower is
(a) 12
(b) 3
(c) $\frac{9 \pm \sqrt{33}}{8}$
(d) none of these
23. A person is standing on a tower of height $15(\sqrt{3}+1) \mathrm{m}$ and observing a car coming towards
the tower. He observed that angle of depression changes from 30° to 45° in 3 sec . What is the speed of the car
(a) $36 \mathrm{~km} / \mathrm{hr}$
(b) $72 \mathrm{~km} / \mathrm{hr}$
(c) $18 \mathrm{~km} / \mathrm{hr}$
(d) $30 \mathrm{~km} / \mathrm{hr}$
24. If a triangle has its orthocentre at $(1,1)$ and circumcentre at $\left(\frac{3}{2}, \frac{3}{4}\right)$, then the coordinates of the centroid of the triangle are
(a) $\left(\frac{4}{3},-\frac{5}{6}\right)$
(b) $\left(\frac{4}{3}, \frac{5}{6}\right)$
(c) $\left(-\frac{4}{3}, \frac{5}{6}\right)$
(d) $\left(-\frac{4}{3},-\frac{5}{6}\right)$
25. A line joining two points $A(2,0)$ and $B(3,1)$ is rotated about A in anticlockwise direction through an angle 15°. If B goes to C in the new position, then the coordinates of C are
(a) $\left(2, \sqrt{\frac{3}{2}}\right)$
(b) $\left(2,-\sqrt{\frac{3}{2}}\right)$
(c) $\left(2+\frac{1}{\sqrt{2}}, \sqrt{\frac{3}{2}}\right)$
(d) none of these
26. $\quad P(3,1), Q(6,5)$ and $R(x, y)$ are three points such that the angle $R P Q$ is a right angle and the area of $\triangle R P Q=7$, then the number of such points R is
(a) 0
(b) 1
(c) 2
(d) 4
27. If a, b, c are in H.P. then the straight line $\frac{x}{a}+\frac{y}{b}+\frac{1}{c}$ $=0$ always passes through a fixed point, that point is
(a) $(-1,-2)$
(b) $(-1,2)$
(c) $(1,-2)$
(d) $\left(1,-\frac{1}{2}\right)$
28. The figure formed by the lines $x^{2}+4 x y+y^{2}=0$ and $x-y=4$, is
(a) A right angled triangle
(b) An isosceles triangle
(c) An equilateral triangle
(d) none of these
29. The value of λ for which the equation $12 x^{2}-10 x y$ $+2 y^{2}+11 x-5 y+\lambda=0$ represents two straight lines is
(a) 1
(b) 2
(c) -1
(d) -2
30. The pair of lines which join the origin to the points of intersection of the line $y=m x+c$ with the curve $x^{2}+y^{2}=a^{2}$ are at right angles, if
(a) $c^{2}=a^{2}\left(1+m^{2}\right)$
(b) $2 c^{2}=a^{2}\left(1+m^{2}\right)$
(c) $2 c^{2}=a^{2}\left(1-m^{2}\right)$
(d) none of these
31. If the equation $2 x^{2}-2 h x y+2 y^{2}=0$ represents two congruent lines through origin, then $h=$
(a) ± 2
(b) ± 3
(c) ± 6
(d) ± 4
32. The sides of a square are $x=2, x=3, y=1$ and $y=2$. The equation of the circle drawn on the diagonals of the square as its diameter, is
(a) $x^{2}+y^{2}-5 x-3 y+8=0$
(b) $x^{2}+y^{2}+5 x-3 y+8=0$
(c) $x^{2}+y^{2}+5 x+3 y-8=0$
(d) none of these
33. The circles $x^{2}+y^{2}-10 x+16=0$ and $x^{2}+y^{2}$ $=r^{2}$ intersect each other in two distinct points if
(a) $r<2$
(b) $r>8$
(c) $2<r<8$
(d) $2 \leq r \leq 8$
34. The two circles $x^{2}+y^{2}-2 x-4 y=0$ and $x^{2}+y^{2}-8 y-4=0$
(a) touch externally
(b) touch internally
(c) intersect
(d) do not touch
35. The number of points on the circle $x^{2}+y^{2}-4 x-10 y$ $+13=0$ which are at a distance 1 from the point (-3 , 2) is
(a) 1
(b) 2
(c) 3
(d) none of these
36. The equation of the normal to the parabola $y^{2}=4 x$ which is parallel to the line $y-2 x+5=0$ is
(a) $2 x+y-12=0$
(b) $2 x-y-12=0$
(c) $x+2 y-12=0$
(d) none of these
37. If the tangent to the parabola $y^{2}=4 a x$ meets the axis in T and tangent at the vertex A in Y and the rectangle TAYG is completed, then the locus of G is
(a) $y^{2}+2 a x=0$
(b) $y^{2}+a x=0$
(c) $x^{2}+a y=0$
(d) none of these
38. If the parabola $x^{2}=$ ay makes an intercept of length $\sqrt{40}$ on the line $y-2 x=1$, then a is equal to
(a) 1
(b) -2
(c) -1
(d) 2
39. If $P S Q$ is the focal chord of the parabola $y^{2}=8 x$ such that $S P=6$, then the length $S Q$ is
(a) 6
(b) 4
(c) 3
(d) none of these
40. The domain of the function

