Question No. 1 is compulsory.

- I Attempt any four questions from remaining six.
- Assume suitable data if required and state it clearly.
- Figures to the right indicate full marks.
- a any four :-
 - a) Design a linear combination circuit using Op-amp to get-

 $V_0 = -2 V_1 - 8 V_2 - V_3$ with $R_{in} \ge 20 \text{ k}\Omega$ at all inputs and all Resistances $\le 200 \text{ k}\Omega$.

Find $\frac{0}{i} = \text{Req}$.

(c) Find V_N and V_P and V_0

R₂ V₀

Draw the wave form of the output voltage and derive equation for frequency of V_0 .

. Determine $\frac{V_0}{V}$ for the circuit below $\mathbb{R}^{1/2}$

20

Con. 3324-ND-1972-07.

For the circuit shown in the above figure find current I_L . If now 10 k Ω resistance is replaced by 20 k Ω find I_L . Assume \pm V_{sat} = \pm 13 V.

2629

N B.

2. Draw circuit diagram of Low-pass KRC filter. Derive expression for transfer function and convert it in to the following form: $H_{LP}(jw) = \frac{K}{1 - (w_\perp w_\parallel)^2 + (jw/w_\parallel)Q}$

Find values of K, W_0 and Q by comparing derived expression with above expression. Design the same Low-pass KRC filter using equal component design using $f_0 = 1$ KHz and Q = 5. What is its dc gain?

3. (a) In the circuit shown below let $R_1 = R_3 = 10 \text{ k}\Omega$ and $R_2 = R_4 = 100 \text{ k}\Omega$ assuming perfectly matched resistors, find V_0 for each of the following input voltage pairs:—

$$(v_1, v_2)^{\circ} = (-0.1 \text{ V}, +0.1 \text{ V})$$

= $(4.9 \text{ V}, 5.1 \text{ V})$ and $(9.9 \text{ V}, 10.1 \text{ V})$

Now repeat part a with resistors mismatched as follows: $R_1 = 10 \text{ k}\Omega$, $R_2 = 98 \text{ k}\Omega$, $R_3 = 9.9 \text{ k}\Omega$ and $R_4 = 103 \text{ k}\Omega$. Comment.

- (b) Draw and explain the circuit diagram to generate square and triangular waveform using Op-amp. Derive expression for frequency and comment about range of frequency.
- 4. (a) Give different specifications of Instrument Amplifier. Draw 1A using 3 Op-amps of derive the expression for output voltage. Explain output offset technique in such amplifier.
 - (b) Design a schmitt trigger circuit with following requirements: UTP = +5 V. LTP = -1 V. Assume Op-amp is powered with ± 14 V and reference to be added is V_{Ref.} = -2 V.
- 5. (a) Draw functional diagram of PLL IC 565 and explain the following terms along with the working of this PLL.
 - (i) Free running frequency (ii) Capture range (iii) Lock range.
 - (b) List out the specifications of Digital to Analog converter (DAC) and explain with circuit diagram any one technique of D to A conversion.
- 6. (a) Explain how a missing pulse can be detected using IC 555.
 - (b) Design a phase shift oscillator with $f_0 = 1$ KHz. How to adjust the peak-to-peak output voltage
- 7. Write short notes (any **four**):—
 - (a) Peak Detector Circuit.
- (d) Composite Amplifier.
- (b) Precision Rectifier.
- (e) Dominent Pole and Miller compensation.
- (c) Waveform Generator IC 8038. (f) Sample and Hold Circuit.