$$
f(x)={ }^{24-x} C_{3 x-1}+{ }^{40-{ }^{6 x} C_{8 x-10} \text { is, }, ~}
$$

(a) $\{2,3\}$
(b) $\{1,2,3\}$
(c) $\{1,2,3,4\}$
(d) none of these
41. The domain of the function

$$
f(x)=\cos ^{-1}\left(\frac{2-|x|}{4}\right)+[\log (3-x)]^{-1} \text { is }
$$

(a) $[-6,3) \backslash\{2\}$
(b) $[-6,2) \cup(2,3]$
(c) $[-6,3]$
(d) $[-6,3)$
42. The domain of the function $f(x)=\frac{1}{\sqrt{|\sin x|+\sin x}}$ is
(a) $(-2 n \pi, 2 n \pi)$
(b) $(2 n \pi,(2 n+1) \pi)$
(c) $\left((4 n-1) \frac{\pi}{2},(4 n+1) \frac{\pi}{2}\right)$
(d) none of these
43. The domain of the function

$$
f(x)=\log _{3}\left[-\log _{1 / 2}\left(1+\frac{1}{x^{1 / 5}}\right)-1\right] \text { is }
$$

(a) $(-\infty, 1)$
(b) $(0,1)$
(c) $(1, \infty)$
(d) none of these
44. If $f(2)=2$ and $f^{\prime}(2)=1$ then $\lim _{x \rightarrow 2} \frac{2 x^{2}-4 f(x)}{x-2}$ is equal
(a) 4
(b) -4
(c) 2
(d) -2
45. $\lim _{n \rightarrow \infty}\left(\cos \frac{x}{2} \cos \frac{x}{4} \cos \frac{x}{8} \ldots \cos \frac{x}{2^{n}}\right)=$
(a) $\frac{x}{\sin x}$
(b) $\frac{\sin x}{x}$
(c) 0
(d) none of these
46. $\lim _{n \rightarrow \infty} \prod_{4=3}^{n}\left(\frac{r^{3}-1}{r^{3}+1}\right)$
(a) $\frac{1}{3}$
(b) $\frac{6}{7}$
(c) $-\frac{2}{3}$
(d) none of these
47. $\lim _{x \rightarrow a}\left(\frac{\sin x}{\sin a}\right)^{\frac{1}{x-a}}, a \neq n \pi, n$ is an integer, equals
(a) $e^{\cot a}$
(b) $e^{\tan a}$
(c) $e^{\sin a}$
(d) $e^{\cos a}$
48. If $f(x)=\left\{\begin{array}{c}\frac{[x]-1}{x-1}, x \neq 1 \\ 0, x=1\end{array}\right.$, then $f(x)$ is
(a) continuous as well as differentiable at $x=1$
(b) differentiable but not continuous at $x=1$
(c) continuous but not differentiable at $x=1$
(d) neither continuous nor differentiable at $x=1$
49. Let $f(x)=\left\{\begin{array}{cl}\frac{x^{4}-5 x^{2}+4}{|(x-1)(x-2)|} & , x \neq 1,2 \\ 6 & , x=1 \\ 12 & , x=2\end{array}\right.$. Then $f(x)$ is continuous on the set
(a) $R \backslash\{2\}$
(b) $R \backslash\{1,2\}$
(c) R
(d) $R \backslash\{1\}$
50. The function $f(x)=(1+x)^{\cot x}$ is not defined at $x=0$. The value of $f(0)$ so that $f(x)$ becomes continuous at $x=0$, is
(a) 1
(b) 0
(c) e
(d) none of these
51. Let $f(x)=\left[2 x^{3}-5\right]$, where [] denotes the greatest integer function. Then the number of points in $(1,2)$, where the function is discontinuous is
(a) 0
(b) 13
(c) 15
(d) 11
52. If $y=\left(\sin ^{-1} x\right)^{2}$, then $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}$ is equal to
(a) $x \frac{d y}{d x}+2$
(b) $x \frac{d y}{d x}-2$
(c) $-x \frac{d y}{d x}+2$
(d) none of these
53. If $f(x)=\log \left(\frac{m(x)}{n(x)}\right), m(1)=n(1)=1$ and $m^{\prime}(1)=n^{\prime}(1)=2$, then $f^{\prime}(1)$ is equal to
(a) 0
(b) 1
(c) -1
(d) none of these
54. The differential coefficient of $\tan ^{-1} \frac{2 x \sqrt{1-x^{2}}}{1-2 x^{2}}$ w.r.t. $\sec ^{-1} \frac{1}{2 x^{2}-1}$ at $x=\frac{1}{2}$ is equal to
(a) $\frac{1}{2}$
(b) $-\frac{1}{2}$
(c) -1
(d) none of these
55. If $x^{2}+y^{2}=1$, then
(a) $y y^{\prime \prime}-2\left(y^{\prime}\right)^{2}+1=0$
(b) $y y^{\prime \prime}+\left(y^{\prime}\right)^{2}+$
$1=0$
$\begin{array}{ll}\text { (c) } y y^{\prime \prime}+\left(y^{\prime}\right)^{2}-1=0 & \text { (d) } y y^{\prime \prime}+2\left(y^{\prime}\right)^{2}+1=0\end{array}$
56. If the normal at the point " t_{1} " on the curve $x y=c^{2}$ meets the curve again at " t_{2} ", then
(a) $t_{1}^{3} t_{2}=1$
(b) $t_{1}^{3} t_{2}=-1$
(c) $t_{1} t_{2}^{3}=-1$
(d) $t_{1} t_{2}^{3}=1$.
57. The minimum value of $\log _{a} x+\log _{x} a, 0<x<a$, is
(a) 1
(b) 2
(c) -2
(d) none of these
58. The function $f(x)=\frac{\ln (\pi+x)}{\ln (e+x)}$ is
(a) increasing on $(0, \infty)$
(b) decreasing on $(0, \infty)$
(c) increasing on $(0, \pi / e)$, decreasing on $(\pi / e, \infty)$
(d) decreasing on $(0, \pi / e)$, increasing on $(\pi / e, \infty)$
59. For the curve $x=t^{2}-1, y=t^{2}-t$, the tangent is parallel to x-axis where
(a) $t=\frac{1}{\sqrt{3}}$
(b) $t=-\frac{1}{\sqrt{3}}$
(c) $t=0$
(d) $t=\frac{1}{2}$
60. $\int \frac{\cot x}{\sqrt{\sin x}} d x$ is equal to
(a) $2 \sqrt{\sin x}+C$
(b) $\frac{1}{2 \sqrt{\sin x}}+C$
(c) $\frac{-2}{\sqrt{\sin x}}+C$
(d) $\frac{2}{\sqrt{\sin x}}+C$
61. $\int \sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}} d x$ is equal to
(a) $2 \sqrt{1-x}+\cos ^{-1} \sqrt{x}+\sqrt{x-x^{2}}+C$
(b) $2 \sqrt{1-x}-\cos ^{-1} \sqrt{x}+\sqrt{x-x^{2}}+C$
(c) $-2 \sqrt{1-x}+\cos ^{-1} \sqrt{x}+\sqrt{x-x^{2}}+C$
(d) none of these
62. If $\int \frac{\sqrt{\cot x}}{\sin x \cos x} d x=P \sqrt{\cot x}+Q$, then P equals
(a) 1
(b) 2
(c) -1
(d) -2
63. $\int \frac{d^{2}}{d x^{2}}\left(\tan ^{-1} x\right) d x$ is equal to
(a) $\frac{1}{1+x^{2}}+C$
(b) $\tan ^{-1} x+C$
(c) $x \tan ^{-1} x-\frac{1}{2} \log \left(1+x^{2}\right)+C$
(d) none of these
64. $\int_{0}^{\pi / 2}(\tan x+\cot x) d x$ is equal to
(a) $\frac{\pi}{2} \log 2$
(b) $-\frac{\pi}{2} \log 2$
(c) $\pi \log 2$
(d) none of these
65. The value of the integral $\int_{0}^{\pi} \frac{x^{2} \sin x}{(2 x-\pi)\left(1+\cos ^{2} x\right)} d x$ is
(a) $\frac{\pi^{2}}{4}$
(b) $\frac{\pi^{2}}{2}$
(c) $\frac{\pi^{2}}{6}$
(d) none of these
66. $\int_{0}^{1.5}\left[x^{2}\right] d x$, where [.] denotes the greatest in integer function, is equal to
(a) $\sqrt{2}-2$
(b) $2-\sqrt{2}$
(c) $2+\sqrt{2}$
(d) none of these
67. $\int_{0}^{\pi}|\sin x+\cos x| d x$ is equal to
(a) $\sqrt{2}$
(b) $2 \sqrt{2}$
(c) $3 \sqrt{2}$
(d) none of these
68. The general solution of the differential equation $\frac{d y}{d x}=$ $y \tan x-y^{2} \sec x$ is
(a) $\tan x=(c+\sec x) y$
(b) $\sec y=(c+\tan y) x$
(c) $\sec x=(c+\tan x) y$
(d) none of these
69. Solution of the equation $x d y=\left(y+x \frac{f(y / x)}{f^{\prime}(y / x)}\right) d x$ is
(a) $f\left(\frac{x}{y}\right)=c y$
(b) $f\left(\frac{y}{x}\right)=c x$
(c) $f\left(\frac{y}{x}\right)=c x y$
(d) none of these
70. The degree of the differential equation

$$
\left(\frac{d^{4} y}{d x^{4}}\right)^{3 / 5}-5 \frac{d^{3} y}{d x^{3}}+6 \frac{d^{2} y}{d x^{2}}-8 \frac{d y}{d x}+5=0 \text { is }
$$

(a) 2
(b) 3
(c) 4
(d) 5
71. The differential equation that represents all parabolas each of which has a latus rectum $4 a$ and whose axes are parallel to x-axis, is
(a) $a \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{3}=0$
(b) $2 a \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{3}=0$
(c) $2 a \frac{d^{2} y}{d x^{2}}-\left(\frac{d y}{d x}\right)^{3}=0$
(d) none of these
72. The complex number $z=x+i y$ which satisfy the equation $\left|\frac{z-5 i}{z+5 i}\right|=1$ lie on
(a) the x-axis
(b) the line $y=5$
(c) a circle through the origin
(d) none of these
73. The value of $\left(\frac{1+i}{\sqrt{2}}\right)^{8}+\left(\frac{1-i}{\sqrt{2}}\right)^{8}$ is equal to
(a) 4
(b) 6
(c) 8
(d) 2
74. If $1, \omega, \omega^{2}$ are the three cube roots of unity, then $\left(1-\omega+\omega^{2}\right)\left(1-\omega^{2}+\omega^{4}\right)\left(1-\omega^{4}+\omega^{8}\right) \ldots$ to $2 n$ factors $=$
(a) 2^{n}
(b) $2^{2 n}$
(c) $2^{4 n}$
(d) none of these
75. The complex number z satisfying the equations $|z-i|=|z+1|=1$ is
(a) 0
(b) $1+i$
(c) $-1+i$
(d) $1-i$
76. In the series $3,7,11,15, \ldots$ and $2,5,8, \ldots$ each continued to 100 terms, the number of terms that are identical is
(a) 21
(b) 27
(c) 25
(d) none of these
77. The sum of positive terms of the series $10+9 \frac{4}{7}+9 \frac{1}{7}+\ldots$ is
(a) $\frac{352}{7}$
(b) $\frac{437}{7}$
(c) $\frac{852}{7}$
(d) none of these
78. If S_{1} is the sum of an arithmetic series of ' n ' odd number of terms and S_{2}, the sum of the terms of the series in odd places, then $\frac{S_{1}}{S_{2}}=$
(a) $\frac{2 n}{n+1}$
(b) $\frac{n}{n+1}$
(c) $\frac{n+1}{2 n}$
(d) $\frac{n+1}{n}$
79. The sum of n terms of m A.P.s are $S_{1}, S_{2}, S_{3}, \ldots, S_{m}$. If the first term and common difference are $1,2,3, \ldots, m$ respectively, then $S_{1}+S_{2}+S_{3}+\ldots+S_{m}=$
(a) $\frac{}{4} m n(m+1)(n+1)$
(b) $\frac{4}{2} m n(m+1)(n+1)$
(c) $m n(m+1)(n+1)$
(d) none of these
80. If $a(b-c) x^{2}+b(c-a) x+c(a-b)=0$ has equal roots, then a, b, c are in
(a) A.P.
(b) G.P.
(c) H.P.
(d) none of these
81. The equation $\sqrt{x+3-4 \sqrt{x-1}}+\sqrt{x+8-6 \sqrt{x-1}}=1$ has
(a) no solution
(b) one solution
(c) two solutions
(d) more than two solutions
82. If the sum of the roots of the equation $a x^{2}+b x+c=0$ is equal to the sum of the reciprocals of their squares, then $b c^{2}, c a^{2}$ and $a b^{2}$ are in
(a) A.P.
(b) G.P.
(c) H.P.
(d) none of these
83. In copying a quadratic equation of the form $x^{2}+p x+q$ $=0$, a student wrote the coefficient of x incorrectly and the roots were found to be 3 and 10; another student wrote the same equation but he wrote the constant term incorrectly and thus he found the roots to be 4 and 7 . The roots of the correct equation are
(a) 5,6
(b) 4,6
(c) 4,5
(d) none of these
84. The number of positive terms in the sequence

$$
x_{n}=\frac{195}{4{ }^{n} P_{n}}-\frac{{ }^{n+3} P_{3}}{{ }^{n+1} P_{n+1}}, n \in N \text { is }
$$

(a) 2
(b) 3
(c) 4
(d) none of these
85. The number of ways in which the letters of the word "STRANGE" can be arranged so that the vowels may appear in the odd places, is
(a) 1440
(b) 1470
(c) 1370
(d) none of these
86. The number of ways in which 7 people can be arranged at a round table so that 2 particular persons may be together, is
(a) 132
(b) 148
(c) 240
(d) none of these
87. The number of ways in which a committee of 3 ladies and 4 gentlemen can be appointed from a meeting consisting of 8 ladies and 7 gentlemen, if Mrs X refuses to serve in a committee if Mr . Y is a member is
(a) 1960
(b) 1540
(c) 3240
(d) none of these
88. The 7 th term in $\left(\frac{1}{y}+y^{2}\right)^{10}$, when expanded in descending power of y, is
(a) $\frac{210}{y^{2}}$
(b) $\frac{y^{2}}{210}$
(c) $210 y^{2}$
(d) none of these
89. The coefficient of x^{30} in the expansion of

$$
\left(1+3 x+3 x^{2}+x^{3}\right)^{15} \text { is }
$$

(a) ${ }^{45} C_{15}$
(b) ${ }^{45} C_{25}$
(c) ${ }^{45} C_{30}$
(d) ${ }^{15} C_{11}$
90. The coefficient of x^{5} in the expansion of $\left(1+x^{2}\right)^{5}(1+x)^{4}$ is
(a) 40
(b) 50
(c) -50
(d) 60
91. In the expansion of $(x+a)^{n}$ if the sum of odd terms be P and the sum of even terms be Q, then $4 P Q=$
(a) $(x+a)^{n}-(x-a)^{n}$
(b) $(x+a)^{n}+(x-a)^{n}$
(c) $(x+a)^{2 n}-(x-a)^{2 n}$
(d) none of these
92. The sum of the series $\frac{2}{1!}+\frac{4}{3!}+\frac{6}{5!}+\ldots \infty$ is
(a) e
(b) $2 e$
(c) $3 e$
(d) $4 e$
93. The sum of the series $1+\frac{1}{2!}+\frac{1 \cdot 3}{4!}+\frac{1 \cdot 3 \cdot 5}{6!}+\ldots$ is
(a) \sqrt{e}
(b) $e^{3 / 2}$
(c) $e^{-1 / 2}$
(d) e
94. The value of $(1+3) \log _{e} 3+\frac{\left(1+3^{2}\right)}{2!}\left(\log _{e} 3\right)^{2}$ $+\frac{\left(1+3^{3}\right)}{3!}\left(\log _{e} 3\right)^{3}+\ldots \infty$ is
(a) 18
(b) 28
(c) 36
(d) none of these
95. The value of $(x+y)(x-y)+\frac{1}{2!}(x+y)(x-y)\left(x^{2}+y^{2}\right)$ $+\frac{1}{3!}(x+y)(x-y)\left(x^{4}+y^{4}+x^{2} y^{2}\right)+\ldots \infty$ is
(a) $e^{x^{2}}+e^{y^{2}}$
(b) $e^{x^{2}-y^{2}}$
(c) $e^{x^{2}}-e^{y^{2}}$
(d) none of these
96. If $X=\left[\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right]$, the value of X^{n} is
(a) $\left[\begin{array}{cc}3 n & -4 n \\ n & -n\end{array}\right]$
(b) $\left[\begin{array}{cc}2+n & 5-n \\ n & -n\end{array}\right]$
(c) $\left[\begin{array}{ll}3^{n} & (-4)^{n} \\ 1^{n} & (-1)^{n}\end{array}\right]$
(d) none of these
97. If A is 3×4 matrix and B is a matrix such that $A^{\prime} B$ and $B A^{\prime}$ are both defined. Then B is of the type
(a) 3×4
(b) 3×3
(c) 4×4
(d) 4×3
98. If B is a non-singular matrix and A is a square matrix, then $\operatorname{det}\left(B^{-1} A B\right)$ is equal to
(a) $\operatorname{det}\left(A^{-1}\right)$
(b) $\operatorname{det}\left(B^{-1}\right)$
(c) $\operatorname{det}(A)$
(d) $\operatorname{det}(B)$
99. If A and B are two matrices such that $A+B$ and $A B$ are both defined, then:
(a) A and B are two matrices not necessarily of same order
(b) A and B are square matrices of same order.
(c) number of columns of $A=$ number of rows of B
(d) none of the above.
100. If $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -2 & 4\end{array}\right], I=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

$$
A^{-1}=\frac{1}{6}\left[A^{2}+C A+d I\right]
$$

where $c, d \in R$, the pair of values (c, d) are
(a) $(6,11)$
(b) $(6,-11)$
(c) $(-6,11)$
(d) $(-6,-11)$

Answer keys

1. (d)	2. (b)	3. (d)	4. (c)	5. (c)	6. (c)
7. (b, c)	8. (c)	9. (c)	10. (d)	11. (b, c)	12. (c)
13. (b)	14. (c, d)	15. (d)	16. (b)	17. (c)	18. (a)
19. (a)	20. (a)	21. (a)	22. (a)	23. (a)	24. (b)
25. (c)	26. (c)	27. (c)	28. (c)	29. (b)	30. (c)
31. (c)	32. (a)	33. (c)	34. (b)	35. (d)	36. (b)
37. (b)	38. (a, b)	39. (c)	40. (a)	41. (a)	42. (b)
43. (b)	44. (a)	45. (b)	46. (b)	47. (a)	48. (a)
49. (a)	50. (d)	51. (a)	52. (b)	53. (a)	54. (c)
55. (a)	56. (b)	57. (b)	58. (b)	59. (b)	60. (a)
61. (a)	62. (c)	63. (b)	64. (c)	65. (a)	66. (b)
67. (b)	68. (c)	69. (b)	70. (b)	71. (b)	72. (a)
73. (b)	74. (b)	75. (a, c)	76. (c)	77. (c)	78. (a)
79. (a)	80. (c)	81. (d)	82. (a)	83. (a)	84. (c)
85. (a)	86. (c)	87. (d)	88. (c)	89. (c)	90. (d)
91. (c)	92. (a)	93. (a)	94. (b)	95. (c)	96. (d)
97. (a)	98. (c)	99. (b)	100. (c)		

